references3a978-94-007-0335-3%2f… · references 1. o. bottema and b. roth. theoretical...

26
References 1. O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus for Applications. Prentice Hall, Inc., Englewood Cliffs, New Jersey, second edition, 1976. 3. W. Fl¨ ugge. Tensor Analysis and Continuum Mechanics. Springer-Verlag, New York, Heidelberg, Berlin, 1972. 4. G. Dahlquist and Ň A. Bj¨ orck. Numerical Methods. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1974. 5. W.H. Press, B.P. Flannery, S.A. Teutolsky, and W.T. Vetterling. Numerical Recipes. The Art of Scientiſc Computing. Cambridge University Press, Cambridge, 1990. 6. F. Pfeiffer and C. Glocker. Multi-Body Dynamics with Unilateral Contacts. John Wiley & Sons, Inc, New York, 1996. 7. P.R. Dahl. Solid friction damping of mechanical vibrations. AIAA Journal, 14:1675– 1682, 1976. 8. T. Baumeister, E.A. Avallone, and T. Baumeister III (eds.). Marks’ Mechanical Engi- neers Handbook. McGraw-Hill Book Company, New-York, 1978. 9. J.E. Shigley and C.R. Mischke. Mechanical Engineering Design. McGraw-Hill Book Company, New York, 1989. 10. A.K. Banerjee and T.R. Kane. Modeling and simulation of rotor bearing friction. Journal of Guidance, Control and Dynamics, 17:1137–1151, 1994. 11. J. Srnik and F. Pfeiffer. Dynamics of CVT chain drives: Mechanical model and veriſ- cation. In Proceedings of the 16th Biennial Conference on Mechanical Vibration and Noise, Sacramento, CA, Sept. 14-17, 1997. 12. E. Rabinowicz. Friction and Wear of Materials. John Wiley & Sons, New York, second edition, 1995. 13. J.C. Oden and J.A.C. Martins. Models and computational methods for dynamic friction phenomena. Computer Methods in Applied Mechanics and Engineering, 52:527–634, 1985. 14. L. Euler. D´ ecouverte d’un nouveau principe de m´ ecanique. emoires de l’Acad´ emie des Sciences de Berlin, 6(1752):185–217, 1750. 15. L. Euler. Nova methodus motum corporum rigidorum determinandi. Novi Commentari Academiae Scientiarum Imperialis Petropolitanae, 20:208–238, 1775. 16. L. Euler. De motu corporum circa pumctum ſxum mobilium. Opera Mechanica et Astronomica, 9(Series Secunda):413–441, 1776. Leonhardi Euleri Opera Omnia. O. A. Bauchau, Flexible Multibody Dynamics, DOI 10.1007/978-94-007-0335-3 © Springer Science+Business Media B.V. 2011

Upload: others

Post on 14-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References

1. O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications, Inc., New York,1979.

2. F.B. Hildebrand. Advanced Calculus for Applications. Prentice Hall, Inc., EnglewoodCliffs, New Jersey, second edition, 1976.

3. W. Flugge. Tensor Analysis and Continuum Mechanics. Springer-Verlag, New York,Heidelberg, Berlin, 1972.

4. G. Dahlquist and A. Bjorck. Numerical Methods. Prentice Hall, Inc., Englewood Cliffs,New Jersey, 1974.

5. W.H. Press, B.P. Flannery, S.A. Teutolsky, and W.T. Vetterling. Numerical Recipes. TheArt of Scienti c Computing. Cambridge University Press, Cambridge, 1990.

6. F. Pfeiffer and C. Glocker. Multi-Body Dynamics with Unilateral Contacts. John Wiley& Sons, Inc, New York, 1996.

7. P.R. Dahl. Solid friction damping of mechanical vibrations. AIAA Journal, 14:1675–1682, 1976.

8. T. Baumeister, E.A. Avallone, and T. Baumeister III (eds.). Marks’ Mechanical Engi-neers Handbook. McGraw-Hill Book Company, New-York, 1978.

9. J.E. Shigley and C.R. Mischke. Mechanical Engineering Design. McGraw-Hill BookCompany, New York, 1989.

10. A.K. Banerjee and T.R. Kane. Modeling and simulation of rotor bearing friction. Journalof Guidance, Control and Dynamics, 17:1137–1151, 1994.

11. J. Srnik and F. Pfeiffer. Dynamics of CVT chain drives: Mechanical model and veri -cation. In Proceedings of the 16th Biennial Conference on Mechanical Vibration andNoise, Sacramento, CA, Sept. 14-17, 1997.

12. E. Rabinowicz. Friction and Wear of Materials. John Wiley & Sons, New York, secondedition, 1995.

13. J.C. Oden and J.A.C. Martins. Models and computational methods for dynamic frictionphenomena. Computer Methods in Applied Mechanics and Engineering, 52:527–634,1985.

14. L. Euler. Decouverte d’un nouveau principe de mecanique. Memoires de l’Academiedes Sciences de Berlin, 6(1752):185–217, 1750.

15. L. Euler. Nova methodus motum corporum rigidorum determinandi. Novi CommentariAcademiae Scientiarum Imperialis Petropolitanae, 20:208–238, 1775.

16. L. Euler. De motu corporum circa pumctum xum mobilium. Opera Mechanica etAstronomica, 9(Series Secunda):413–441, 1776. Leonhardi Euleri Opera Omnia.

O. A. Bauchau, Flexible Multibody Dynamics,DOI 10.1007/978-94-007-0335-3 © Springer Science+Business Media B.V. 2011

Page 2: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

704 References

17. L. Euler. Formulae generales pro translatione quacunque corporum rigidorum. NoviCommentari Academiae Scientiarum Imperialis Petropolitanae, 20:189–207, 1775.

18. O. Rodrigues. Des lois geometriques qui regissent les deplacements d’un systeme solidedans l’espace, et de la variation des coordonnees provenant de ces deplacements con-sideres independamment des causes qui peuvent les produire. Journal de MathematiquesPures et Appliquees, 5:380–440, 1840.

19. J. Angeles. Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algo-rithms. Springer-Verlag, New York, 1997.

20. G. Mozzi. Discorso Matematico Sopra il Rotamento Momentaneo dei Corpi. Stamperiadi Donato Campo, Napoli, Italy, 1763.

21. M. Chasles. Note sur les proprietes generales du systeme de deux corps semblablesentre eux et places d’une maniere quelconque dans l’espace; et sur le deplacement ni,ou in niment petit d’un corps solide libre. Bulletin des Sciences Mathematiques deFerussac, 14:321–326, 1830.

22. J. Angeles. The application of dual algebra to kinematic analysis. In J. Angeles andE. Zakhariev, editors, Computational Methods in Mechanical Systems, volume 161,pages 3–31. Springer-Verlag, Heidelberg, 1998.

23. A.K. Pradeep, P.J. Yoder, and R. Mukundan. On the use of dual matrix exponentials inrobot kinematics. International Journal of Robotics Research, 8(5):57–66, 1989.

