rbs: a lecture by younes sina

Upload: younessina

Post on 03-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 RBS: A lecture by Younes Sina

    1/63

    Backscattering Spectrometry

    Younes Sina

    The University of Tennessee, Knoxville

  • 7/28/2019 RBS: A lecture by Younes Sina

    2/63

    ion-solid interactions

    Interaction with:ElectronsNuclei

  • 7/28/2019 RBS: A lecture by Younes Sina

    3/63

    Such interaction will result in:

    Ionization the electron is ejected from its atomic orbit

    Excitation the electron is raised to an outer orbit

    The interaction of an ion with an atomic electron is purely

    Coulomb (i.e. interaction governed by the Coulombs law).

    An ionized/excited atom will eventually return to its ground state,

    accompanied by the emission of one or more x-rays/photons.

  • 7/28/2019 RBS: A lecture by Younes Sina

    4/63

    The interaction of an ion with an atomic nucleus can be

  • 7/28/2019 RBS: A lecture by Younes Sina

    5/63

    Rutherford scattering is also sometimes referred to asCoulomb scatteringbecause it relies only upon staticelectric (Coulomb) forces, and the minimal distancebetween particles is set only by this potential.

    Elastic Backscattering Spectrometry (EBS)(non-Rutherford) is used when the incident particle isgoing so fast that it exceeds the Coulomb barrier" ofthe target nucleus, which therefore cannot be treated

    by Rutherfords approximation of a point charge. Inthis case Schrdinger's equation should be solved to

    obtain the scattering cross-section.

    http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equationhttp://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
  • 7/28/2019 RBS: A lecture by Younes Sina

    6/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    7/63

    Ion Beam Analysis Techniques

    TECHNIQUE ION BEAM

    ENERG

    Y

    (MeV)

    PIXE H+ 1 - 4

    RBS 4He+, H+ 2

    ERDA 35Cl+, 20Ne+ 2 - 40

    NRA H+, D+ 0.4 - 3

  • 7/28/2019 RBS: A lecture by Younes Sina

    8/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    9/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    10/63

    Comparison of RBS,PIXE, and NRA methods

    For Best choice Example

    Channeling studies of crystal perfection RBS

    Surface studies involving some elements

    that are difficult for RBS

    Combination of

    RBS and NRA

    Surface coverage of O using

    the 16O(d,p)17OreactionLattice location of impurities

    (the impurity mass>>host atom mass)RBS Lattice position of

    As in Si, Ag in Zr

    Light impurity element in a heavy-element host lattice

    NRA andcharacteristic X-ray

    H to S in a heavier lattice

    Intermediatemass impurities in heavyhost lattice

    Characteristic X-ray

    Channeling studies

    With single crystal targets, the effect of channeling also allows the investigation of the

    crystalline perfection of the sample

  • 7/28/2019 RBS: A lecture by Younes Sina

    11/63

    Scattering

    yield

    (count

    s)

    Alignment of a Si (110) crystal for channeling

    RBS spectra for a randomly oriented crystal and aligned crystal

    random

    aligned

  • 7/28/2019 RBS: A lecture by Younes Sina

    12/63

    Schematic diagrams for(a) an amorphous layer(b) random polycrystalline layers(c)

  • 7/28/2019 RBS: A lecture by Younes Sina

    13/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    14/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    15/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    16/63

    K= (1680/2000)= 0.84

  • 7/28/2019 RBS: A lecture by Younes Sina

    17/63

    Mass Resolution

    M2=(15/2000)(470) 4

    M2=(15/2000)(210) 2

  • 7/28/2019 RBS: A lecture by Younes Sina

    18/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    19/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    20/63

    Energy

  • 7/28/2019 RBS: A lecture by Younes Sina

    21/63

    xSE xNE .

  • 7/28/2019 RBS: A lecture by Younes Sina

    22/63

    100 200 300 400 500 600 7000

    500

    1000

    1500

    2000

    Yield

    channel

    random

    Sample 14-15

    Zr

    Al

    O

    7.9x1015

    Zr+/cm

    2E(keV)=2.61 keV/ch * ch + 123 keV

    calibration

    =

    E

    N2

    2 ~30nm

    xNE .

