ptc13 paredes wierz

Upload: anonymous-swes7seg

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 PTC13 Paredes Wierz

    1/22

    Numerical simulation on bursting pipe using damagemodel with pressure and Lode angle dependence

    Marcelo Paredes

    Tomasz W ierzbicki

  • 8/11/2019 PTC13 Paredes Wierz

    2/22

    Outline Introduction

    Brief review of Material properties andCalibration procedures

    Modified-Mohr Coulomb model

    Crack Propagation in Bursting pipe simulation Summary

    1Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

  • 8/11/2019 PTC13 Paredes Wierz

    3/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    2

    INTRODUCTION

    X100 provides economic advantages

    by increasing strength with reductionin wall thickness.

    Current standards and design codesestablish that the allowable stressdepends partially or completely onyield tensile strength.

    These type of material exhibits lowerwork hardening capacity, lower strainto failure and softening of their HAZ.

    A complete characterization of stressstate around the crack defect isrequired when it propagates.

  • 8/11/2019 PTC13 Paredes Wierz

    4/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    3

    Material of investigation: X100, OD=48,t=18.4mm

    Anisotropy Performance of the quasi-static tests on flat

    dog-specimens using DIC Determination of the Lankford parameters in

    0, 45 and 90 degree angles

    F G H L M N0.62 0.7 0. 30 2.02 1.5 1.5

    X100 R2

    r 0 0.988 0.988

    r 45 1.035 0.993

    r 90 0.482 0.954

    Kofiani, K, Nonn, A., Wierzbicki , T., Experimental and Fracture Modeling of High Strength pipelines for high and low stress triaxialities The Proceedings of The Twenty-second (2012) International OFFSHORE AND POLAR ENGINEERING CONFERENCE, Rohdes, Greece

    Hill48 anisotropic yield condition parameters

  • 8/11/2019 PTC13 Paredes Wierz

    5/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    4

    Theory of anisotropic plasticityTheoretical model

    Isotropic Hardening law

    = ( + ) A [MPa] n 1006.5 0.0384 0.0008

  • 8/11/2019 PTC13 Paredes Wierz

    6/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    5

    Classical Mohr-Coulomb

    ModifiedMohr-Coulomb

    (MMC)

    (Bai and Wierzbicki, 2010)

    1 2 f nmax c c

    Modified Mohr-Coulomb Model:

  • 8/11/2019 PTC13 Paredes Wierz

    7/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    6

    Modified Mohr-Coulomb Model:

    1

    2

    13 3 1

    2

    13 11 sec 1 cos sin

    6 3 6 3 62 3

    n

    f

    c Ac c c

    c

    In strain space (Modified Mohr-Coulomb model ):

    0( )

    ( , )

    p p p

    f

    d D

    ( ) 1 f

    c D D

    Damage accumulation rule:

    At fracture initiates.

    1 2 f nmax c c

    In stress space (Classical Mohr-Coulomb model):

    T r a n s f o r m a

    t i o n

    23

    m

    Mises

    p

    J

    Stress triaxiality:

    61

    1 1 Normalized Lode angle:

    6

  • 8/11/2019 PTC13 Paredes Wierz

    8/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    7

    Hybrid experimental/numerical process

    7

    7

    P, curve crit

    , crit

    FEM

    Experiments3DFL

    Matlab Monte-Carlo simulations

  • 8/11/2019 PTC13 Paredes Wierz

    9/22

    3D Fracture surface

    Fracture parameters

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    8

    Hybrid experimental/numerical process

    8

    8

    C1 C2 C3 R0.029 535 0.90 98%

    Kofiani, K, Nonn, A., Wierzbicki , T., Experimental and Fracture Modeling of High Strength pipelines for high and low stress triaxialities The Proceedings of The Twenty-second (2012) International OFFSHORE AND POLAR ENGINEERING CONFERENCE, Rohdes, Greece

  • 8/11/2019 PTC13 Paredes Wierz

    10/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    9

    Validation results X100

    9

    9

    Kofiani, K, Nonn, A., Wierzbicki , T., Experimental and Fracture Modeling of High Strength pipelines for high and low stress triaxialities The Proceedings of The Twenty-second (2012) International OFFSHORE AND POLAR ENGINEERING CONFERENCE, Rohdes, Greece