24. D.J. Ewins. Modal testing: theory and practice. Wiley, New York, 1984.25. R. Weinstock. Calculus of Variations with Applications to Physics and Engineering.

Dover Publications, Inc., New York, 1974.26. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II : Stiff and

Differential-Algebraic Problems. Springer, Berlin, 1996.27. H. Hochstadt. Differential Equations. Dover Publications, Inc., New York, 1964.28. J. Garc´a de Jalon, J. Unda, and A. Avello. Natural coordinates for the computer anal-

ysis of multibody systems. Computer Methods in Applied Mechanics and Engineering,56:309–327, 1986.

29. J. Angeles. Spatial Kinematic Chains. Springer-Verlag, Berlin, 1982.30. D. Li and P.W. Likins. Dynamics of a multibody system with relative translation on

curved, exible tracks. Journal of Guidance, Control and Dynamics, 10:299–306, 1987.31. A. Cardona. An Integrated Approach to Mechanism Analysis. PhD thesis, Universite de

Liege, Belgium, 1989.32. O.A. Bauchau. On the modeling of prismatic joints in exible multi-body systems.

Computer Methods in Applied Mechanics and Engineering, 181:87–105, 2000.33. O.A. Bauchau and C.L. Bottasso. Contact conditions for cylindrical, prismatic, and

screw joints in exible multi-body systems. Multibody System Dynamics, 5:251–278,2001.

34. L. Piegl and W. Tiller. The Nurbs Book. Springer-Verlag, Berlin, New Jersey, secondedition, 1997.

35. G.E. Farin. Curves and Surfaces for Computer Aided Geometric Design. AcademicPress, Inc., Boston, third edition, 1992.

36. A. Cardona and M. Geradin. Finite element modeling of exible tracks. In C. L. Kirkand J.L. Junkins, editors, Dynamics of Flexible Structures in Space, pages 411–424.Springer-Verlag, 1990.

37. R.E. Roberson and R. Schwertassek. Dynamics of Multibody Systems. Springer-Verlag,Berlin, 1988.

38. P.E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Engle-wood Cliffs, New Jersey, 1988.

Page 3: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 705

39. F.M.L. Amirouche. Computational Methods in Multibody Dynamics. Prentice-Hall,Englewood Cliffs, New Jersey, 1992.

40. W.O. Schiehlen. Advanced Multibody System Dynamics. Kluwer Academic Publishers,Doordrecht, The Netherlands, 1993.

41. J. Garc´a de Jalon and E. Bayo. Kinematic and Dynamic Simulation of Multibody Sys-tems. The Real-Time Challenge. Springer-Verlag, New York, 1994.

42. A.A. Shabana. Dynamics of Multibody Systems. Cambridge University Press, thirdedition, 2005.

43. W.O. Schiehlen, editor. Multibody System Handbook. Springer-Verlag, Berlin, 1990.44. A. Laulusa and O.A. Bauchau. Review of classical approaches for constraint en-

forcement in multibody systems. Journal of Computational and Nonlinear Dynamics,3(1):011004 1–8, January 2008.

45. O.A. Bauchau and A. Laulusa. Review of contemporary approaches for constraint en-forcement in multibody systems. Journal of Computational and Nonlinear Dynamics,3(1):011005 1–8, January 2008.

46. W.O. Schiehlen. Dynamics of complex multibody systems. SM Archives, 9:159–195,1984.

47. C.W. Gear and L.R. Petzold. ODE methods for the solution of differential/algebraicsystems. SIAM Journal on Numerical Analysis, 21(4):716–728, 1984.

48. P. Lotstedt and L.R. Petzold. Numerical solution of nonlinear differential equationswith algebraic constraints I: Convergence results for backward differentiation formulas.Mathematics of Computation, 46(174):491–516, April 1986.

49. L.R. Petzold and P. Lotstedt. Numerical solution of nonlinear differential equationswith algebraic constraints. II: Practical implications. SIAM Journal on Scienti c andStatistical Computing, 7(3):720–733, July 1986.

50. K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-ValueProblems in Differential-Algebraic Problems. North-Holland, New York, 1989.

51. G.A. Maggi. Principii della Teoria Matematica del Movimento dei Corpi: Corso diMeccanica Razionale. Ulrico Hoepli, Milano, 1896.

52. G.A. Maggi. Di alcune nuove forme delle equazioni della dinamica applicabili ai systemianolonomi. Rendiconti della Regia Accademia dei Lincei, Serie V, X:287–291, 1901.

53. J.I. Neimark and N.A. Fufaev. Dynamics of Nonholonomic Systems. American Mathe-matical Society, Providence, Rhode Island, 1972.

54. A. Kurdila, J.G. Papastavridis, and M.P. Kamat. Role of Maggi’s equations in compu-tational methods for constrained multibody systems. Journal of Guidance, Control, andDynamics, 13(1):113–120, 1990.

55. J.G. Papastavridis. Maggi’s equations of motion and the determination of constraintreactions. Journal of Guidance, Control, and Dynamics, 13(2):213–220, 1990.

56. P.E. Nikravesh. Some methods for dynamic analysis of constrained mechanical systems:A survey. In E.J. Haug, editor, Computer Aided Analysis and Optimization of Mechani-cal Systems Dynamics, pages 351–367. Springer-Verlag, Berlin, Heidelberg, 1984.

57. H. Hemami and F.C. Weimer. Modeling of nonholonomic dynamic systems with appli-cations. Journal of Applied Mechanics, 48:177–182, March 1981.

58. P. Lotstedt. Mechanical systems of rigid bodies subjected to unilateral constraints. SIAMJournal of Applied Mathematics, 42(2):281–296, April 1982.

59. C.W Gear, B. Leimkuhler, and G.K. Gupta. Automatic integration of Euler-Lagrangeequations with constraints. Journal of Computational and Applied Mathematics, 12 &13:77–90, 1985.

60. T.R. Kane and C.F. Wang. On the derivation of equations of motion. Journal of theSociety for Industrial and Applied Mathematics, 13(2):487–492, June 1965.

Page 4: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

706 References

61. T.R. Kane and D.A. Levinson. Dynamics: Theory and Applications. McGraw-Hill BookCompany, New York, 1985.

62. J. Garc´a de Jalon, J. Unda, A. Avello, and J.M. Jimenez. Dynamic analysis of three-dimensional mechanisms in “natural” coordinates. Journal of Mechanisms, Transmis-sions, and Automation in Design, 109:460–465, December 1987.

63. J. Unda, J. Garc´a de Jalon, F. Losantos, and R. Enparantza. A comparative study onsome different formulations of the dynamic equations of constrained mechanical sys-tems. Journal of Mechanisms, Transmissions, and Automation in Design, 109:466–474,December 1987.

64. M. Borri, C.L. Bottasso, and P. Mantegazza. Acceleration projection method in multi-body dynamics. European Journal of Mechanics, A/Solids, 11(3):403–418, 1992.

