red-impact – progress report · red-impact – progress report w. gudowski, r. odoj, e. gonzalez,...

45
NEA/OECD -9IEMPT, Nimes-2006 1 IMPACT OF PARTITIONING, TRANSMUTATION AND WASTE REDUCTION TECHNOLOGIES ON THE FINAL NUCLEAR WASTE DISPOSAL RED-IMPACT – Progress report W. Gudowski, R. Odoj, E. Gonzalez, D. Greneche, L. Boucher, J. Marivoet, C. Zimmerman and W. von Lenza Representing the Red–Impact Project : Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste Disposal. EC Contract no. FI6W-CT-2004-002408

Upload: hamien

Post on 03-Apr-2019

253 views

Category:

Documents


0 download

TRANSCRIPT

NEA/OECD -9IEMPT, Nimes-2006 1

IMPACT OF PARTITIONING, TRANSMUTATION AND WASTE

REDUCTION TECHNOLOGIES ON THE FINAL NUCLEAR WASTE DISPOSAL

RED-IMPACT – Progress report

W. Gudowski, R. Odoj, E. Gonzalez, D. Greneche, L. Boucher, J. Marivoet, C. Zimmerman and W. von Lenza

Representing the Red–Impact Project : Impact of Partitioning, Transmutation and Waste Reduction Technologies on the Final Nuclear Waste

Disposal.EC Contract no. FI6W-CT-2004-002408

NEA/OECD -9IEMPT, Nimes-2006 2

Author’s Institutions

• Kungliga Tekniska Högskolan, Stockholm, Sweden

• Centro de Investigaciones EnergeticasMedioambientales y Tecnologicas, Madrid, Spain

• Compagnie Générale de Matières Nucléaires, Paris, France

• Commissariat à l'Energie Atomique, Cadarache, France

• Studiecentrum voor Kernenergie - Centre d'Etude de l'Energie Nucléaire, Mol, Belgium

• Nexia Solutions, Sellafield, UK• Forschungszentrum Juelich GmbH, Germany• + 17 other members of RED-IMPACT

NEA/OECD -9IEMPT, Nimes-2006 3

Outline

• Red-Impact Partners• Objectives of Red-Impact• Project Structure• Studied scenarios• Assumptions• Indicators• Results and Conclusions• Added on values

NEA/OECD -9IEMPT, Nimes-2006 4

Partners of Red-Impact

1. KTH : Kungliga Tekniska Högskolan, Stockholm, Sweden. Contact person: Waclaw Gudowski, [email protected]

2. FZJ : Forschungszentrum Juelich GmbH, Jülich Germany. Contact person: Werner von Lensa, [email protected]

3. BN : Belgonucleaire, Belgium. Contact person:Benoit Lance, [email protected]

4. Nexia Solutions: United Kingdom Contact person: Colin Zimmerman, [email protected]

5. CEA: The Commissariat à l’Energie Atomique, France. Contact person: Lionel Boucher, [email protected]

6. CIEMAT: Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Spain Contact person: Enrique Gonzalez, [email protected]

7. CITON: The Centre of Technology and Engineering for Nuclear Projects, Romania Contact person: Olivia Comsa, [email protected]

8. Cogema: Compagnie General de Matieres Nucleaires, France Contact person: Dominique Greneche, [email protected]

9. EA: Empresarios Agrupados, Spain. Contact person: Xavier Jardi, [email protected]

NEA/OECD -9IEMPT, Nimes-2006 5

10. KKP: EnBW Kraftwerke AG, Kernkraftwerk Philippsburg, Germany Contact person: Karl Linnenfelser, [email protected]

11. ENRESA: Empresa Nacional De Residuos Radioactivos S.A., the Spanish radioactive waste agency, Spain. Contact person: Migual Angel Cunado Peralta, [email protected]