    9

    - C3D8R, eight-node brick elementwith reduced integration

    - Moment free grips- Capability of predicting both first stageof crack propagation up to completeseparation

  • 8/11/2019 PTC13 Paredes Wierz

    11/22

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    10

    , =

    +3

    2 3 1 sec

    6 11 +

    3 cos

    6 + +13 sin

    6

    , = 1 +

    3+

    , = 1 +

    3cos

    6+

    13

    sin

    6

    MMC Fracture criteria c1, c2, c 3

    Burst Pressure: Limiting Cases

    MMC Fracture criteria Pressure dependence: = 0, c 3 = 1

    MMC Fracture criteria Lode dependence: = 0, c 3 = 1

    0.0

    0.1

    0.20.3

    0.4

    0.5

    -1 -0.5 0 0.5 1 1.5

    0.0

    0.5

    1.0

    1.5

    2.0

    -1 -0.5 0 0.5 1

  • 8/11/2019 PTC13 Paredes Wierz

    12/22

  • 8/11/2019 PTC13 Paredes Wierz

    13/22

    12

    Modified Mohr Coulomba/t = 0.5

    /

    /

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    0.0

    1.0

    2.0

    3.0

    4.0

    0 0.2 0.4 0.6 0.8 1

    Thicknessx/D = 1x/D =22

    x/D = 45x/D =77

    -0.5

    0.0

    0.5

    1.0

    0 0.2 0.4 0.6 0.8 1

    Thickness x/D = 1x/D = 22

    x/D = 45

    x/D =77

    T=0.4680P = 38.2 MPa

    T=0.4740P = 38.5 MPa

    * x/D = normalized vertical distance of control points from crack tip.

    Predominant PlaneStrain condition

    High Stress

    Triaxiality

  • 8/11/2019 PTC13 Paredes Wierz

    14/22

    -0.5

    0.0

    0.5

    1.0

    0 0.2 0.4 0.6 0.8 1

    Axial

    x/D =1

    x/D =13

    x/D = 17

    13

    /

    /

    Modified Mohr Coulomba/t = 0.5

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 0.2 0.4 0.6 0.8 1

    Axialx/D = 1

    x/D = 13

    x/D =17

    T=0.4820, P = 38.9 MPa

    T=0.4900, P = 39.3 MPa

    Strong Influence of

    Lode angle SlantFracture

    Low Stress

    Triaxiality

  • 8/11/2019 PTC13 Paredes Wierz

    15/22

    14

    Modified Mohr Coulomba/t = 0.15

    0.0

    1.0

    2.0

    3.0

    4.0

    0 0.2 0.4 0.6 0.8 1

    Thicknessx/D = 1x/D = 19

    x/D = 31x/D = 89

    -0.5

    0.0

    0.5

    1.0

    0 0.2 0.4 0.6 0.8 1

    Thicknessx/D = 1x/D = 19x/D = 31x/D = 89

    /

    /

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    T=0.6040P = 41.9 MPa

    T=0.6220P = 42.2 MPa

    T=0.6260P = 42.3 MP

    Fluctuations on reveals 45 plane ofMax. Plastic Strain

    (zigzag pattern)

    High Stress

    Triaxiality

  • 8/11/2019 PTC13 Paredes Wierz

    16/22

    15

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    0 0.2 0.4 0.6 0.8 1

    Axialx/D =1

    x/D = 25

    x/D = 62

    x/D = 77

    -0.5

    0.0

    0.5

    1.0

    0 0.2 0.4 0.6 0.8 1

    Axial

    x/D =1

    x/D = 25x/D = 62x/D = 77

    /

    /

    Modified Mohr Coulomba/t = 0.15

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    T=0.6220, P = 42.2 MPa

    T=0.6240, P = 42.3 MPa

    T=0.6300, P = 42.4 MPa

    Peak on leads toslant fracture pattern

  • 8/11/2019 PTC13 Paredes Wierz

    17/22

    16

    /

    /

    Modified Mohr Coulomb: Lode dependencea/t = 0.15

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0 0.2 0.4 0.6 0.8 1

    Thickness

    x/D = 1x/D = 10x/D = 40x/D = 100

    -1.0

    -0.5

    0.0

    0.5

    1.0

    0 0.2 0.4 0.6 0.8 1

    Axial

    x/D =1x/D = 10x/D = 50x/D = 130

    T=0.4300P = 37.3 MPa

    T=0.4380P = 37.5 MPa

    T=0.4300 T=0.4380 T=0.4440Thickness

    Axial

    Stress State tends toPlane Strain condition(verti cal fracture pattern )