65. F.E. Udwadia, R.E. Kalaba, and H.C. Eun. Equations of motion for constrained mechani-cal systems and the extended d’Alembert’s principle. Quarterly of Applied Mathematics,LV(2):321–331, 1997.

66. F.E. Udwadia and R.E. Kalaba. A new perspective on constrained motion. Proceedingsof the Royal Society London, Series A, 439:407–410, 1992.

67. R.E. Kalaba and F.E. Udwadia. On constrained motion. Applied Mathematics andComputation, 51:85–86, 1992.

68. R.E. Kalaba and F.E. Udwadia. Equations of motion for nonholonomic, constraineddynamical systems via Gauss’s principle. ASME Journal of Applied Mechanics, 60:662–668, 1993.

69. R.E. Kalaba and F.E. Udwadia. Lagrangian mechanics, Gauss’s principle, quadratic pro-gramming, and generalized inverses: New equations for nonholonomically constraineddiscrete mechanical systems. Quarterly of Applied Mathematics, LII(2):229–241, 1994.

70. F.E. Udwadia and R.E. Kalaba. On motion. Journal of the Franklin Institute,330(3):571–577, 1993.

71. F.E. Udwadia and R.E. Kalaba. Equations of motion for mechnical systems. Journal ofAerospace Engineering, 9(3):64–69, July 1996.

72. F.E. Udwadia and R.E. Kalaba. The geometry of constrained motion. Zeitschrift furangewandte Mathematik und Mechanik, 75(8):637–640, 1995.

73. F.E. Udwadia and R.E. Kalaba. The explicit Gibbs-Appell equation and generalizedinverse forms. Quarterly of Applied Mathematics, LVI(2):277–288, 1998.

74. F.E. Udwadia and R.E. Kalaba. What is the general form of the explicit equations ofmotion for constrained mechanical system. Journal of Applied Mechanics, 69:335–339,May 2002.

75. F.E. Udwadia and R.E. Kalaba. On the foundations of analytical dynamics. InternationalJournal of Non-Linear Mechanics, 37:1079–1090, 2002.

76. F.E. Udwadia and R.E. Kalaba. Analytical Dynamics: A New Approach. CambridgeUniversity Press, Cambridge, 1996.

77. N. Orlandea, M.A. Chace, and D.A. Calahan. A sparsity-oriented approach to the dy-namic analysis and design of mechanical systems. Part I. ASME Journal of Engineeringfor Industry, 99(3):773–779, 1977.

78. N. Orlandea, D.A. Calahan, and M.A. Chace. A sparsity-oriented approach to the dy-namic analysis and design of mechanical systems. Part II. ASME Journal of Engineeringfor Industry, 99(3):780–784, 1977.

79. S.L. Campbell and B. Leimkuhler. Differentiation of constraints in differential-algebraicequations. Mechanics of Structures and Machines, 19(1):19–39, 1991.

80. H. Brauchli. Mass-orthogonal formulation of equations of motion for multibody sys-tems. Journal of Applied Mathematics and Physics (ZAMP), 42:169–182, 1991.

Page 5: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 707

81. H. Brauchli and R. Weber. Dynamical equations in natural coordinates. ComputerMethods in Applied Mechanics and Engineering, 91:1403–1414, 1991.

82. G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins UniversityPress, Baltimore, second edition, 1989.

83. W. Blajer. A projection method approach to constrained dynamic analysis. Journal ofApplied Mechanics, 59:643–649, September 1992.

84. W. Blajer, W. Schiehlen, and W. Schirm. A projective criterion to the coordinate par-titioning method for multibody dynamics. Archive of Applied Mechanics, 64:86–98,1994.

85. W. Blajer. A geometric uni cation of constrained system dynamics. Multibody SystemDynamics, 1:3–21, 1997.

86. C.F. Gauss. Uber ein neues algemeines Grundgesetz der Mechanik. Zeitschrift fur diereine und angewandte Mathematik, 4:232–235, 1829.

87. C. Lanczos. The Variational Principles of Mechanics. Dover Publications, Inc., NewYork, 1970.

88. L. Lilov and M. Lorer. Dynamic analysis of multirigid-body systems based on Gaussprinciple. Zeitschrift fur angewandte Mathematik und Mechanik, 62:539–545, 1982.

89. F. Cardin and G. Zanzotto. On constrained mechnical systems: D’Alembert’s and Gauss’principles. Journal of Mathematical Physics, 30(7):1473–1479, July 1989.

90. M. Borri, C.L. Bottasso, and P. Mantegazza. Equivalence of Kane’s and Maggi’s equa-tions. Meccanica, 25:272–274, 1990.

91. J. Angeles and S.K. Lee. The formulation of dynamical equations of holonomic me-chanical systems using a natural orthogonal complement. ASME Journal of AppliedMechanics, 55:243–244, 1988.

92. P. Maißer. Analytical dynamics of multibody systems. Computer Methods in AppliedMechanics and Engineering, 91:1391–1396, 1991.

93. U. Jungnickel. Differential-algebraic equations in Riemannian spaces and applicationsto multibody system dynamics. Zeitschrift fur angewandte Mathematik und Mechanik,74(9):409–415, 1994.

94. H. Essen. On the geometry of nonholonomic dynamics. Journal of Applied Mechanics,61:689–694, September 1994.

95. W. Blajer. A geometrical interpretation and uniform matrix formulation of multibodysystem dynamics. Zeitschrift fur angewandte Mathematik und Mechanik, 81(4):247–259, 2001.

96. C.W. Gear. Simultaneous numerical solution of differential-algebraic equations. IEEETransactions on Circuit Theory, CT-18(1):89–95, January 1971.

97. C.W. Gear. Differential-algebraic equations. In E.J. Haug, editor, Computer AidedAnalysis and Optimization of Mechanical Systems Dynamics, pages 323–334. Springer-Verlag, Berlin, Heidelberg, 1984.

98. E.J. Haug. Elements and methods of computational dynamics. In E.J. Haug, editor,Computer Aided Analysis and Optimization of Mechanical Systems Dynamics, pages3–38. Springer-Verlag, Berlin, Heidelberg, 1984.

99. R.A. Wehage and E.J. Haug. Generalized coordinate partitioning for dimension reduc-tion in analysis of constrained dynamic systems. ASME Journal of Mechanical Design,104(1):247–255, January 1982.

100. W.C. Walton and E.C. Steeves. A new matrix theorem and its application for establishingindependent coordinates for complex dynamical systems with constraints. TechnicalReport NASA TR R-326, NASA, 1969.

Page 6: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

708 References

101. P.E. Nikravesh and I.S. Chung. Application of Euler parameters to the dynamic analysisof three-dimensional constrained mechanical systems. Journal of Mechanical Design,104:785–791, October 1982.

102. R.P. Singh and P.W. Likins. Singular value decomposition for constrained dynamicalsystems. Journal of Applied Mechanics, 52:943–948, December 1985.

