recent progress in coated conductor applications in ... · pdf filerecent progress in coated...

37
Minwon Park, CCA 2016, 11~14 Sep., Aspen 1 Minwon Park, CCA 2016, 11~14 Sep., Aspen Recent Progress in Coated Conductor A pplications in Electric Power Application s Minwon Park Changwon National University

Upload: duongkien

Post on 19-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Minwon Park, CCA 2016, 11~14 Sep., Aspen

1

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Recent Progress in Coated Conductor Applications in Electric Power Application

s

Minwon Park

Changwon National University

Minwon Park, CCA 2016, 11~14 Sep., Aspen

2 Status of HTS power devices

Power devices Status

HTS power cable Ready to commercial offer

HTS transformer More research

HTS fault current limiter

DL: commercial offer TL: more research

HTS rotating machine Ready to commercial offer

HTS wind generator 3.6MW prototype fabrication

HTS DC reactor Insulation problem remained

SMES Rare research activity HTS induction

heater Commercial level w/ CC

Minwon Park, CCA 2016, 11~14 Sep., Aspen

3

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Big power cable and wind power companies * Power cable & wind turbine

Most of them are developing better performance machine using coated conductor technology, but they also have some problems have to be overcome.

Minwon Park, CCA 2016, 11~14 Sep., Aspen 4

HTS Power Cable

Minwon Park, CCA 2016, 11~14 Sep., Aspen

5

Minwon Park, CCA 2016, 11~14 Sep., Aspen

𝐏=𝐕×𝐈

𝐏𝐨𝐰𝐞𝐫  𝐥𝐨𝐬𝐬 =𝐫(𝐂𝐮  &  𝐀𝐥)× 𝐈↑𝟐 

𝐏= 𝐕↓𝐫 × 𝐕↓𝐬 /𝐗↓𝐥  𝐬𝐢𝐧𝛅

Utility has concentrated on the increasing of voltage level.

History of the technology development of electricity

Minwon Park, CCA 2016, 11~14 Sep., Aspen

6

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Worldwide highest voltage level

-

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

700 800 900 1,000 1,100 1,200 1,300

Capa

city

(M

W)

Voltage (kV)

765 kV/14,580 MW

735 kV/33,000 MW

765 kV/38,000 MW

1,000 kV/20,000 MW

1,000 kV/5,000 MW

1,100 kV/13,000 MW

1,200 kV/8,000 MW

1,150 kV/5,500 MW

Minwon Park, CCA 2016, 11~14 Sep., Aspen

7

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Public nuisance along with voltage

operationcircuitbreaker.wordpress.com- UHV Transmission lines worldwide IEEE/PES Berkshire

UHV Transmission lines worldwide IEEE/PES Berkshire www.pinterest.com-

Milyang city 765kV strong resistivity 2 people suicided 7 years construction stopped (2007-2014)

Minwon Park, CCA 2016, 11~14 Sep., Aspen

8

Minwon Park, CCA 2016, 11~14 Sep., Aspen

100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

Capa

city

(M

W)

-

35,000

30,000

25,000

20,000

15,000

10,000

5,000

40,000

Capa

city

(M

W)

-

35,000

30,000

25,000

20,000

15,000

10,000

5,000

40,000

Voltage (kV)

765 kV/38,000 MW

735 kV/33,000 MW

765 kV/14,580 MW

1,000 kV/20,000 MW

1,100 kV/13,000 MW

1,000 kV/5,000 MW 1,150 kV/5,500 MW

1,200 kV/8,000 MW

Just using CC, 5 times more current without any resistivity in use

Dramatically, voltage can be decreased at the same power capacity.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

9

Minwon Park, CCA 2016, 11~14 Sep., Aspen

However, in order to enter the real market of HTS power cable business using coated conductor. There are

a lot of issues.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

10

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Cost comparison between Cu and CC power cable @ same power

50MVA cable with 5km length

50MVA Cu power cable

??MUSD

Now, 6 times ex

pensive

50MVA CC power cable(3 core type)

??MUSD

HTS wire

Cooling and others

Manufacturing

71.1%

11.8%

17.1%

Minwon Park, CCA 2016, 11~14 Sep., Aspen

11

Minwon Park, CCA 2016, 11~14 Sep., Aspen

CC power cable (3 core type)

??MUSD

HTS wire

Cooling system terminal and c

onnector

Cabling

71.1%

11.8%

17.1% Reducing cost by

41%

CC power cable (tri-axial type)

??MUSD

HTS wire

Cooling system terminal and c

onnector

Cabling

73.6%

10.4%

16.0%

Cost comparison between 3 core and Tri-axial power cable @ same power

Just changing the type of cable structure

Minwon Park, CCA 2016, 11~14 Sep., Aspen

12

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Total cost comparison depending on the cable types (50MVA class, 5km)

CC power cable (tri-axial type)

??MUSD

HTS wire

Cooling system terminal and co

nnector

Cabling

73.6%

10.4%

16.0%

CC power cable (3 core type)

??MUSD

HTS wire

Cooling system terminal and co

nnector

Cabling

71.1%

11.8%

17.1%

Cu power cable

??MUSD

Reducing cost by 41%

6 times

Cost comparison between Cu and HTS power cable @ same power

Still 3.5 times

Minwon Park, CCA 2016, 11~14 Sep., Aspen

13

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Target cost

CC wire (200 A/wire; 4mm)

1/5 times

??$/m

?$/m

??$ /m

?$/m

Crycooler (over 10kW @65K)

??$/kW

??$/kW

1/5 times

??$ /kW

??$ /kW

Key factor and target for CC power cable commercialization

To ensure competitive cost of the CC power cable comparing with conventional Cu power cable

Minwon Park, CCA 2016, 11~14 Sep., Aspen

14

Minwon Park, CCA 2016, 11~14 Sep., Aspen

CC power cable (tri-axial type)

??MUSD

HTS wire

Cooling system terminal and con

nector

Cabling

52.7%

18.6%

28.7%

CC power cable (3 core type)

??MUSD

HTS wire

Cooling system terminal and con

nector

Cabling

49.6%

20.6%

29.8%

Cu power cable

??MUSD

Reducing cost by 42%

2 times

Total cost comparison depending on power cable types based on the realizable targets

Key factor and target for HTS power cable commercialization

Minwon Park, CCA 2016, 11~14 Sep., Aspen

15

Minwon Park, CCA 2016, 11~14 Sep., Aspen

HTS power cable graph (Length x Voltage)

5km

This is next target of CC power cable, Korean case.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

F s/s

B s/s

C s/s

D s/s

A s/s

E s/s

Z s/s 154/22.9kV

Y s/s 154/22.9kV

X s/s 345/154kV

W s/s 345/

154kV

Direct receiving industrial load area

N s/s 345/154kV

Scheduled s/s J s/s

154/22.9kV X s/sà A s/sà D s/s, Y s/sà E s/sà F s/s, Z s/sà B s/sà D s/sà C s/s, F s/sà W s/s

154/22.9 kV substation Supply area Neighboring s/s Underground cable

3.2 km

27.8 km

4.7 km

2.1 km

6.5 km

2.5 km

3.58 km

2.97 km 1.85 km 5.51 km

Ref. 1) Changwon electric power transmission center of KEPCO

I work here.

S/S Installed capacity Peak load

A 240 MVA 189.1 MVA

B 180 MVA 86.5 MVA

C 240 MVA 171.2 MVA

D 240 MVA 143.9 MVA

E 240 MVA 147.8 MVA

F 240 MVA 148.1 MVA

Total 1,380 MVA 886.6 MVA

Minwon Park, CCA 2016, 11~14 Sep., Aspen

City information (residential, business, industrial area) Area of city: 126.1 km2

Population of city: 488,135 people Installed substation: 6 stations (23 Bank) Installed capacity: 1,380 MVA Peak load: 886.6 MVA(winter season)

Ref. 1) J. Y. Yoon, S. R. Lee, J. Y. Kim, “Application methodology for 22.9 kV HTS cable in metropolitan city of south Korea”

à  When a new city is constructed as mentioned above, similar level of substation is needed to supply power to the city. (Scheduled substation is also considered.)

à  Several substations can be replaced by switching stations only with CC power cable.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

154/22.9 kV Hub substation

Supply area 22.9 kV switching substation

Neighboring s/s Supply area

3.2 km

N s/s 345/154kV

Scheduled s/s

W s/s 345/

154kV

a s/s

d s/s

e s/s

h s/s

b s/s

c s/s

f s/s

g s/s

F s/s

B s/s

4 circuit 3 circuit 2 circuit 1 circuit

HTS station using tri-axial CC power cable

6.5 km

à The city receives electric power based on two hub-stations with tri-axial HTS power cables.

5km is very enough length to cover the distance of S/S to S/S. This is the next target of CC power cable, Korean case.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

19

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Rotating machine using coated conductors

Minwon Park, CCA 2016, 11~14 Sep., Aspen

20

Minwon Park, CCA 2016, 11~14 Sep., Aspen

𝑷=𝝉×𝝎

High magnetic field à High torque

Limited by current density of Cu or Al coil 𝝅𝒓↑𝟐 𝒍=𝒗𝒐𝒍𝒖𝒎𝒆

History of the technology development of mechanical rotating machine

Low speed

Large volume

High speed

Small volume

“at same magnetic field”

Minwon Park, CCA 2016, 11~14 Sep., Aspen

21

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Rotating machine Po

wer

(M

W)

Torque (MNm) -5

15

35

55

75

95

115

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

0.3 MNm/100 MW

0.4 MNm/59 MW

0.1 MNm/23 MW

1.3 MNm/20 MW

2.9 MNm/36.5 MW

2.2 MNm/4.1 MW 0.2 MNm/ 5.2 MW 3.5 MNm/5 MW

4.1 MNm/6 MW

5 MNm/6 MW

6.4 MNm/8 MW

HTS Motor

Minwon Park, CCA 2016, 11~14 Sep., Aspen

22

Minwon Park, CCA 2016, 11~14 Sep., Aspen

-20

0

20

40

60

80

100

120

140

160

180

200

220

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0

2 times more magnetic flux density using CC Po

wer

(M

W)

Torque (MNm)

0.3 MNm/100 MW

0.4 MNm/59 MW

0.1 MNm/23 MW

2.9 MNm/36.5 MW

1.3 MNm/20 MW

4.1 MNm/6 MW

5 MNm/6 MW

6.4 MNm/8 MW

Motor (Cu)

Generator (PM&Cu)

Superconducting Motor

Minwon Park, CCA 2016, 11~14 Sep., Aspen

The high field of rotor makes small active volume and light generator.

𝑃↓𝐺 =𝐵↓𝑟 ∙𝐾↓𝑠 ∙𝜋𝑟↑2 𝑙∙ 𝜔/𝑝 

The high field of rotor makes small active volume and light generator.

Field of rotor(T)

Active volume( 𝒎↑𝟑 )

Ø Best way to reduce the weight is to increase the field

Reason that should use HTS technology

B=1 T

B=2 T

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Kinetic energy of wind

v, ρ A

(Optional) Generator Converter

Kinetic energy Mechanical power Electrical power

2

21mvEk =

3

21 AvP

dtdE

windk ρ== 3

21

= AvρCP pturbinewind

bladeblade

VRω

λ =

Ø Structure of wind power generation system

Turbine output power, longer blade, better wind quality

𝑇↓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 = 𝑃↓𝑡𝑢𝑟𝑏𝑖𝑛𝑒 /𝜔 = 1/2 𝐴𝜌𝐶↓𝑝 𝑉↑3 /𝜔               = 1/2 𝐴𝜌𝐶↓𝑝 /λ 𝑅↓𝑏𝑙𝑎𝑑𝑒 𝑣↑2 

Minwon Park, CCA 2016, 11~14 Sep., Aspen

25

Minwon Park, CCA 2016, 11~14 Sep., Aspen

[Source: Sandia blade workshop 2014]

Generator : 325 ton (10 MW)

Gearbox: (?) ton

Hub: 170 ton

Blade: 75 ton × 3

(90 m)

Main shaft:

160 ton

Ø  Tower top mass of a 12 MW wind turbine

The large-scale wind turbine using the conventional Ref. UOU, Development of 12MW FOWT core technology for commercialization

Minwon Park, CCA 2016, 11~14 Sep., Aspen

26

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Ø  Scale-up tower properties

α= 𝑆𝑐𝑎𝑙𝑒𝑑  𝑙𝑒𝑛𝑔𝑡ℎ/𝑁𝑜𝑚𝑖𝑛𝑎𝑙  𝑙𝑒𝑛𝑔𝑡ℎ = 𝐿↓1 /𝐿↓2   �

𝑚↓𝑢𝑝 = α↑3 𝑚↓𝑏𝑙𝑎𝑑𝑒  �

𝑃↓𝑢𝑝 = α↑2 𝑃

A scale factor, α, is defined as the ratio of the scaled blade length (L1) to the nominal blade length (L2):

The total blade mass follows this relationship:

The rotor power:

Capacity Scale ratio (

α) Rotor diameter

(m) Blade length

(m) Blade mass

(tons)

5 MW 1 126 61.5 18

10 MW 1.414 178.2 87.0 50

12 MW 1.549 195.2 95.3 66

13.2 MW 1.625 204.7 99.9 76

15 MW 1.732 218.2 106.5 92

(Criterion: 5MW) Ref. SANDIA REPORT, June 2011

Capacity Scale ratio (

α) Top tower ma

ss (tons) Nacelle ma

ss (tons) Hub mass (t

ons)

5 MW 1 350 240 56.8

10 MW 1.414 990 679 161

12 MW 1.549 1,301 892 211

13.2 MW 1.625 1,501 1030 244

15 MW 1.732 1,819 1250 295

Cap.

Conventional scaling HTS generator scaling

Top tower (tons)

Nacelle (tons

)

Hub (tons)

Blade-CFRP (tons)

Top tower (to

ns)

12 MW 1,301 400 169 42.7 697

The large-scale wind turbine using HTS

Ref. UOU, Development of 12MW FOWT core technology for commercialization

<Conventional WT>

66

211

892

1301

42.7169

400

697.1

0

200

400

600

800

1000

1200

1400

Single blade Hub Nacelle Top tower

Mass (tons)

SANDIA

UOU

GFRP ↓

CFRP

Heavy blade ↓

Light blade

PMSG ↓

SCSG

Minwon Park, CCA 2016, 11~14 Sep., Aspen

27

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Researches trend of the superconducting wind turbine (World)

Ø EcoSwing project (3.6MW real operation)

Minwon Park, CCA 2016, 11~14 Sep., Aspen

28

Minwon Park, CCA 2016, 11~14 Sep., Aspen

3rd Phase Commercial

Beta-type fabrication

2nd Phase Down scale prototype

manufacturing

1st Phase Design in detail for 3 years

& 10kW model size

2015 2016 2019 2018 2020 2022 2021 2023 2025 2024 2017

Total 3 MW

Total 12 MW 12 MW design in detail

3 MW class proto-type manufacturing

12 MN·m torque test unit

3 MW class field test

12 MW real system fabrication

Blade 3 MW conventional 12 MW newly developed

Tower 3 MW conventional 7~8 MW conventional

Hub 3 MW conventional 12 MW newly developed

Generator 3 MW newly developed 12 MW newly developed

Converter 3 × 1 MW conventional 3 × 4 MW conventional

Foundation 3 MW conventional 7~8 MW conventional

VISION; 12 MW WPGS technology roadmap over the next 10 years

Ø Plan of the technology application

Technical load map of the superconducting wind turbine

Minwon Park, CCA 2016, 11~14 Sep., Aspen

29

Minwon Park, CCA 2016, 11~14 Sep., Aspen

However, there is an unavoidable technical issue, it is too strong

torque.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

v  12.5 MW HTS wind turbine (CNU) v  Basic specifications

Item Value

Rated power 12.3 MW

Rated L-L voltage 6.6 kV

Rated armature current 1.07 kA

Rated rotating speed 8 RPM

The num. of rotor poles 30

The num. of DPC layers 6

The length of air gap 90 mm

Thickness of vacuum vessel 20 mm

Number of stator coil /phase/pole 2

ωTP ⋅= (8/60)2πTMW12.3 ⋅=

§  Capacity vs Torque

velocity Angular:ωTorque:T

power Rated:PMNm15.04

(8/60)2πMW12.6T ==

Ø  Torque characteristics of the superconducting rotating machine

Force and structural analysis and design technique

Gen.

Shaft

T=15 MNm

Radius=2.3 m

Ftan.=5.36 MN

547 tons

18 tons/pole

Ftangential

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Module of the HTS generator (in which HTS one pole is integrated) 20 tons truck

0.49 m 1.2 m

10 m

2.35 m

Force and structural analysis and design technique Ø  Design of the structure of the HTS generator

§  The force of 1 pole à 0.18 MN= 18 tons

<Rotor part of the 12 MW HTS generator>

30 ea

Total 540 tons

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Force and structural analysis and design technique Ø  Structural analysis results (24 poles)

0.5 MN

0.15 MN

We need very strong magnet.

Minwon Park, CCA 2016, 11~14 Sep., Aspen

33

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Summary

Minwon Park, CCA 2016, 11~14 Sep., Aspen

34 Status of HTS power devices (very personal opinion)

Power devices Status Technical level core research

more required 10 9 8 7 6 5 4 3 2 1

HTS power cable Ready to commercial offer Long length; >

5km

HTS transformer More research AC loss, cost d

own HTS fault curre

nt limiter DL: commercial offer TL: more research

System protection, cost

HTS rotating machine Ready to commercial offer Total system c

ost down HTS wind gene

rator 3.6MW prototype fabrication High torque, force & stress

HTS DC reactor Insulation problem remained Insulation

SMES Rare research activity Size up HTS induction

heater Commercial level Cost down

@HTS price 5USD/100A/m

Need; Low cost high performance cooling system

Need; Low loss, OLTC, etc.

Need; Insulation, recovery time

Need; Very strong HTS magnet

Need; Insulation problem for cool down

Need; System engineering technology

Minwon Park, CCA 2016, 11~14 Sep., Aspen

35

Minwon Park, CCA 2016, 11~14 Sep., Aspen

Status of coated conductor 2G HTS wire, now

1 10 30 50m

160Ic(A)

30

60

90

120

MOCVD(IGC)MOCVD(IGC)

MODMOD--TFA(AMSC/ORNL)TFA(AMSC/ORNL)

BaF2(ORNL)BaF2(ORNL)

PLD(IGC)PLD(IGC)

BaF2(3M)BaF2(3M)

PLD(LANL)PLD(LANL)

160

30

60

90

120

PLD(Fujikura)PLD(Fujikura)

PLD(PLD(GottingenGottingen))

PLD(Sumitomo)PLD(Sumitomo)

1 10 30 50m

160Ic(A)

30

60

90

120

MOCVD(IGC)MOCVD(IGC)

MODMOD--TFA(AMSC/ORNL)TFA(AMSC/ORNL)

BaF2(ORNL)BaF2(ORNL)

PLD(IGC)PLD(IGC)

BaF2(3M)BaF2(3M)

PLD(LANL)PLD(LANL)

160

30

60

90

120

PLD(Fujikura)PLD(Fujikura)

PLD(PLD(GottingenGottingen))

PLD(Sumitomo)PLD(Sumitomo)

RABiTSRABiTS

IBADIBAD

ISDISD

RABiTSRABiTS

IBADIBAD

ISDISD

World 1st CC plot of Ic X meter , 2003 Now,

Ø SuperPower HTS wire Ø AMSC HTS wire

*Ic values range from 80 up to 150 A at 77K, 0T in 4 mm widths

Ref. SuNam, SuperPower, AMSC homepage

Width (mm) Minimum critical current (Ic)

12 400 A, 500 A, 600 A, Special order for Ic>600 A<, <400 A

4 100 A, 150 A, 200 A, Special order for Ic>200 A, <100 A

Ø SuNAM HTS wire

Ic x meter is already fully ready. However,

Minwon Park, CCA 2016, 11~14 Sep., Aspen

36 Future target of CC for power application

Required Price

Jc

Mechanical strength

Field performance Required piece length

High enough point

Cheap enough point

Long Enough point Good enough point

Strong enough point

Cable

SFCL

Rotating machine

Induction heater

---

Present line

Performance Safe Zone (PSZ)

Minwon Park, CCA 2016, 11~14 Sep., Aspen

37

Thank you for your attention

I work here.