12. Framatome ANP: FANP SAS, France. Contact person: Bertrand CARLIER, [email protected]

13. Framatome GmbH: FANP GmbH. Contact person: Gerd Brinkmann, [email protected]

14. GRS: The German Gesellschaft für Anlagen- und Reaktorsicherheit GmbH, Germany Contact person: Frank Peiffer, [email protected]

15. USTUTT - IER: The Institute of Energy Economics and Rational Use of Energy, Stuttgart University, Germany. Contact person: Alfred Voss, [email protected]

16. ITU: European Commission - Joint Research Centre - Institute for Transuranium Elements, Karlsruhe. Contact person: David Hamilton, [email protected]

17. NIREX: United Kingdom Nirex Ltd., United Kingdom Contact person: Samantha King, [email protected]

18. NRG: Dutch ECN/KEMA company Nuclear Research & consultancy Group, TheNetherlands. Contact person: Ronald Schram, [email protected]

Partners of Red-Impact

NEA/OECD -9IEMPT, Nimes-2006 6

19. RAWRA: Sprava ulozist radioaktivnich odpadu , The Czech national radioactive waste agency, The Chech Republic. Contact person: Soňa Konopásková, [email protected]

20. SCK-CEN: Studiecentrum voor Kernenergie - Centre d'Etude de l'Energie Nucléaire- The Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium. Contact person: Jan Marivoet, [email protected]

21. SKB : Svensk Kärnbränslehantering AB (Swedish Nuclear Fuel and Waste Management Co), Sweden Contact person: Fred Karlsson, [email protected]

22. VUJE: VÚJE Trnava, Inc, Slovakia Contact person: Petr DARÍLEK, [email protected]

23. NRI: The Nuclear Research Institute, Rez- Czech Republic.. Contact person: AntoninVokal, [email protected]

2 subcontractors:University of Cambridge (UK): William Nuttal, [email protected] (Slovakia)

Partners of Red-Impact

NEA/OECD -9IEMPT, Nimes-2006 7

Partners of RED-IMPACT

Participants in RED-IMPACT

Research50%

Waste Agencies

18%

Nuclear Industry &

Utilities32%

A unique consortium of research institutes, waste agencies and industrial partners

23 partners + 2 subcontractors, 11 countries

NEA/OECD -9IEMPT, Nimes-2006 8

RED-IMPACT participants

Red-Impact: 01.03.2005 – 28.02.2007RED-IMPACT website : http://www.red-impact.proj.kth.se/

NEA/OECD -9IEMPT, Nimes-2006 9

The objectives of RED-IMPACT project –Why do we want to do transmutation:

• Assess the effects of P&T on geological disposal and waste management.

• Assess Economic, Environmental and Societal Costs/benefits of P&T.

• Disseminate results of the study to stakeholders (scientific, general public and decision makers) and get feedback during the study.

• Iterate and refine the work based on stake-holders’ feedback to achieve full impact of this study on the implementation of the waste management policy of the European Community.

NEA/OECD -9IEMPT, Nimes-2006 10

Red-Impact: six workpackages

• WP1: Review of waste management and transmutation strategies, selection of fuel cycles scenarios

• WP2: Feasibility of the industrial deployment of selected scenarios and their impact on waste management

• WP3: Assessment of waste streams, waste features, leach resistance, heat generation, reprocessing capability etc for selected fuel cycles.

• WP4: Assessment of the benefits and costs of P&T/C in advanced fuel cycles for waste management and geological disposal.

• WP5: Economic, environmental and societal assessment of fuel cycle strategies

• WP6: Synthesis and dissemination of results to stakeholders

NEA/OECD -9IEMPT, Nimes-2006 11

European Commission

RED-IMPACTCo-ordinator: W. Gudowski

Co-coordinator: R. Odoj

Project Management Team:Coordinator, co-coordinator

WP-leadersMeetings: at least twice a year

WP6 – leaderW. von Lensa

WP1 – leaderE. Gonzalez

WP2 – leaderD. Greneche

WP3 – leaderL. Boucher

W4 – leaderJ. Marivoet

WP5 – leaderC. Zimmerman

WP1Task leaders &

participants

WP2 Task leaders &

participants

WP3Task leaders &

participants

WP4Task leaders &

participants

WP5 Task leaders &

participants

WP6Task leaders &

participants

Project Committee:Project Participant Meeting

(Consortium meeting)At least twice a year, each

participant has one vote

Red-ImpactStructure

NEA/OECD -9IEMPT, Nimes-2006 12

Set of fuel cycles to assess

Starting point: NEA/OECD report: “Accelerator-Driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles. A Comparative Study” (2002).

The fuel options taken into account were:– the standard reference UO2 fuel with a 235U enrichment 4.2% with a final average burn-up of 50

GWd/tHM;– mixed oxide fuels (UO2/PuO2), with a high burn-up of 50 GWd/tHM;– high Pu content MOX fuel (~ 30 w%) in fast reactors, with a burn-up of 150 GWd/tHM;– mixed Th/Pu fuels with a burn-up of 60 GWd/tHM or inert matrix fuel (IMF)-Pu fuel (instead of

thorium), where the inert matrix can be based in the CER-CER concept (Pu diluted in ceramic material) or in the CER-MET concept (takes advantage of higher conductivity of metallic matrices);

– the mixture of MA inside MOX fuels or the use of target rods diluted into an inert of partially fertile matrix;

– the coated particles, with a fissile kernel and several layers of pyrolitic carbon as pressure resistant envelope and gas diffusion barriers, with a burn-up such as about 600 GWd/tHM.

• The chemical reprocessing options considered were the aqueous partitioning system (PUREX, TRUEX, UREX, THOREX, DIAMEX and SANEX processes) and thepyrochemical partitioning system, able to handle fuels with high content in Pu and MA.

NEA/OECD -9IEMPT, Nimes-2006 13

Six basis scenarios are considered for the evaluations

• Three “industrial” scenarios:– A1. Reference scenario. Open cycle – A2. Near term scenario. Plutonium single recycling in

LWR with standard MOX– A3. Fast reactor with infinite recycling of Plutonium

with “standard” MOX Three long-term scenarios :

– B1. Gen IV scenario: infinite recycling of Plutonium and Minor actinides in fast reactors.

– B2. Simplified double strata: LWR + ADS.– B3. Double strata + Fast reactors + ADS.

NEA/OECD -9IEMPT, Nimes-2006 14

Scenario A1 - Reference

UOXFabrication

EnrichedU

LWR Gen III

S

T

O

R

A

G

E

FinalDisposal

Enriched U 4,2% U 235

Flows for spent fuelUOX : 1476 tHM / cycle1 cycle = 18 months600 TWhe / cycle

UOXFabrication

EnrichedU

LWR Gen III

S

T

O

R

A

G

E

FinalDisposal

Enriched U 4,2% U 235

Flows for spent fuelUOX : 1476 tHM / cycle1 cycle = 18 months600 TWhe / cycle

NEA/OECD -9IEMPT, Nimes-2006 15

Scenario A1: Waste Package for 4 UOX spent fuel assemblies

4.54 m

4.30 m

0.90 m

0.70 m

NEA/OECD -9IEMPT, Nimes-2006 16

Scenario A2: mono-recycligingof plutonium in LWRs

MOXFabrication

UOXFabrication

Enriched U

EPRMOX

EPR UOX

ReprocessingS

T

O

R

A

G

E

Pu

UOX

URT

Wastes

MAFP

0,1%U0,1%Pu

U

4,2 % U235

8,5% Pu

Flows for spent fuelMOX : 148 t / cycleUOX : 1328 t / cycle1 cycle = 18 months600 TWhe / cycle

MOX

MOXFabrication

UOXFabrication

Enriched U

EPRMOX

EPR UOX

ReprocessingS

T

O

R

A

G

E

Pu

UOX

URT

Wastes

MAFP

0,1%U0,1%Pu

U

4,2 % U235

8,5% Pu

Flows for spent fuelMOX : 148 t / cycleUOX : 1328 t / cycle1 cycle = 18 months600 TWhe / cycle