103. N.K. Mani, E.J. Haug, and K.E. Atkinson. Application of singular value decompositionfor analysis of mechanical system dynamics. Journal of Mechanisms, Transmissions,and Automation in Design, 107:82–87, March 1985.

104. F.M.L. Amirouche, T. Jia, and S.K. Ider. A recursive Householder transformation forcomplex dynamical systems with constraints. Journal of Applied Mechanics, 55:729–734, September 1988.

105. O.P. Agrawal and S. Saigal. Dynamic analysis of multi-body systems using tangentcoordinates. Computers & Structures, 31(3):349–355, 1989.

106. C.G. Liang and G.M. Lance. A differentiable null space method for constrained dynamicanalysis. Journal of Mechanisms, Transmissions and Automation in Design, 109:405–411, September 1987.

107. C. Wampler, K. Buf nton, and J. Shu-hui. Formulation of equations of motion for sys-tems subject to constraints. Journal of Applied Mechanics, 52:465–470, June 1985.

108. S.S. Kim and M.J. Vanderploeg. QR decomposition for state space representation ofconstrained mechanical dynamic systems. Journal of Mechanisms, Transmissions andAutomation in Design, 108:183–188, June 1986.

109. J. Garc´a de Jalon, M.A. Serna, and R. Aviles. Computer method for kinematic analysisof lower-pair mechanisms - I Velocities and accelerations. Mechanism and MachineTheory, 16(5):543–556, 1981.

110. J. Garc´a de Jalon, M.A. Serna, and R. Aviles. Computer method for kinematic analysisof lower-pair mechanisms - II Position problems. Mechanism and Machine Theory,16(5):557–566, 1981.

111. J. Garc´a de Jalon, M.A. Serna, F. Viadero, and J. Flaquer. A simple numerical methodfor the kinematic analysis of spatial mechanisms. Journal of Mechanical Design,104:78–82, January 1982.

112. J.A. Tarrago, M.A. Serna, C. Bastero, and J. Garc´a de Jalon. A computer method forthe nite displacement problem in spatial mechanisms. Journal of Mechanical Design,104:869–874, October 1982.

113. M.A. Serna, R. Aviles, and J. Garc´a de Jalon. Dynamic analysis of plane mechanismswith lower pairs in basic coordinates. Mechanism and Machine Theory, 17(6):397–403,1982.

114. J. Garc´a de Jalon, J.M. Jimenez, A. Avello, F. Mart´n, and J. Cuadrado. Real timesimulation of complex 3-D multibody systems with realistic graphics. In E.J. Haug andR.C. Deyo, editors, Real-Time Integration Methods for Mechanical System Simulation,pages 265–292. Springer-Verlag, Berlin, Heidelberg, 1990.

115. A. Avello, J.M. Jimenez, E. Bayo, and J. Garc´a de Jalon. A simple and highly par-allelizable method for real-time dynamic simulation based on velocity transformations.Computer Methods in Applied Mechanics and Engineering, 107:313–339, 1993.

116. J.W. Kamman and R.L. Huston. Constrained multibody system dynamics - An auto-mated approach. Computers & Structures, 18(6):999–1003, 1984.

117. J.W. Kamman and R.L. Huston. Dynamics of constrained multibody systems. ASMEJournal of Applied Mechanics, 51:899–903, December 1984.

118. J.C. Chiou, K.C. Park, and C. Farhat. A natural partitioning scheme for parallel simula-tion of multibody systems. International Journal for Numerical Methods in Engineering,36:945–967, 1993.

Page 7: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 709

119. K.C. Park, J.C. Chiou, and Downer J.D. Explicit-implicit staggered procedure for multi-body dynamics analysis. Journal of Guidance, Control, and Dynamics, 13(3):562–570,May-June 1990.

120. A. Arabyan and F. Wu. An improved formulation for constrained mechanical systems.Multibody System Dynamics, 2:49–69, 1998.

121. W. Blajer. Projective formulation of Maggi’s method for nonholonomic system analysis.Journal of Guidance, Control, and Dynamics, 15(2):522–525, 1992.

122. W. Blajer. An orthonormal tangent space method for constrained multibody systems.Computer Methods in Applied Mechanics and Engineering, 121:45–57, 1995.

123. M. Borri, C.L. Bottasso, and P. Mantegazza. A modi ed phase space formulation forconstrained mechanical systems - Differential approach. European Journal of Mechan-ics, A/Solids, 11(5):701–727, 1992.

124. K.C. Park and J.C. Chiou. Stabilization of computational procedures for constraineddynamical systems. Journal of Guidance, Control, and Dynamics, 11(4):365–370, July-August 1988.

125. C.W. Gear. Differential-algebraic equation index transformations. SIAM Journal onScienti c and Statistical Computing, 9(1):40–47, January 1988.

126. C.W. Gear. Maintaining solution invariants in the numerical solution of ODEs. SIAMJournal on Scienti c and Statistical Computing, 7(3):734–743, July 1986.

127. L.F. Shampine. Conservation laws and the numerical solution of ODEs. Computers andMathematics with Applications, 12B(5/6):1287–1296, 1986.

128. E. Eich. Convergence results for a coordinate projection method applied to mechanicalsystems with algebraic constraints. SIAM Journal on Numerical Analysis, 30(5):1467–1482, October 1993.

129. J. Yen, E.J. Haug, and T.O. Tak. Numerical methods for constrained equations of motionin mechanical system dynamics. Mechanics of Structures and Machines, 19(1):41–76,1991.

130. J. Yen. Constrained equations of motion in multibody dynamics as ODEs on manifolds.SIAM Journal on Numerical Analysis, 30(2):553–568, 1993.

131. F.A. Potra and J. Yen. Implicit numerical integration for euler-lagrange equations viatangent space parameterization. Mechanics of Structures and Machines, 19(1):77–98,1991.

132. E.J. Haug and J. Yen. Implicit numerical integration of constrained equations of motionvia generalized coordinate partitioning. Journal of Mechanical Design, 114:296–304,June 1992.

133. J. Yen and L.R. Petzold. An ef cient Newton-type iteration for the numerical solution ofhighly oscillatory constrained multibody dynamic systems. SIAM Journal on Scienti cComputing, 19(5):1513–1534, September 1998.

134. J. Yen, L.R. Petzold, and S. Raha. A time integration algorithm for exible mechanismdynamics: The DAE α-method. Computer Methods in Applied Mechanics and Engi-neering, 158:341–355, 1998.

135. H.M. Hilber, T.J.R. Hughes, and R.L. Taylor. Improved numerical dissipation for timeintegration algorithms in structural dynamics. Earthquake Engineering and StructuralDynamics, 5:283–292, 1977.

136. J. Chung and G.M. Hulbert. A time integration algorithm for structural dynamics withimproved numerical dissipation: The generalized-α method. Journal of Applied Me-chanics, 60:371–375, 1993.

137. F.C. Tseng, Z.D. Ma, and G.M. Hulbert. Ef cient numerical solution of constrainedmultibody dynamics systems. Computer Methods in Applied Mechanics and Engineer-ing, 192:439–472, 2003.

Page 8: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

710 References

138. M. Borri, L. Trainelli, and A. Croce. The embedded projection method: A general indexreduction procedure for constrained system dynamics. Computer Methods in AppliedMechanics and Engineering, 195(50-51):6974–6992, 2006.

139. J. Parczewski and W. Blajer. On realization of program constraints: Part I - Theory.Journal of Applied Mechanics, 56:676–679, September 1989.

140. W. Blajer and J. Parczewski. On realization of program constraints. Part II - Practicalimplications. Journal of Applied Mechanics, 56:680–684, September 1989.

141. J.W. Baumgarte. Stabilization of constraints and integrals of motion in dynamic systems.Computer Methods in Applied Mechanics and Engineering, 1:1–16, 1972.

142. G.P. Ostermeyer. On Baumgarte stabilization for differential algebraic equations. In E.J.Haug and R.C. Deyo, editors, Real-Time Integration Methods for Mechanical SystemSimulation, pages 193–207. Springer-Verlag, Berlin, Heidelberg, 1990.

143. E. Eich and M. Hanke. Regularization methods for constrained mechanical multibodysystems. Zeitschrift fur angewandte Mathematik und Mechanik, 75(10):761–773, 1995.

144. P.E. Nikravesh, R.A. Wehage, and O.K. Kwon. Euler parameters in computational dy-namics and kinematics. Part I and Part II. Journal of Mechanisms, Transmissions, andAutomation in Design, 107(3):358–369, September 1985.

145. T.W. Park and E.J. Haug. A hybrid numerical integration method for machine dy-namic simulation. Journal of Mechanisms, Transmissions, and Automation in Design,108:211–216, June 1986.

146. C.O. Chang and P.E. Nikravesh. An adaptive constraint violation stabilization methodfor dynamic analysis of mechanical systems. Journal of Mechanisms, Transmissions,and Automation in Design, 107:488–492, December 1985.

147. D.S. Bae and S.M. Yang. A stabilization method for kinematic and kinetic constraintequations. In E.J. Haug and R.C. Deyo, editors, Real-Time Integration Methods for Me-chanical System Simulation, pages 209–232. Springer-Verlag, Berlin, Heidelberg, 1990.

148. S. Yoon, R.M. Howe, and D.T. Greenwood. Stability and accuracy analysis ofBaumgarte’s constraint violation stabilization method. Journal of Mechanical Design,117:446–453, September 1995.

149. J.C. Chiou and S.D. Wu. Constraint violation stabilization using input-output feedbacklinearization in multibody dynamic analysis. Journal of Guidance, Control, and Dynam-ics, 21(2):222–228, March-April 1998.

150. S.T. Lin and M.C. Hong. Stabilization method for numerical integration of multibodymechanical systems. Journal of Mechanical Design, 120:565–572, December 1998.

151. E. Bayo, J. Garc´a de Jalon, and M.A. Serna. A modi ed Lagrangian formulation forthe dynamic analysis of constrained mechanical systems. Computer Methods in AppliedMechanics and Engineering, 71:183–195, November 1988.

152. E. Bayo, J. Garc´a de Jalon, A. Avello, and J. Cuadrado. An ef cient computationalmethod for real time multibody dynamic simulation in fully Cartesian coordinates. Com-puter Methods in Applied Mechanics and Engineering, 92:377–395, 1991.

153. A.J. Kurdila, J.L. Junkins, and S. Hsu. Lyapunov stable penalty methods for imposingnonholonomic constraints in multibody system dynamics. Nonlinear Dynamics, 4:51–82, 1993.

154. S. Yoon, R.M. Howe, and D.T. Greenwood. Geometric elimination of constraint viola-tions in numerical simulation of lagrangian equations. Journal of Mechanical Design,116:1058–1064, December 1994.

155. W. Blajer. Elimination of constraint violation and accuracy aspects in numerical simu-lation of multibody systems. Multibody System Dynamics, 7:265–284, 2002.

156. J.W. Baumgarte. A new method of stabilization for holonomic constraints. ASME Jour-nal of Applied Mechanics, 50:869–870, December 1983.

Page 9: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 711

157. Z. Terze, D. Lefeber, and O. Muftic. Null space integration method for constrainedmultibody system simulation with no constraint violation. Multibody System Dynamics,6:229–243, 2001.

158. E. Bayo and A. Avello. Singularity-free augmented Lagrangian algorithms for con-strained multibody dynamics. Nonlinear Dynamics, 5:209–231, 1994.

159. E. Bayo and R. Ledesma. Augmented Lagrangian and mass-orthogonal projection meth-ods for constrained multibody dynamics. Nonlinear Dynamics, 9:113–130, 1996.

160. W.O. Schiehlen. Computational aspects in multibody system dynamics. ComputerMethods in Applied Mechanics and Engineering, 90:569–582, 1991.

161. J. Cuadrado, J. Cardenal, and Bayo. E. Modeling and solution methods for ef cientreal-time simulation of multibody dynamics. Multibody System Dynamics, 1:259–280,1997.

162. A.A. Shabana. Flexible multibody dynamics: Review of past and recent developments.Multibody System Dynamics, 1(2):189–222, June 1997.

163. T.M. Wasfy and A.K. Noor. Computational strategies for exible multibody systems.ASME Applied Mechanics Reviews, 56(2):553–613, 2003.

164. M. Geradin and A. Cardona. Flexible Multibody System: A Finite Element Approach.John Wiley & Sons, New York, 2001.

165. P.W. Likins. Modal method for analysis of free rotations spacecraft. AIAA Journal,5(7):1304–1308, July 1967.

166. R.D. Milne. Some remarks on the dynamics of deformable bodies. AIAA Journal,6(3):556–558, March 1968.

167. B. Fraeijs de Veubeke. The dynamics of exible bodies. International Journal of Engi-neering Science, 14(10):895–913, 1976.

168. J.R. Cavanin and P.W. Likins. Floating reference frames for exible spacecraft. Journalof Spacecraft, 14(12):724–732, 1977.

169. O.P. Agrawal and A.A. Shabana. Dynamic analysis of multibody systems using compo-nent modes. Computers & Structures, 21(6):1303–1312, 1985.

170. W.S. Yoo and E.J. Haug. Dynamics of articulated structures. Part I. Theory. Journal ofStructural Mechanics, 14:105–126, 1986.

171. W.S. Yoo and E.J. Haug. Dynamics of articulated structures. Part II. Computer imple-mentation and applications. Journal of Structural Mechanics, 14:177–189, 1986.

172. A. Cardona and M. Geradin. Modelling of superelements in mechanism analysis. Inter-national Journal for Numerical Methods in Engineering, 32:1565–1593, 1991.

173. O. Friberg. A method for selecting deformation modes in exible multibody dynamics.International Journal for Numerical Methods in Engineering, 32:1637–1655, 1991.