    Strong variation on creates new fracture

    surfaces far fromcrack tip

  • 8/11/2019 PTC13 Paredes Wierz

    18/22

    -1.0

    -0.5

    0.0

    0.51.0

    1.5

    2.0

    0 0.2 0.4 0.6 0.8 1

    Thickness

    x/D = 1x/D = 10x/D = 40x/D = 100

    -1.0

    -0.5

    0.00.5

    1.0

    1.5

    2.0

    0 0.2 0.4 0.6 0.8 1

    Axial

    x/D =1x/D = 10x/D = 40x/D = 100

    17

    /

    /

    Modified Mohr Coulomb: Pressure dependencea/t = 0.15

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    T=0.3360P = 22 MPa

    T=0.3380P = 23 MPa

    T=0.3360 T=0.3380

    Thickness

    Axial

    Same triaxiality leve ls leadto similar fracture pattern(straight w/o slant crack

    propagation )

  • 8/11/2019 PTC13 Paredes Wierz

    19/22

    18

    Modified Mohr Coulomb: Mapping the cracka/t = 0.15

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    x/D = 1

    x/D = 19

    x/D = 31

    x/D = 89

    1

    2

    3

    x/D = 1

    x/D = 25

    x/D = 62 x/D = 77

    1

    2

    3

    Thickness directionAxial direction

    Stress state in shallow crack pipes exhibit more dispersionin thickness than axial direction up to fracture.

    The growing crack goes from plane strain to axisymmetrictension condition in both directions.

    Cut off region

    Plane Stress Condition(magenta color line)

  • 8/11/2019 PTC13 Paredes Wierz

    20/22

    19

    Modified Mohr Coulomb: Mapping the cracka/t = 0.50

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    x/D = 1

    x/D = 22 x/D = 77

    x/D = 45

    1

    2

    3

    x/D = 1

    x/D = 13

    x/D = 17

    12

    Thickness directionAxial direction

    Stress state in deep crack pipes exhibit a narrow dispersionin thickness than axial direction up to fracture.

    The growing crack tends to remain in plane straincondition ( ) in thickness direction.

    Cut off region

    Plane Stress Condition(magenta color line)

  • 8/11/2019 PTC13 Paredes Wierz

    21/22

    20

    Modified Mohr Coulomb: Burst Pressure

    Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki

    10

    15

    20

    25

    30

    35

    40

    45

    50

    10 15 20 25 30 35 40 45 50

    Pb-FEA

    Pb-PRED

    Pb-FEA = Pb-PRED

    a/t = 0.15 MMCa/t = 0.15 Pressa/t = 0.15 Lodea/t = 0.50 MMCReference (*)

    =1 /

    1 /

    = 1 + 1.61/

    With :

    =+2

    (*) Erdelen-Peppler, Hillenbrand, H-G, Kalwa , C., Suitable HAZ testing to predict linepipe safety. PipelineTechnology Conference, 2009.

    ASME Code Section XI :

  • 8/11/2019 PTC13 Paredes Wierz

    22/22

    Comments There are two competing fracture mechanisms controlled by the stress state

    in terms of triaxiality and lode angle.

    The stress triaxiality has a strong influence on ductile crack growth inthickness direction, causing a rapid propagation.

    On axial direction the lode angle prevails rather than the triaxiality whichleads to the occurrence of slant fracture.

    The burst predictions through code design formula yield to conservativesolutions compared to FE as well as experimental results.

    The limiting cases for each condition reduces the effect of stress state parameters , on ductile crack propagation and thus decreasing the bursting pressure in pipes.

    21Numerica l simula tion on bursting pipe using damage model with pressure andLode angle dependence

    Marcelo Paredes and Tomasz Wierzbicki