  • 7/28/2019 RBS: A lecture by Younes Sina

    23/63

    Rutherford Cross Section

    Unit: barn/ sr1 b(barn)=10-24 cm2

  • 7/28/2019 RBS: A lecture by Younes Sina

    24/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    25/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    26/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    27/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    28/63

    Au

    Si

    h f h f d b l h l

  • 7/28/2019 RBS: A lecture by Younes Sina

    29/63

    The scattering cross section for a given Z2 is Rutherford at energies below the line.

    C Si

    Non Rutherford

    Rutherford

    E0.2514+0.4=3.9

  • 7/28/2019 RBS: A lecture by Younes Sina

    30/63

    Summary

  • 7/28/2019 RBS: A lecture by Younes Sina

    31/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    32/63

  • 7/28/2019 RBS: A lecture by Younes Sina

    33/63

    Examples

  • 7/28/2019 RBS: A lecture by Younes Sina

    34/63

    NdxdE

    For a compound of AmBn:AB =mA+nB

    B

    AB

    BA

    AB

    A

    ABAB

    AB

    NNNdx

    dE

    Effects of energy loss of ions in solids

    Atomic density

    Stopping cross section

    Molecular densityAtomic density

    stopping power

    C l l t th t i ti d t i f

  • 7/28/2019 RBS: A lecture by Younes Sina

    35/63

    Example:

    Al= 44x10-15 eVcm2 O= 35x10-15 eVcm2

    Al2O3=(2x44+3x35)x10-15 =193x10-15eVcm2

    3

    3222

    23

    30

    cm

    moleculesOAl1035.2

    mol

    g102

    mol

    molecules106

    cm

    g4

    32

    M

    NN

    OAl

    A

    eV46101931035.20

    15223232

    32

    OAlOAl

    OAl

    NdxdE

    3

    OAl

    Al cm

    atomsAl

    N

    222232

    107.41035.22 3

    222232

    cm

    atomsO101.71035.23

    N

    OAl

    O

    Calculate the stopping cross section and stopping power of2 MeV 4He+ in Al2O3 using Bragg rule

    From appendix 3:

    For a compound of AmBn:AB =mA+nB

  • 7/28/2019 RBS: A lecture by Younes Sina

    36/63

    A

    eV

    46101931035.2 015223232

    32

    OAlOAl

    OAl

    Ndx

    dE

    A

    eV46

    eV10461035101.71044107.4

    0

    815221522

    cm

    x

    dxdxdEE0

    )/(

    Example:

    B

    AB

    BA

    AB

    A

    ABAB

    AB

    NNNdx

    dE

  • 7/28/2019 RBS: A lecture by Younes Sina

    37/63

    Depth scale

    xSE

    21 cos

    1

    cos

    1

    outin dx

    dE

    dx

    dEKS

    xNE .

    21 cos1

    cos1

    outinK

    xNEABAB

    AA

    2

    ,

    1 cos

    1

    cos

    1

    AB

    Aout

    AB

    inA

    AB

    AK

    x

    dxdxdEE0

    )/(Energy loss factor

    Stopping cross section factor

    Depth resolution

  • 7/28/2019 RBS: A lecture by Younes Sina

    38/63

    Depth resolution

    ExampleCalculate the depth- scattered ion energy differencesfor 2 MeV 4He+ in Al2O31=0and 2=10

    K factor for 4He on Al=0.5525K factor for 4He on O=0.3625

    0KEE 1MeVE

    Al105.125525.0

    1

    MeVEO 725.023625.01 Using the surface-energy approximation

    2151515 1019310353104423232

    eVcmO

    in

    Al

    in

    OAl

    in

    2151515

    ,,,10240104631051232

    32

    eVcmO

    Alout

    Al

    Alout

    OAl

    Alout

    2151515

    ,,, 10252104831054232

    32

    eVcm

    O

    Oout

    Al

    Oout

    OAl

    Oout

    AB =mA+nB at E0,surface

    at E1

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    39/63

    2

    ,1

    0cos

    1

    cos

    1 323232][

    OAl

    Alout

    OAl

    inAl

    OAl

    AlK

    We can now calculate the stopping cross section factors

    21515150

    32

    10350015.110240101935525.0][ eVcmOAl

    Al

    2,1

    0

    cos

    1

    cos

    1 323232][

    OAl

    Oout

    OAl

    inO

    OAl

    O

    K

    21515150

    32

    10326015.110252101933625.0][ eVcmOAl

    O

    Using the molecular density N Al2O

    3=2.35x1022 molecules/cm3 we find:

    xxNE OAlOAlAlAl

    A

    eV

    03.82

    3232

    0

    xx

    NE

    OAlOAl

    OO

    A

    eV

    06.76

    3232

    0

    Example

    Surface spectrum height

  • 7/28/2019 RBS: A lecture by Younes Sina

    40/63

    Surface spectrum height

    10

    0

    cos][

    )(

    EQEH

    Surface height of the two elemental peaks in the compound AmBn are given by

    10

    0,

    cos0

    m)(

    AB

    A

    A

    A

    QEH

    E

    20

    0,

    cos

    0

    n)(

    AB

    B

    B

    B

    QEH

    E

    Energy width per channel

    stopping cross section factors

  • 7/28/2019 RBS: A lecture by Younes Sina

    41/63

    Mean energy in thin films

    )()(1

    0 NtEESEA

    i

    r

    i

    iSEA

    in

    Mean energy of the ions in the film ,(1)

    20

    )1( ESEA

    inEE

    )(0),(

    cosNt

    Nt

    SEA

    iEEi

    ii

    i

    EQ

    A

    Surface Energy Approximation

    E0E1E2

    h f l

  • 7/28/2019 RBS: A lecture by Younes Sina

    42/63

    For the second iteration, the values of (Nt)i(1) should

    be calculated using with

    E= (1)then Ei(1)and (2)

    ),(

    cos

    EQ

    A

    i

    ii

    iNt

    )()1(

    )1(

    1

    )1( NtE ir

    i

    iin E

    2

    )1(

    0

    )2( EinEE

    Mean energy in thin films

    E0E1E2

    Example Calculate surface height for 2 MeV 4He+ on Al O :

  • 7/28/2019 RBS: A lecture by Younes Sina

    43/63

    Example Calculate surface height for 2 MeV 4He+ on Al2O3:=10-3srE=1keV/channelQ=6.24x1013 incident particles (10C charge)1=0, 2=10 (scattering angle=170)

    From appendix 6: RAl=0.2128x10-24 & R

    O=0.0741x10-24

    From previous example:

    2150

    32 10326][ eVcmOAlO

    2150 32 10350][ eVcmOAlAl

    10

    0,

    cos0

    )(

    AB

    A

    A

    A

    EQmEH

    cnt

    EQOAl

    Al

    Al

    AlH 76103501021024.610102128.0

    0

    215

    33324

    320,

    cntEQOAl

    O

    O

    OH 43103261031024.610100741.0

    0

    315

    33324

    320,

  • 7/28/2019 RBS: A lecture by Younes Sina

    44/63

    For not too thick film

    )()(

    0

    )(2

    )(

    Nt

    E

    ENt

    SEA

    i

    f

    i

    f

    E=(f)

    E0E1E2

    S l l i

  • 7/28/2019 RBS: A lecture by Younes Sina

    45/63

    Sample analysis

    Experimental Parameter Units Values

    Analysis ion energy MeV 1.0-5.0

    Beam cross section mm x mm 1.5x1.5

    Beam current nA 10-200

    Integrated charge C 5-100

    Detector energy resolution for 4He ions keV 15

    Data acquisition time min 5-10

    Vacuum Torr 2x10-6

    Pump-down time min 15

    Typical experimental operating conditions and parameter ranges used duringacquisition of backscattering spectra

    Multiply units by For units Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    46/63

    Unitconversions

    MeV MeV/amu 4 MeV 4He ~ 1 MeV/amu

    v/vo (MeV/amu)1/2 v/vo =1~0.025 MeV/amu

    1H

    (MeV/amu)1/2 m/s 2 MeV 4He ~ vHE =9.82x 106 m/s

    1015

    atoms/cm2

    nm 1018

    Atoms/cm2

    For Au~170nm

    g/cm2 nm 100 g/cm2 For C~258 nm

    g/cm2 1015 atoms/cm2 100 g/cm2

    For Au~305x1015 atoms/cm2

    eV cm2/1015 atoms MeV/(mg/cm2 ) 100 eV cm2/1015 atoms forAl2O3~2.95 MeV cm

    2/mg[M2= (2MAl + 3 MO)/5; MAl=26.98,

    MO=16.00]

    eV cm2/1015 atoms keV/m 30eV cm2/1015 atoms for Si~150

    keV/m

    ][1

    1

    amuM

    ]3/[][10661.1 22

    cmgamuM

    ]/[

    103

    cmg

    ][661.1

    10

    1

    3

    amuM

    1581.0

    10389.17

    ][661.1

    1

    2 amuM

    ][661.1

    ]/[10

    2

    32

    amuM

    cmg

    Thin film analysis

  • 7/28/2019 RBS: A lecture by Younes Sina

    47/63

    Thin-film analysisThe peak integration method

    iR

    iR

    Bii

    EQ

    DTReCAiNt

    ))(,('

    cos)(

    1

    Integrated peak countsThat can be accurately determined

    from the spectrum

    Non Rutherford correction factor

    Correction factor

    Dead time ratio

    Integrated charge depositedon the sample during the run

    solid angle subtended by

    the detector at the target

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    48/63

    an application of the peak integration method of analysis of the two-elementthin film

    E0=3776 keV=170

    1=02=10=0.78 msrCBi=(0.990.03)E=(3.7420.005)keV/channel=(83) keVKFe=(170)=0.7520KGd=(170)=0.90390

    E1= nE+

    Example

    Energy intercept

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    49/63

    sr

    cmE

    Fe

    R

    22424

    20102469.010

    776.3

    521.3)170,(

    sr

    cmE

    Gd

    R

    22424

    2010510.110

    776.3

    53.21)170,(

    998.03776)26)(2)(049.0(13/4

    FeR

    993.0

    3776

    )64)(2)(049.0(1

    3/4

    GdR

    From appendix 6

    EZZ

    CMR

    21

    3/4

    049.01

    From

    Example

    Center-of-mass energy

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    50/63

    From Trim 1985:

    215

    104.51)3776( eVcmkeVFe

    215102.52)3676( eVcmkeV

    Fe

    215103.86)3776( eVcmkeV

    Gd

    215

    105.87)3676( eVcmkeVGd

    Example

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    51/63

    008.1

    )201020(

    )1660('

    )1757(

    01.20'

    0,

    DTR

    cts

    nB

    nB

    CQ

    HAB

    A

    cts

    nAnA

    HAB

    B)20640(

    )1812(')1910(

    0,

    Integrated counts in spectral regions of interest (initialand final channel numbers are listed:Channels (789-918)=103978 cts; (920-960)=49 cts

    Channels (640-767)=64957 cts; (768-788)=79 cts

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    52/63

    From: E1= nE+ and Ki=Ei1/E0 :

    keVEnB

    B

    E )62841()38()005.0742.3)(1757('1 E

    keVEnAA

    E )73413()38()005.0742.3)(1910('1 E

    002.0752.0)53776()62841(

    0

    1

    E

    EKB

    B

    002.0904.0)53776(

    )73413(

    0

    1

    E

    EK

    A

    A

    Therefore, element A and B are Gd and Fe, respectively. Note that element Acould also be Tb, because KTb=0.9048

    p

    Energy intercept

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    53/63

    Calculation of elemental areal densities,(Nt)

    Values of Ai are calculated from the integrated counts in the

    regions of interests

    ctsAFe

    )26164475()128(21

    7964957

    ctsAGd )323103823()130(41

    49103978

    In this case, the background correction is almost negligible

    p

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    54/63

    The areal densities in the surface-energy approximation,(Nt)SEAiusing E=E0

    22436

    19

    )998.0)(102469.0)(1078.0)(1001.20(

    )10602.1)(03.099.0)(008.1)(26164475(

    )( cmatoms

    Nt

    SEA

    Fe

    21810)021.0709.0()(

    cmatomsNt

    SEA

    Gd

    21810)08.068.2(

    cmatoms

    iR

    i

    R

    Bii

    EQDTReCAiNt

    ))(,('cos)(

    1

    DTR CBiAi

    1

    Q

    0.998

    e

    p

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    55/63

    The mean energy of the 4He ion in the film, (1), is calculated (to first order)using the following equation

    )()(1

    0 NtEESEA

    i

    r

    i

    iSEA

    in

    For the first-order energy loss, ESEAin ,of the ions in the film:

    20

    )1( ESEA

    inEE

    keV

    eV

    EE NtNtESEA

    Gd

    GdSEA

    Fe

    FeSEA

    in

    199

    )10709.0)(103.86()1068.2)(104.51(

    )()(

    18151815

    00 )()(

    keVE 36762

    1993776

    )1(

    p

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    56/63

    From the following Eq. we can calculate the areal densities:

    )()(0

    )(2

    )(

    NE

    ENt

    SEA

    i

    f

    i

    f

    218

    2

    )1(

    /1054.2)(

    3776

    3676)( cmatomsNNt

    SEA

    FeFe

    218)1(

    /10672.0)( cmatomsNtGd

    Results of an additional iteration of this procedure using theExample

  • 7/28/2019 RBS: A lecture by Younes Sina

    57/63

    Results of an additional iteration of this procedure using thefollowing equations we have: (Note that Feand Gdareevaluated at (1))

    eVeVEin 191)10672.0)(105.87()1054.2)(102.52(18151815)1(

    )()1(

    )1(

    1

    )1( NtE ir

    i

    iin E 2

    )1(

    0)2( EinEE

    )()(0

    )(2

    )(

    NtE

    ENt

    SEA

    i

    f

    i

    f

    eVEin 36812

    1923776

    )2(

    218

    2

    )2(/10)08.055.2()(

    37763681)( cmatomsNtNt

    SEA

    FeFe

    218)2(

    /10)021.0674.0()( cmatomsNtGd

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    58/63

    The average stoichiometric ratio for this film using the following Eq.:

    ),(),(.

    EE

    AA

    NN

    mn

    B

    A

    A

    B

    A

    B

    02.078.3998.0

    993.0

    .521.3

    53.21

    .323103823

    )26164475(

    .)170,(

    )170,(

    //

    0

    0

    R

    R

    E

    E

    A

    A

    N

    N

    Fe

    Gd

    Fe

    R

    Gd

    R

    Gd

    Fe

    Gd

    Fe

    Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    59/63

    If the molecular formula for the film iswritten as GdmFen , then:

    m=0.2090.001 and n=0.7910.001

    n+m=1

    The value of the physical film thickness:Example

  • 7/28/2019 RBS: A lecture by Younes Sina

    60/63

    p y

    nmcmtFe 3021044.8

    1055.222

    18

    Elem

    entalbulkdensity

    3220

    /1044.8 cmatomsM

    N

    N Fe

    Fe

    Fe

    3220 /1002.3 cmatomsM

    NN

    Gd

    GdGd

    nmcmtGd 2231002.3

    10674.022

    18

    nmtGdFe 525

    NNAB

    B

    B

    AB

    A

    A NtNt

    t

    )()(

    Areal density

  • 7/28/2019 RBS: A lecture by Younes Sina

    61/63

    ),(

    cos

    EQ

    A

    i

    ii

    iNt

    Areal density, Nt, as atoms per unit area

    Detector solid angle

    Integrated peak count

    Incident ionsCross section

  • 7/28/2019 RBS: A lecture by Younes Sina

    62/63

    ),(

    ),(.

    E

    E

    A

    A

    N

    N

    m

    n

    B

    A

    A

    B

    A

    B

    The average stoichiometric ratio for the compound film AmBn

    Ratio of measuredintegrated peak count

    Cross section ratio

    AB

    AB

    M

    NmN

    AB

    A

    0

    AB

    AB

    M

    NnN

    AB

    B

    0

    BAPhysical film thickness

  • 7/28/2019 RBS: A lecture by Younes Sina

    63/63

    AB

    AB

    M

    NmN

    AB

    A

    0

    AB

    AB

    M

    NnN

    AB

    B

    0

    NNAB

    B

    B

    AB

    A

    A NtNtt )()(

    BAAB nMmMM

    nmBAPhysical film thickness