r · pdf filecharge should have gained, and which should have been ... or, dielectric the...

27

Upload: lehuong

Post on 07-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
Relationship between the electric field and magnetic field amplitudes of a harmonic EM-wave
andres
Rectangle
andres
Text Box
We learned in the previous sections that E and B self-sustain each other (this is a consequence of the 3rd and 4th Maxwell's equation). We would expect, then, that in a harmonic EM-wave a direct relationship would exist between the electric field and magnetic field amplitudes. We show below that that is indeed the case.
andres
Rectangle
andres
Text Box
Consider the following harmonic EM-wave:
andres
Rectangle
andres
Rectangle
andres
Text Box
This yields,
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
In the previous section we found that the 3rd ME leads to
andres
Stamp
andres
Text Box
On the other hand, it can be demonstrated (although we will not do it here) that:
andres
Line
andres
Rectangle
andres
Rectangle
andres
Text Box
indicates vector-product
andres
Polygonal Line
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
EM-waves transport energy The Poynting vector
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
= (1/2) eoE2
andres
Text Box
Using again B=E/c, one obtains the following equivalent expressions:
andres
Text Box
Electromagnetic energy density (Joule/m3)
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
indicates vector-product
andres
Polygonal Line
andres
Text Box
Poynting vector
andres
Rectangle
andres
Text Box
J m2 sec
andres
Polygonal Line
andres
Polygonal Line
andres
Line
andres
Rectangle
andres
Rectangle
andres
Text Box
Average power per unit area <S>: Intensity
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
Intensity
andres
Text Box
I= eo c Erms2
andres
Rectangle
andres
Text Box
I= eo c Erms2 Intensity
andres
Text Box
Intensity decreases with distance from the source CASE: Point source emitting energy all over the space
andres
Rectangle
andres
Text Box
local Poynting vector
andres
Polygonal Line
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
local pointing vector
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Polygonal Line
andres
Polygonal Line
andres
Oval
andres
Line
andres
Line
andres
Line
andres
Line
andres
Line
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
r1
andres
Text Box
r2
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
Example: Consider a light source of 250 Watts, emitting electromagnetic radiation isotropically. Assuming the source emit harmonic EM-waves, calculate the amplitude of the electric filed of the wave at 1.8 m from the source
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Oval
andres
Oval
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
Point of view 1: LIGHT IS A WAVE
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
Point of view 2: LIGHT IS A RADIATION FIELD OF QUANTIZED ENERGY PACKETS
andres
Rectangle
andres
Text Box
Point of view 3: LIGHT IS BOTH A WAVE AND A PARTICLE
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
If light behaves as a particle, does it have linear momentum ? angular momentum?
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Line
andres
Line
andres
Text Box
Y
andres
Text Box
X
andres
Line
andres
Line
andres
Line
andres
Text Box
E
andres
Text Box
B
andres
Oval
andres
Text Box
+ q
andres
Text Box
+ m
andres
Text Box
Z
andres
Rectangle
andres
Line
andres
Text Box
FB
andres
Rectangle
andres
Line
andres
Rectangle
andres
Rectangle
andres
Oval
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Text Box
Z
andres
Text Box
So, the mass m will gain some linear momentum along the z-axis
andres
Line
andres
Line
andres
Line

= work W done ( by the electric field E on

the charge ) per unit time; i. e. dW/dt q

We are trying to argue that the incident EM-wave:

does some work on the charge (i.e. deposit some energy W),

and, as a consequence,

the charge feels some force F

The example above suggests:

dt

dW

c

1F

In any circumstance where light is being

absorbed by a charge, there is a force on

that charge

On the other hand F= dp/dt. Here p is the momentum the

charge should have gained, and which should have been

delivered by the EM-wave.

dt

d

c

1Fdt

d Wp

Or,

Dielectric

The linear momentum that light delivers is equal to the energy that is absorbed, divided by c

c

Wp

We already knew that light carries energy (described by the

Poynting vector). Now we also understand that it carries also

linear momentum. In the expression above, W is the energy

put into the charge q, which should have come from the EM-

field (i.e. from the light).

Therefore,

Dielectric

p is the linear momentum of the light

W is the energy of the light c is the speed of light

c

Wp

Classical physic goes this far as far on the understanding of

light.

But now we have quantum mechanics that tell us that, in

many respects, light behaves as particles. We mentioned in

the above sections that the energy W of a light-particle is,

Dielectric

W is the energy of the light-particle h Planck’s constant f frequency of the light

hfW

This light-particle, according to the arguments given above,

will carry a linear momentum equal to W/c; that is,

p= W/c = hf/c = h/

Dielectric

p linear momentum of the light-particle h Planck’s constant

wavelength of the light

h

p

andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle
andres
Rectangle