174. A. Cardona and M. Geradin. A superelement formulation for mechanism analysis. Com-puter Methods in Applied Mechanics and Engineering, 100:1–29, 1992.

175. R. Schwertassek, O. Wallrapp, and A.A. Shabana. Flexible multibody simulation andchoice of shape functions. Nonlinear Dynamics, 20(4):361–380, 1999.

176. R. Schwertassek, S.V. Dombrowski, and O. Wallrapp. Modal representation of stress inexible multibody simulation. Nonlinear Dynamics, 20(4):381–399, 1999.

177. A. Cardona. Superelements modelling in exible multibody dynamics. Multibody Sys-tem Dynamics, 4:245–266, 2000.

178. A.A. Shabana. Substructure synthesis methods for dynamic analysis of multi-body sys-tems. Computers & Structures, 20:737–744, 1985.

179. O.P. Agrawal and A.A. Shabana. Application of deformable-body mean axis to exiblemultibody system dynamics. Computer Methods in Applied Mechanics and Engineer-ing, 56(2):217–245, 1986.

Page 10: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

712 References

180. A.A. Shabana. Resonance conditions and deformable body co-ordinate systems. Journalof Sound and Vibration, 192:389–398, 1996.

181. P. Ravn. Analysis and Synthesis of Planar Mechanical Systems Including Flexibility,Contact and Joint Clearance. PhD thesis, Technical University of Denmark, 1998.

182. C.B. Drab, J.R. Haslinger, R.U. Pfau, and G. Offner. Comparison of the classical formu-lation with the reference conditions formulation for dynamic exible multibody systems.Journal of Computational and Nonlinear Dynamics, 2(4):337–344, 2007.

183. L. Meirovitch. Elements of Vibration Analysis. McGraw-Hill Book Company, NewYork, 1975.

184. J.A.C. Ambrosio and J.P.C. Goncalves. Complex exible multibody systems with appli-cation to vehicle dynamics. In Jorge A.C. Ambrosio and Werner O. Schiehlen, editors,Advances in Computational Multibody Dynamics, IDMEC/IST, Lisbon, Portugal, Sept.20-23, 1999, pages 241–258, 1999.

185. J.A.C. Ambrosio. Geometric and material nonlinear deformations in exible multibodysystems. In Jorge Ambrosio and Michal Kleiber, editors, Proceedings of Computa-tional Aspects of Nonlinear Structural Systems with Large Rigid Body Motion, NATOAdvanced Research Workshop, Pultusk, Poland, July 2-7, pages 91–115, 2000.

186. R.R. Craig and M.C. Bampton. Coupling of substructures for dynamic analyses. AIAAJournal, 6:1313–1319, 1968.

187. R.H. MacNeal. A hybrid method of component mode synthesis. Computers & Struc-tures, 1(4):581–601, 1971.

188. S. Rubin. Improved component-mode representation for structural dynamic analysis.AIAA Journal, 13:995–1006, 1975.

189. D.N. Herting. A general purpose, multi-stage, component modal synthesis method. Fi-nite Elements in Analysis and Design, 1:153–164, 1985.

190. R.M. Hintz. Analytical methods in component modal synthesis. AIAA Journal, 13:1007–1016, 1975.

191. R.R. Craig and C. Chang. Free-interface methods of substructure coupling for dynamicanalysis. AIAA Journal, 14:1633–1635, 1976.

192. W.S. Yoo and E.J. Haug. Dynamics of exible mechanical systems using vibrationand static correction modes. Journal of Mechanisms, Transmissions, and Automation inDesign, 108:315–322, 1986.

193. E.J. Wu, S. Haug. Geometric non-linear substructuring for dynamics of exible mechan-ical elements. International Journal for Numerical Methods in Engineering, 26:2211–2226, 1988.

194. O.A. Bauchau and J. Rodriguez. Formulation of modal based elements in nonlinear, ex-ible multibody dynamics. Journal of Multiscale Computational Engineering, 1(2):161–180, 2003.

195. O.A. Bauchau, J. Rodriguez, and S.Y. Chen. Coupled rotor-fuselage analysis with nitemotions using component mode synthesis. Journal of the American Helicopter Society,49(2):201–211, 2004.

196. A.A. Shabana and R.A. Wehage. A coordinate reduction technique for dynamic analysisof spatial substructures with large angular rotations. Journal of Structural Mechanics,11(3):401–431, March 1983.

197. T.J.R. Hughes. The Finite Element Method. Prentice Hall, Inc., Englewood Cliffs, NewJersey, 1992.

198. K.J. Bathe. Finite Element Procedures. Prentice Hall, Inc., Englewood Cliffs, NewJersey, 1996.

199. L.F. Shampine and M.K. Gordon. Computer Solution of Ordinary Differential Equa-tions: The Initial Value Problem. W.J. Freeman, San Francisco, CA, 1975.

Page 11: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 713

200. A. Cardona and M. Geradin. Time integration of the equations of motion in mechanismanalysis. Computers & Structures, 33(3):801–820, 1989.

201. N.M. Newmark. A method of computation for structural dynamics. Journal of theEngineering Mechanics Division, 85:67–94, 1959.

202. T.J.R. Hughes. Analysis of transient algorithms with particular reference to stability be-havior. In T. Belytschko and T.J.R. Hughes, editors, Computational Methods for Tran-sient Analysis, pages 67–155. North-Holland, Amsterdam, 1983.

203. J.C. Simo and K. Wong. Unconditionally stable algorithms for rigid body dynamics thatexactly preserve energy and momentum. International Journal for Numerical Methodsin Engineering, 31:19–52, 1991.

204. J.C. Simo and N. Tarnow. The discrete energy-momentum method. Conserving algo-rithms for nonlinear dynamics. ZAMP, 43:757–792, 1992.

205. P. Betsch and P. Steinmann. Constrained integration of rigid body dynamics. ComputerMethods in Applied Mechanics and Engineering, 191:467–488, 2001.

206. J.C. Simo, N. Tarnow, and M. Doblare. Non-linear dynamics of three-dimensional rods:Exact energy and momentum conserving algorithms. International Journal for Numeri-cal Methods in Engineering, 38:1431–1473, 1995.

207. S. Leyendecker, P. Betsch, and P. Steinmann. Objective energy-momentum conserv-ing integration for the constrained dynamics of geometrically exact beams. ComputerMethods in Applied Mechanics and Engineering, 195:2313–2333, 2006.

208. J.C. Simo and N. Tarnow. A new energy and momentum conserving algorithm for thenonlinear dynamics of shells. International Journal for Numerical Methods in Engi-neering, 37:2527–2549, 1994.

209. P. Betsch and N. Sanger. On the use of geometrically exact shells in a conserving frame-work for exible multibody dynamics. Computer Methods in Applied Mechanics andEngineering, 198:1609–1630, 2009.

210. O.A. Bauchau, G. Damilano, and N.J. Theron. Numerical integration of nonlinear elas-tic multi-body systems. International Journal for Numerical Methods in Engineering,38:2727–2751, 1995.

211. O.A. Bauchau, C.L. Bottasso, and L. Trainelli. Robust integration schemes for exiblemultibody systems. Computer Methods in Applied Mechanics and Engineering, 192(3-4):395–420, 2003.

212. C.L. Bottasso and M. Borri. Energy preserving/decaying schemes for non-linear beamdynamics using the helicoidal approximation. Computer Methods in Applied Mechanicsand Engineering, 143:393–415, 1997.

213. O.A. Bauchau, J.Y. Choi, and C.L. Bottasso. Time integrators for shells in multibodydynamics. International Journal of Computers and Structures, 80:871–889, 2002.

214. C.L. Bottasso, M. Borri, and L. Trainelli. Integration of elastic multibody systems byinvariant conserving/dissipating algorithms. Part I: formulation. Computer Methods inApplied Mechanics and Engineering, 190:3669–3699, 2001.

215. C.L. Bottasso, M. Borri, and L. Trainelli. Integration of elastic multibody systems byinvariant conserving/dissipating algorithms. Part II: numerical schemes and applications.Computer Methods in Applied Mechanics and Engineering, 190:3701–3733, 2001.

216. C.L. Bottasso and L. Trainelli. An attempt at the classi cation of energy decayingschemes for structural and multibody dynamics. Multibody System Dynamics, 12:173–185, 2004.

217. O.A. Bauchau and N.J. Theron. Energy decaying schemes for nonlinear elastic multi-body systems. Computers & Structures, 59(2):317–331, 1996.

218. O.A. Bauchau. Computational schemes for exible, nonlinear multi-body systems.Multibody System Dynamics, 2(2):169–225, 1998.

Page 12: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

714 References

219. O.A. Bauchau and C.L. Bottasso. On the design of energy preserving and decayingschemes for exible, nonlinear multi-body systems. Computer Methods in Applied Me-chanics and Engineering, 169(1-2):61–79, 1999.

220. M. Borri, C.L. Bottasso, and L. Trainelli. Integration of elastic multibody systems byinvariant conserving/dissipating algorithms. Part I: Formulation. Computer Methods inApplied Mechanics and Engineering, 190:3669–3699, 2001.

221. M. Borri, C.L. Bottasso, and L. Trainelli. Integration of elastic multibody systems by in-variant conserving/dissipating algorithms. Part II: Numerical schemes and applications.Computer Methods in Applied Mechanics and Engineering, 190:3701–3733, 2001.

222. O. Gonzalez. Mechanical systems subject to holonomic constraints: Differential-algebraic formulations and conservative integration. Physica D, 132:165–174, 1999.

223. O.A. Bauchau. A self-stabilized algorithm for enforcing constraints in multibody sys-tems. International Journal of Solids and Structures, 40(13-14):3253–3271, 2003.

224. P. Betsch. The discrete null space method for the energy consistent integration of con-strained mechanical systems. Part I: Holonomic constraints. Computer Methods in Ap-plied Mechanics and Engineering, 194(50-52):5159–5190, 2005.

225. P. Betsch and S. Leyendecker. The discrete null space method for the energy consistentintegration of constrained mechanical systems. Part II: Multibody dynamics. Interna-tional Journal for Numerical Methods in Engineering, 67:499–552, 2006.

226. S. Leyendecker, P. Betsch, and P. Steinmann. The discrete null space method for the en-ergy consistent integration of constrained mechanical systems. Part III: Flexible multi-body dynamics. Multibody System Dynamics, 19(1-2):45–72, 2008.

227. P. Betsch and P. Steinmann. A DAE approach to exible multibody dynamics. MultibodySystem Dynamics, 8:367–391, 2002.

228. C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.Prentice-Hall, Englewood Cliff, N.J., 1971.

229. M. Arnold. A perturbation analysis for the dynamical simulation of mechanical multi-body systems. Applied Numerical Mathematics, 18:37–56, 1995.

230. O.A. Bauchau, C.L. Bottasso, and Y.G. Nikishkov. Modeling rotorcraft dynamics withnite element multibody procedures. Mathematical and Computer Modeling, 33(10-

11):1113–1137, 2001.231. R.L. Fox. Optimization Methods for Engineering Design. Addison-Wesley Publishing

Company, Reading, Massachusetts, 1971.232. G.V. Reklaitis, A. Ravindran, and K.M. Ragsdell. Engineering Optimization. Methods

and Applications. John Wiley & Sons, New York, 1983.233. G.N. Vanderplaats. Numerical Optimization Techniques for Engineering: With Applica-

tions. McGraw-Hill Book Company, New-York, 1984.234. A. Cardona and M. Geradin. Numerical integration of second order differential-

algebraic systems in exible mechanism dynamics. In J. Ambrosio and M. SeabraPereira, editors, Computer-Aided Analysis Of Rigid And Flexible Mechanical Systems,pages 501–529. NATO ASI Series, Kluwer Academic Publishers, 1993.

235. C.L. Bottasso, O.A. Bauchau, and A. Cardona. Time-step-size-independent condition-ing and sensitivity to perturbations in the numerical solution of index three differentialalgebraic equations. SIAM Journal on Scienti c Computing, 29(1):397–414, 2007.

236. C.L. Bottasso, D. Dopico, and L. Trainelli. On the optimal scaling of index-three DAEsin multibody dynamics. Multibody System Dynamics, 19:3–20, 2008.

237. P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. Sequential quadratic program-ming methods for nonlinear programming. In E.J. Haug, editor, Computer-Aided Analy-sis and Optimization of Mechanical System Dynamics, pages 679–697. Springer-Verlag,Berlin, Heidelberg, 1984.

Page 13: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 715

238. O.A. Bauchau, A. Epple, and C.L. Bottasso. Scaling of constraints and augmented La-grangian formulations in multibody dynamics simulations. Journal of Computationaland Nonlinear Dynamics, 4(2):021007 1–9, April 2009.

239. T.R. Kane. Dynamics. Holt, Rinehart and Winston, Inc, New York, 1968.240. J. Argyris. An excursion into large rotations. Computer Methods in Applied Mechanics

and Engineering, 32(1–3):85–155, 1982.241. P.C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, New York, 1986.242. H. Cheng and K.C. Gupta. A historical note on nite rotations. Journal of Applied

Mechanics, 56:139–145, 1989.243. M.D. Shuster. A survey of attitude representations. Journal of the Astronautical Sci-

ences, 41(4):439–517, 1993.244. A. Ibrahimbegovic. On the choice of nite rotation parameters. Computer Methods in

Applied Mechanics and Engineering, 149:49–71, 1997.245. P. Betsch, A. Menzel, and Stein. E. On the parameterization of nite rotations in com-

putational mechanics. A classi cation of concepts with application to smooth shells.Computer Methods in Applied Mechanics and Engineering, 155(3-4):273–305, 1998.

246. J. Stuelpnagel. On the parameterization of the three-dimensional rotation group. SIAMReview, 6(4):422–430, 1964.

247. W.R. Hamilton. Elements of Quaternions. Cambridge University Press, Cambridge,1899.

248. A. Cayley. On certain results relating to quaternions. Philosophical Magazine, 26:141–145, 1845.

249. K.W. Spring. Euler parameters and the use of quaternion algebra in the manipulation ofnite rotations: A review. Mechanism and Machine Theory, 21:365–373, 1986.

250. R.A. Wehage. Quaternions and Euler parameters. A brief exposition. In E.J. Haug,editor, Computer Aided Analysis and Optimization of Mechanical Systems Dynamics,pages 147–180. Springer-Verlag, Berlin, Heidelberg, 1984.

251. R.M. Murray, Z. Li, and S.S. Sastry. A Mathematical Introduction to Robotic Manipu-lation. CRC Press, 1994.

252. M. Geradin and A. Cardona. Kinematics and dynamics of rigid and exible mechanismsusing nite elements and quaternion algebra. Computational Mechanics, 4:115–135,1989.

253. A.R. Klumpp. Singularity-free extraction of a quaternion from a direction-cosine matrix.Journal of Spacecraft and Rockets, 13:754–755, December 1976.

254. S.W. Shepperd. Quaternion from rotation matrix. Journal of Guidance and Control,1:223–224, May-June 1978.

255. O.A. Bauchau and L. Trainelli. The vectorial parameterization of rotation. NonlinearDynamics, 32(1):71–92, 2003.

256. T.F. Wiener. Theoretical Analysis of Gimballess Inertial Reference Equipment UsingDelta-Modulated Instruments. PhD thesis, Massachusetts Institute of Technology, Cam-bridge, Massachusetts, 1962. Department of Aeronautical and Astronautical Engineer-ing.

257. V. Milenkovic. Coordinates suitable for angular motion synthesis in robots. In Proceed-ings of the Robot VI Conference, Detroit MI, March 2-4, 1982, 1982. Paper MS82-217.

258. S.R. Marandi and V.J. Modi. A preferred coordinate system and the associated orienta-tion representation in attitude dynamics. Acta Astronautica, 15:833–843, 1987.

259. R.S. Ball. A Treatise on the Theory of Screws. Cambridge University Press, Cambridge,1998.

Page 14: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

716 References

260. J. Angeles. On twist and wrench generators and annihilators. In M.F.O. Seabra Pereiraand J.A.C. Ambrosio, editors, Computer-Aided Analysis Of Rigid And Flexible Mechan-ical Systems, pages 379–411, Dordrecht, 1993. NATO ASI Series, Kluwer AcademicPublishers.

261. D.P. Chevallier. Lie algebra, modules, dual quaternions and algebraic methods in kine-matics. Mechanism and Machine Theory, 26(6):613–627, 1991.

262. A.T. Yang and F. Freudenstein. Application of dual-number quaternion algebra to theanalysis of spatial mechanims. ASME Journal of Applied Mechanics, 86:300–308, 1964.

263. O.P. Agrawal. Hamilton operators and dual-number quaternions in spatial kinematics.Mechanism and Machine Theory, 22(6):569–575, 1987.

264. J.M. McCarthy. An Introduction to Theoretical Kinematics. The MIT Press, Cambridge,MA, 1990.

265. I.S. Fischer. Dual Number Methods in Kinematics, Statics and Dynamics. CRC Press,Boca Raton, 1999.

266. V. Brodsky and M. Shoham. The dual inertia operator and its application to robot dy-namics. Journal of Mechanical Design, 116:1089–1095, 1994.

267. E. Pennestr` and R. Stefanelli. Linear algebra and numerical algorithms using dual num-bers. Multibody System Dynamics, 18:323–344, 2007.

268. T. Merlini and M. Morandini. The helicoidal modeling in computational nite elasticity.Part I: Variational formulation. International Journal of Solids and Structures, 41(18-19):5351–5381, 2004.

269. M. Borri, L. Trainelli, and C.L. Bottasso. On representations and parameterizations ofmotion. Multibody Systems Dynamics, 4:129–193, 2000.

270. M. Borri and C.L. Bottasso. An intrinsic beam model based on a helicoidal approxima-tion. Part I: Formulation. International Journal for Numerical Methods in Engineering,37:2267–2289, 1994.

271. M. Borri and C.L. Bottasso. An intrinsic beam model based on a helicoidal approxima-tion. Part II: Linearization and nite element implementation. International Journal forNumerical Methods in Engineering, 37:2291–2309, 1994.

272. O.A. Bauchau and J.Y. Choi. The vector parameterization of motion. Nonlinear Dy-namics, 33(2):165–188, 2003.

273. S.P. Timoshenko and D.H. Young. Vibration Problems in Engineering. John Wiley &Sons, New York, 1974.

274. R. E. Nickell. Nonlinear dynamics by mode superposition. Computer Methods in Ap-plied Mechanics and Engineering, 7(1):107–129, 1976.

275. J.M.T. Thompson and A.C. Walker. The non-linear perturbation analysis of discretestructural systems. International Journal of Solids and Structures, 4(8):281–288, 1968.

276. A.K. Noor and J.M. Peters. Reduced basis technique for nonlinear analysis of structures.AIAA Journal, 18(4):455–462, 1980.

277. A.K. Noor. Recent advances in reduction methods for nonlinear problems. Computersand Structures, 13(1-3):31–44, 1981.

278. O.A. Bauchau and D. Guernsey. On the choice of appropriate bases for nonlinear dy-namic modal analysis. Journal of the American Helicopter Society, 38(4):28–36, 1993.

279. G.C. Ruzicka and D.H. Hodges. Application of the mixed nite element method to rotorblade modal reduction. Mathematical and Computer Modelling, 33(10-11):1177–1202,2001.

280. G.C. Ruzicka and D.H. Hodges. A mixed nite element treatment of rotor blade elon-gation. Journal of the American Helicopter Society, 48(3):167–175, 2003.

Page 15: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 717

281. J.C. Houbolt and G.W. Brooks. Differential equations of motion for combined apwisebending, chordwise bending, and torsion of twisted nonuniform rotor blades. TechnicalReport 1348, NACA Report, 1958.

282. D.H. Hodges and E.H. Dowell. Nonlinear equations of motion for the elastic bendingand torsion of twisted nonuniform rotor blades. Technical report, NASA TN D-7818,1974.

283. O.A. Bauchau and D.H. Hodges. Analysis of nonlinear multi-body systems with elasticcouplings. Multibody System Dynamics, 3(2):168–188, May 1999.

284. S.P. Timoshenko and Goodier J.N. Theory of Elasticity. McGraw-Hill Book Company,New York, third edition, 1970.

285. O.A. Bauchau and J.I. Craig. Structural Analysis with Application to Aerospace Struc-tures. Springer, Dordrecht, Heidelberg, London, New-York, 2009.

286. K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford,U.K., 1975.

287. I.H. Shames and C.L. Dym. