radiative transfer modelling for the characterisation of natural burnt surfaces itt 5526: algorithm...

19
Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1 , Dr. Mathias Disney 1 , Prof. Martin Wooster 2 , Dr. Bernard Pinty 3 , Prof. David Roy 4 1. UCL; 2. KCL; 3. JRC; 4. SDSU

Upload: edmund-wiggins

Post on 13-Jan-2016

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces

ITT 5526:Algorithm Validation Plan (AVP)

Prof. Philip Lewis1, Dr. Mathias Disney1, Prof. Martin Wooster2, Dr. Bernard Pinty3,

Prof. David Roy4

1. UCL; 2. KCL; 3. JRC; 4. SDSU

Page 2: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork

Rationale– Generation of 3D RT models

Key structural and radiometric measurements of canopy before/after burn

Spatial distribution of vegetation

– Validation/testing of 3D RT models Characterise before/after signal to simulate

EO signal & compare with EO data

– Site selection encompasses variations of both cover type and fire regimes

Page 3: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Sites: Satara

Models

Page 4: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Sites: Pretoriuskop

Models

Page 5: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Sites: Skukuza

Models

Page 6: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Sites: Mopani

Models

Page 7: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Measurement strategy

Ground-based– 2-3 transects along sites of ~200m per site,

separated by 25m– Hemiphotos, LAI2k every 10-20m, GPS’d and

marked with stakes (to survive burn), spectral measurements and scene components

Helicopter– Follow (as far as possible), same transects but

measure every 50m (ish)– Downward and oblique photography plus spectral

measurements

Page 8: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Measurement strategy

Models •2-3 transects of ~200m per site (avoid edge effects)•Measurements every 10-20m along transects•30-60 points per site

Page 9: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork: structural

Tree number, location and structure

Tree location (GPS), height (clinometer), DBH (tape),

crown size (tape, clinometer)

Post burn loss of trees?

Crown size

DBH

Page 10: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork: structural

Pre/post burn oblique aerial photography

Tree height, % tree cover

Page 11: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork: structural

Gap fraction and LAIeff

Hemiphotos, LAIeff (LAI2000) from same locations within canopy

Page 12: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork: radiometric (spectral)

Ground-based

•2 x ASD FS Pro spectroradiometer (350-2500nm, 1nm band width) •Following grid pattern laid out for hemiphotos etc.•1-3m above canopy (low stature) - 0.5-1m IFOV (single material)•Above smaller trees (ladder), then….

transects transects

Page 13: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork: radiometric (spectral)

Helicopter measurements

•ASD mounted on 1.5m pole, extended from helicopter•2nd instrument measuring irradiance on the ground•Multiple measurements at multiple points in each site, from ~100m•I.e. IFOV 20-40m (scene-wide)

Page 14: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

Optical fieldwork: radiometric (spectral)

Scene components– Leaf size, shape (photos) and using ASD contact

probe– Burned and unburned material, bark, wood etc.

QuickTime™ and a decompressor

are needed to see this picture.

Page 15: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

3D RT models

Models

Structure from 3D modelling software (OnyxTREE) A large range of parameters, existing models, complex/very

flexible Explicit removal of wood, leaf material (post burn)

Page 16: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

3D RT models

Wide range of plant shapes and forms including trees, bushes and

grasses

Page 17: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

3D RT models

Iterative parameterisation of shape, gap fraction, DBH, height, based on field measurements

– Forward modelling to compare with field measurements– Inverse to derive canopy parameters (fCOVER, LAIeff) from

observations Radiometric (leaf, trunk etc.) info. from ASD measurements

iterate

Page 18: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

3D RT models

Spruce plantation….etc.

Page 19: Radiative Transfer Modelling for the Characterisation of Natural Burnt Surfaces ITT 5526: Algorithm Validation Plan (AVP) Prof. Philip Lewis 1, Dr. Mathias

3D RT models

Model development requires field measurements