radar systems for landslides early...

42
Research Project INTEGRATED SYSTEMS FOR HYDROGEOLOGICAL RISK MONITORING, EARLY WARNING AND MITIGATION ALONG THE MAIN LIFELINES RADAR SYSTEMS FOR LANDSLIDES EARLY WARNING RADAR SYSTEMS FOR LANDSLIDES EARLY WARNING i S G. Di Massa , S. Costanzo, F. Spadafora, A Raffo, A. Costanzo, L. Morrone, A. Borgia,

Upload: others

Post on 27-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Research Project INTEGRATED SYSTEMS FOR HYDROGEOLOGICAL RISK MONITORING, EARLY 

WARNING AND MITIGATION ALONG THE MAIN LIFELINES

RADAR SYSTEMS FOR LANDSLIDES EARLY WARNINGRADAR SYSTEMS FOR LANDSLIDES EARLY WARNING

i SG. Di Massa, S. Costanzo, F. Spadafora, A Raffo, A. Costanzo, L. Morrone, A. Borgia, 

UNIVERSITÁ DELLA CALABRIAUNIVERSITÁ DELLA CALABRIA

RADARS for remote sensing of the environments

Applications:

a) Range detection;a) Range detection;b) Velocity determination;c) Measurements of soil moisture and soil composition;d) De‐embedding of object to observe;d) De‐embedding  of object to observe;e) Tomography of one or more (de‐embedded) object.

UNIVERSITÁ DELLA CALABRIAUNIVERSITÁ DELLA CALABRIA

RADARS for remote sensing of the environments

Techniques:

a) Pulse Radar;a) Pulse Radar;b) Continuous wave Radar;c) Synthetic Aperture Radar, eventually ground based;d) Sparse Antenna Array Design for Radar Sensorsd) Sparse Antenna Array Design for Radar Sensors.

UNIVERSITÁ DELLA CALABRIAUNIVERSITÁ DELLA CALABRIA

RADARS for remote sensing of the environments

T h l iTechnologies:

Low cost technologies like SDR (Software Defined Radar)

Integrations of knowledge in Radar techniques, electronic, microwave  and model.

Integration of several techniques like GNSS, radiometers, etc.

UNIVERSITÁ DELLA CALABRIAUNIVERSITÁ DELLA CALABRIA

RADARS for remote sensing of the environments

P tParameters

Frequency    ‐> we see some objects when the wavelength is of the same order Polarization > we can discriminate the orientation of objectsPolarization ‐> we can discriminate the orientation of objectsPixel              ‐>  the minimum area that we can see (depend essentially from antennas)

L‐band Software Defined Radar f fWE TALK ABOUT

Context;• PON 01503 Landslides Early WarningPON 01503 Landslides Early Warning

Introduction to the technology f f d d• Software Defined Radar System;

• NI USRP 2920

L band Software Defined RadarL‐band Software Defined Radar• Hardware Description• Signal processing technique• Signal processing technique• Test and Results

L‐band Software Defined Radar Context

• PON 01503 Landslides Early WarningPON 01503 Landslides Early Warning

The L band Software Defined Radar is a sensor areal developedin the framework of the PON 01 01503 NATIONAL ITALIAN_PROJECT “LANDSLIDES EARLY WARNING”, FINANCED BY THEITALIAN MINISTRY OF UNIVERSITY AND RESEARCH

Goal of the projectimprove the research activities on the Landslides monitoring over the Italian highways

L‐band Software Defined Radar Context

Initial objectives in radar development

• Ensure the possibility to go over vegetation layer on the mountain 

E h i i h l i• Ensure the innovation technologies

• Hardware Low costHardware Low cost

L‐band Software Defined Radar Context

• Ensure the possibility to go over vegetation layer on the mountain 

Choose of the  L‐ band  operating frequencies at 1 8GHzoperating frequencies at 1,8GHz

L f i hi h t tiLow frequencies high penetration

L‐band Software Defined Radar Introduction to the technology 

• Ensure the Innovation technologiesEnsure the Innovation technologies 

SOFTWARE DEFINED RADAR SYSTEM

The Software Defined Radar (SDRadar) system is a special type of versatile radar in which operations and components, typically realized by specific hardware (i.e., mixers, filters, modulators and demodulators), are implemented in terms of software modules f , ), p f f

T. Debatty, “Software Defined RADAR a state of the art”, 

L‐band Software Defined Radar Introduction to the technology 

• Ensure the Innovation technologiesEnsure the Innovation technologies 

SOFTWARE DEFINED RADAR SYSTEM

the main idea is the directly digitalization of the incoming radar signal and the totally execution of the signal processing operations via software in a general purpose 

computercomputer.

Ideal Block diagram

L‐band Software Defined Radar Introduction to the technology 

• Ensure the Innovation technologiesEnsure the Innovation technologies 

SOFTWARE DEFINED RADAR SYSTEM

Main Advantages• Versatile systemVersatile system • Possibility to create Multipurpose Radar only changing the software H d• Hardware reuse

• Very Low cost system

L‐band Software Defined Radar Introduction to the technology 

• Ensure the Innovation technologiesEnsure the Innovation technologies 

SOFTWARE DEFINED RADAR SYSTEM

The Platform NI USRP 2920 is a Software‐Defined‐radio transceivers designed by National Instruments for wireless communications teaching and research

NI USRP 2920

National Instruments for wireless communications teaching and research.

The NI USRP 2920 is the central core of the L band Radar SystemThe NI USRP 2920 is the central core of the L band Radar System

L‐band Software Defined Radar L‐band Software Defined Radar

• Hardware DescriptionHardware Description

Block Diagramg

L‐band Software Defined Radar L‐band Software Defined Radar

• Hardware DescriptionMXE 5302Single Board Computer

USRP 2920SDR transceiver

Antenna RotorScanning system

Amplification circuitPower Amplifier GAIN ≈ 35dBLow noise Amplifier GAIN ≈15dB

Remote Control systemPossibility to control the radar by e‐mail or smsradar by e mail or sms

L‐band Software Defined Radar Signal Processing tecnique

The radar signal processing adopted is a particular pulse compression technique calledpulse compression technique called Stretch Processor

four distinct steps1) Rx signal is mixed with a replica of the transmitted waveform;2) Low Pass Filtering (LPF) and coherent detection are performed in order2) Low Pass Filtering (LPF) and coherent detection are performed in order

to avoid the high frequency response achieved at the output of theMixer.

3) Analog to Digital (A/D) conversion4) Fast Fourier Transform is used to extract the tones proportional to the

target range.target range.

ALL THE PROCESSINGIS PERFORMEDVIA SOFTWAREIn the SBC MXE5302

L‐band Software Defined Radar Antenna

Elementary square cell sizes are 10cm x 10cm, while the dimensions of the entire array are y80cm x 40cm.Each element has been covered by a thin silver film in order to avoid copper oxidation and the final geometry has been obtained assembling two independent 4x4 square modules

L‐band Software Defined Radar Antenna

E Fi ld R di ti P tt t th f f 1 8GHE‐Field Radiation Pattern  at the frequency f= 1.8GHz

A gain of more than 20dB has been achieved according to a 20% input impedance frequencybandwidth obtained (significantly higher in respect to the classical rectangular patch)bandwidth obtained (significantly higher in respect to the classical rectangular patch).A beam width of 11° in the E‐Plane and 22° in the H‐Plane has been achieved in the entirefrequency band, in theoretical analysis and in both simulations and measurements.

L‐band Software Defined Radar Antenna

Antennas integrated into the Software Defined Radar System 

The antenna has been designed, fabricated and tested in the Microwave Lab at University of Calabria

L‐band Software Defined Radar Test and results

In order to validate the L Band radar system and signal processing tecnique openIn order to validate the L Band radar system and signal processing tecnique open space and anecoich chamber test has been performed. 

L‐band Software Defined Radar Test and results

In order to validate the L Band radar system and signal processing techniqueIn order to validate the L Band radar system and signal processing technique open space and anechoic chamber test has been performed. 

The aim of the experiments was the detection of a metallic laminate at severalThe aim of the experiments was the detection of a metallic laminate at several distances

Radar system response with a target d t ti i t l 54detection approximately 54m

C‐BAND STEPPED FREQUENCY CONTINUOUS WAVE RADARSTEPPED FREQUENCY CONTINUOUS WAVE RADAR

STEPPED FREQUENCY CONTINUOUS WAVE RADARSTEPPED FREQUENCY CONTINUOUS WAVE RADAR

BLOCK DIAGRAM

Signal

Remote PowerControl

SignalProcessor

Source Control

ScatterometerTX RX

Box

BoxSwitch

Source Selector

Antennas Box

Switch

TX RXAntennas BoxAntenna Antenna

Scatterometer Box PWSWITCH VGA_MXE

USBUSB

SERV_USCopper Mountain 

Embedded PC MXEUSB

220V

 AC

SB_MXE

TechnologiesPlanar 804/1

Port1 Port2

2

12V 3A DCPWR Amp Traco Power

ETH RJ45

HDMI

HDMI_RA

SP

‐240

5V 6A  DC

DCPWR AmpCernex CBM06123023

LNAWBA2080A

Traco PowerTOP 60252

SERV

PTSK

SBC RaspberryGPIO(0)

P R5V 1A DC

USB1:4)

USB

V_USB_RA

SP

Power Rasp

Power USB5V 1A DC

U

GPIO(

220V AC

PWIN TX RX GPIO(1:4) PW_USB_RASP

Box Scatterometroh lCopper Mountain Technologies

Planar 804/1

Traco PowerTOP 60252

LNAWBA2080A

PTSK 240PTSK‐240

ON‐OFF switch

PWR AmpCernex CBM06123023

Embedded PC MXE

Power Rasp

SBC Raspberry

Power USB

Box Scatterometer

PWIN

( )

PWSWITCH

GPIO(1:4)

SERV_USB_RASP

HDMI_RASP

PW_USB_RASP

ON‐OFF

SERV_USB_MXE

RX

VGA_MXETX

RX

Complete systemPWSWITCH

Box Scatterometer

Huawei E220 PWIN TX RX GPIO(1 4) PW USB RASP HSDPA ModemPWIN TX RX GPIO(1:4) PW_USB_RASP

220V AC

Box Switch

PWIN RFOUT Select_Switch(1:4)

Box Switch

RFIN

B A tBox Antenne

Transmitting Antennag

R i i AReceiving Antenna

Sistema completoBox Antenne

Box Switch

Box Scatterometer

Test in camera anecoica ‐ Setup

Box Scatterometro Client setup form

Antenna TX

Antenna RX

Client Windows – Setup Form

RRange Resolution

30cm30cm

Client Windows – Misure Form

Misure ‐ 1Target – HRRProfile 130cm

Picco  dmisurata – dcalibrazione = =600 cm – 470 cm= 

= 130cm

Misure ‐ 1Target – HRRProfile 310cm

Picco  dmisurata – dcalibrazione = =780 cm – 470 cm= 

= 310cm

Misure ‐ 2Target – Tg1‐Tg2=80cm

Tg1 d=500cmd=500cm

Tg2d=420cm

Misure ‐ 2Target – HRRProfile

Picco Tg2  dmisurata – dcalibrazione = =890 cm – 470 cm= 

= 420cm

Pi T 1Picco Tg1  dmisurata – dcalibrazione = =970 cm – 470 cm= 

500cm= 500cm

Advanced Ground Based SAR

switch

Frequency conversionADC

Numerical elaboration

Sparse Antenna Array Design for FMCW Radar SensorsSparse Antenna Array Design for FMCW Radar Sensors

FMCW

FMCWFMCW

FMCW

Numerical elaboration Integration with:1) Interferometric techniques;2) Models of the hole s stem2) Models of the whole system