MOX

NEA/OECD -9IEMPT, Nimes-2006 17

Scenario A2: Waste Package for 1 MOX spent fuel assembly

4.54 m

4.30 m

0.65 m

0.45 m

NEA/OECD -9IEMPT, Nimes-2006 18

Universal Canister (scenarios A2, A3, B1, B2 and B3)

MaterialStainless Steel

(C: 0.15%; Cr: 24%; Ni: 13%)

Physical dimensions:

- Length 1 338 mm

- External Diameter 430 mm

- Wall thickness 5 mm

Mass:

- Total 492 Kg

- Empty 80 Kg

Volume:

- External 175 l

- Internal 170 l

- Vitrified Waste 150 l

NEA/OECD -9IEMPT, Nimes-2006 19

A3: “Industrial” scenario, infinite recycling of Plutonium with “standard” MOX.

Fabrication Fast reactors(EFR)

Reprocessing

Wastes :FP

LossesMinor actinides

Pu

Depleted U

STORAGE Flows for spent fuel

Fissil : 348 tons / cycleAxial blankets : 151 tons / cycleRadial blankets : 71 tons / cycle1 cycle = 14,6 months493 TWhe / cycle

Fabrication Fast reactors(EFR)

Reprocessing

Wastes :FP

LossesMinor actinides

Pu

Depleted U

STORAGE Flows for spent fuel

Fissil : 348 tons / cycleAxial blankets : 151 tons / cycleRadial blankets : 71 tons / cycle1 cycle = 14,6 months493 TWhe / cycle

NEA/OECD -9IEMPT, Nimes-2006 20

Scenario B1: Fast Neutron – Gen IV scenario

Fabrication Fast reactors Reprocessing

Wastes :FP

Losses

Pu + Minor actinides

Depleted USTORAGE Flows for spent fuel

Fissil : 348 tonsAxial blankets : 151 tonsRadial blankets : 71 tons1 cycle = 14,6 months493 TWhe / cycle

Fabrication Fast reactors Reprocessing

Wastes :FP

Losses

Pu + Minor actinides

Depleted USTORAGE Flows for spent fuel

Fissil : 348 tonsAxial blankets : 151 tonsRadial blankets : 71 tons1 cycle = 14,6 months493 TWhe / cycle

NEA/OECD -9IEMPT, Nimes-2006 21

Scenario B2 : Simplified “double strata” scenario with LWR and ADS

NEA/OECD -9IEMPT, Nimes-2006 22

B3 – Double Strata Scenario with LWRs, FRs, ADS

NEA/OECD -9IEMPT, Nimes-2006 23

Maturity of technologies

Scenario

Description Technologies needed (excepted final repository)

Year of availability

A1 Once through fuel cycle in Gen II & III reactors

None Available

A2 Mono-recycling of Pu in Gen III reactors

None Available

A3 Multi recycling of Pu in Sodium Fast reactor

Fabrication and reprocessing of MOX fuel for FNR

2020

B1 Mono recycling of Pu in Gen III reactor + Burning of Puand MA in ADS

PartitioningADS transmuter and associated fuel cycle

2050(QG)

B2 Mono-recycling of Pu in Gen III reactor + Multi recycling of Pu in Gen IV Reactor + Burning of MA in ADS

PartitioningFNR and associated fuel cycleADS transmuter and associated fuel cycle

2050(QG)

B3 Multi recycling of U, Pu and MA in Gen IV reactors

FNR and associated fuel cycle (including MA)

2050(QG)

NEA/OECD -9IEMPT, Nimes-2006 24

Considered hydro-metallurgical processes, their goal and the state of the art

Objective Process Status

Separation of U, Pu, FP+MA PUREX Industrial-scale process

Separation of U, Pu+FP+MA UREX Industrial feasibilityMA partitioning,one-extraction-cycle process

DIDPA process, SETFICS, PALADIN Scientific feasibility

An+Ln co-extraction TRUEX, DIAMEX, TRPO Technical feasibility

An, Ln separation TALSPEAK, CTH, SANEX,CYANEX, ALINA, BTP Technical feasibility

Am, Cm separation SESAME, Am precipitation Technical feasibility

I, Np, Tc recovery Advanced PUREX Industrial feasibility

Cs and/or Sr recovery Calixarenes, titanic acid Technical feasibility

NEA/OECD -9IEMPT, Nimes-2006 25

Pyroprocessing (necessary mainly for ADS recirculation schemes)

• Involve several techniques such as : volatilization, liquid-liquid extraction using non-miscible metal-metal phases or metal-salt phases, electro-refining in molten salt, fractional crystallization, etc.

• Lack of reliable technical data. Assumptions and qualified guesses needed!

26

SCENARIO

A2 A2.b A3 B1 B2 B3

REPROCESSING TYPE Stand. PUREX

Stand. PUREX

Stand. PUREX

Stand. PUREX, PYRO Adv.

PUREXAdv. PUREX PYRO Adv.

PUREXAdv. PUREX PYRO PYRO

REPROCESSED FUEL UOX (PWR)

UOX (PWR)

MOX (PWR)

Blankets+ Fissile Core(FR)

Blankets+ Fissile Core(FR)

UOX (PWR)

MOX (PWR) ADS UOX

(PWR)MOX (PWR) MOX (FR) ADS

U 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Pu 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

MA 1 1 1 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Noble Gases 0 0 0 0 0 0 0 0 0 0 0 0

Iodine 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Noble Metals 1 1 1 1 0 1 1 0 1 1 0 0

Others, including volatile (Cs, Br) and partially soluble (Mo, Tc and Sb)

1 1 1 1 1 1 1 1 1 1 1 1

ACTIVATION PRODUCTS (Fuel Impurities) to HLW

All, including volatile(H, C, N, F and Cl), etc.

1 1 1 1 1 1 1 1 1 1 1 1

Zr and N (ADS fuel matrix) to HLW - - - - - - - 0 - - - 0

MASS of HLW to Universal Canister 40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

40 Kg +Impu.

FISSION PRODUCTS to HLW

ACTINIDES to HLW

Reprocessiong assumptions

NEA/OECD -9IEMPT, Nimes-2006 27

3 Different Geological Disposal Models

• Granite (e.g. Swedish, Spanish, Czech models)

• Clay (Belgium)• Rock Salt Formation (Germany)

NEA/OECD -9IEMPT, Nimes-2006 28

Samples of results:

NEA/OECD -9IEMPT, Nimes-2006 29

Granite:

1 10 100 1000time (a)

20

40

60

80

100

120

140

max

imum

tem

pera

ture

(°C

)

A1(25x5)(25x6)(25x7)(25x8)(25x9)

1 10 100 1000time (a)

20

40

60

80

100

120

140

max

imum

tem

pera

ture

(°C

)

B1(25x2)(25x3)(25x4)(25x5)

Evolution of maximal temperature at the surface of the canisterscalculated for scenarios A1 and B1

NEA/OECD -9IEMPT, Nimes-2006 30

Granite

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+ 00

1.00E+ 03 1.00E+ 04 1.00E+ 05 1.00E+ 06 1.00E+ 07

T im e (years)

Bio

sphe

re d

oses

(Sv/

yr

A1_g radual_SvB1_g radual_SvLimit

Comparison of biosphere doses from A1 and B1 scenarios (instant failure of canisters)

NEA/OECD -9IEMPT, Nimes-2006 31

Clay: Dose via the river pathway per TWhe

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)

Cl36

Se79

Sn126

I129

Th229

TOTAL

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years) D

ose

(riv

er p

athw

ay) (

Sv/a

/TW

he)

Se79

Tc99

Sn126

I129

Th229

TOTAL

A1 B1

NEA/OECD -9IEMPT, Nimes-2006 32

Clay: Total doses via the river pathway per TWh(e) calculated for scenarios A1

and B1

1.0E-16

1.0E-15

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Time after canister failure (years)

Dos

e (r

iver

pat

hway

) (Sv

/a/T

Whe

)scenario A1

scenario B1

NEA/OECD -9IEMPT, Nimes-2006 33

Salt: dose rate for possible releases coming from waste of fuel cycle A1 and B1

Calculated Dose Rate fuel cycles A1 and B1

1,00E-15

1,00E-14

1,00E-13

1,00E-12

1,00E-11

1,00E-10

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E+03 1,00E+04 1,00E+05 1,00E+06

Time (years)

Dos

e R

ate

(Sv/

a)

reg, limit

FC A1

FC B1

NEA/OECD -9IEMPT, Nimes-2006 34

Performance indicators

The indicators have been divided into two major groups:• “Technical” indicators partioned into three groups:

– indicators based on the composition of the waste;– indicators related to the size of the repository; – indicators related to the long-term performance of the repository

system:• individual annual dose;• radiotoxicity flux released into the biosphere;• integrated radiotoxicity flux released into the biosphere.

• Economic, environmental and societal/sustainability (EES) indicators

NEA/OECD -9IEMPT, Nimes-2006 35

Sustainability Indicators

Identification

Top-

dow

n

S tro n g S u s ta in a -

b ility

e .G .E c o lo g ic a l F o o tp r in t

W ea k S u s ta in a -

b ility

e .G .C a p ita l

A p p ro a c h

M ix e d a p p ro a ch

In d ic a to r S e t

G u d in g p r in c ip le S u s ta in a b le D e v e lo p m e n t

G e n e ra l co n c e p ts

Bot

tom

-uo

E c o lo g y

E c o n o m y S o c ie ty

O v e rv ie w o n e x is tin ge n e rg y s ys te m in d ic a to r s e ts

S e le c tio n a n d a d a p tio n o f u se fu l in d ica to rs

R e d Im p a c t In d ic a to r S e t

Top-

dow

n

S tro n g S u s ta in a -

b ility

e .G .E c o lo g ic a l F o o tp r in t

W ea k S u s ta in a -

b ility

e .G .C a p ita l

A p p ro a c h

M ix e d a p p ro a ch

In d ic a to r S e t

G u d in g p r in c ip le S u s ta in a b le D e v e lo p m e n t

G e n e ra l co n c e p ts

Top-

dow

nTo

p-do

wn

S tro n g S u s ta in a -

b ility

e .G .E c o lo g ic a l F o o tp r in t

W ea k S u s ta in a -

b ility

e .G .C a p ita l

A p p ro a c h

M ix e d a p p ro a ch

In d ic a to r S e t

G u d in g p r in c ip le S u s ta in a b le D e v e lo p m e n t

G e n e ra l co n c e p ts

G u d in g p r in c ip le S u s ta in a b le D e v e lo p m e n t

G e n e ra l co n c e p ts

Bot

tom

-uo

E c o lo g y

E c o n o m y S o c ie ty

O v e rv ie w o n e x is tin ge n e rg y s ys te m in d ic a to r s e ts

S e le c tio n a n d a d a p tio n o f u se fu l in d ica to rs

R e d Im p a c t In d ic a to r S e t

Bot

tom

-uo

Bot

tom

-uo

E c o lo g y

E c o n o m y S o c ie ty

O v e rv ie w o n e x is tin ge n e rg y s ys te m in d ic a to r s e ts

S e le c tio n a n d a d a p tio n o f u se fu l in d ica to rs

O v e rv ie w o n e x is tin ge n e rg y s ys te m in d ic a to r s e ts

S e le c tio n a n d a d a p tio n o f u se fu l in d ica to rs

R e d Im p a c t In d ic a to r S e t

NEA/OECD -9IEMPT, Nimes-2006 36

Comparison of different fuel cycle strategies in terms of radiological and disposal aspects

0.0

0.2

0.4

0.6

0.8

1.0

1 (PWR) 2 (PWR,recycl. Pu)

3 (PWR,multi-recycl.

Pu)

4 (PWR +ADS)

5 (Na-cooledFR)

6 (GC FR) 6a (GC FR,separ. Cs,Sr)

U consumptiongallery lengthmaximum dose cumulative released radiotoxicityradiotoxicity after 500 a

NEA/OECD -9IEMPT, Nimes-2006 37

Decay heat per TWhe as a function of time in a repository for different fuel cycles

NEA/OECD -9IEMPT, Nimes-2006 38

Ingestion radiotoxicity after disposal for different scenarios

NEA/OECD -9IEMPT, Nimes-2006 39

Impact of fuel cyle on waste quality for disposal

NEA/OECD -9IEMPT, Nimes-2006 40

All scenarios – Radiological Impact: Normalised Annual Dose (Sv/a TWhe)

1 .E-14

1 .E-13

1 .E-12

1 .E-11

1 .E-10

1 .E-09

1 .E-08

1 .E +03 1.E+0 4 1 .E +05 1 .E+06 1.E +0 7

Tim e (ye ars )

Dos

e (S

v/yr

-TW

h(e)

)

S c e na rio A2

S c e nario A1

S c e na rio B 2

S c e na rio B1

S c en ario A3

NEA/OECD -9IEMPT, Nimes-2006 41

RedImpact Final Goal: Acceptance and Decisions through understanding

• The RED-IMPACT project follows a multi-disciplinary approach by federating different technical and scientific areas such as specialists from reactor technology, fuel cycle evaluation, reprocessing (partitioning), waste management, disposal issues, economical assessment and social sciencewith regard to public and market acceptance aspects. P&T is not understood only as a very future option but as a strategy which can be stepwise implemented already starting:– in the short term by making use of existing reactors and fuel cycle

facilities, – via more advanced reactor systems (Gen III & Gen IV), fuels,

reprocessing & conditioning technologies, in the mid term, – towards very ambitious special waste transmuter systems like ADS

together with the related partitioning techniques, in the long term.

NEA/OECD -9IEMPT, Nimes-2006 42

• Fuel cycle senarios with their boundary conditions have been well defined. Methodology and assessment tools have been agreed and well benchmarked. Most of the calculations are in the final stage and an interim report summarizing the first results has ´been prepared.

• The project provides recommendations for the implementation of pragmatic P&T strategies under different political environments following general sustainability criteria to improve public acceptance

RedImpact Final Goal: Acceptance and Decisions through understanding

NEA/OECD -9IEMPT, Nimes-2006 43

Added on values 1:

• Subtask: Nuclear Spent Fuel Management Scenarios for Sweden:– Phase out with direct disposal– Burning plutonium and minor actinides as MOX in BWR– Burning plutonium and minor actinides as MOX in PWR– Burning plutonium and minor actinides in ADS – Combined LWR-MOX plus ADS

NEA/OECD -9IEMPT, Nimes-2006 44

Cost of electricity comparison for various scenarios with 40, 60, 140, and 200 GWd/tHM of

burnup

MOX40 MOX60 ADS140 ADS200 UOX0

1

2

3

4

5

6

7

8

CO

E [c

/kW

h]6.19

4.97

5.72

5.19

3.29

CapInterestOMFuelISGDRep/UnatConvEnr

NEA/OECD -9IEMPT, Nimes-2006 45

• New Fuel Cycle Anlaysis and OPTIMIZATION (RED-IMPACT)code under development at KTH:– Best possible physics – generation of dedicated one-group data

libraries for each specific case– Matrix method– Simulation of the whole fuel cycle from FRONT-FRONT to Back-

End inluding legacy of existing waste– Regional solutions as an option– Economical calculation– Uncertainty analysis– Very advanced graphical interface

Added on values 2: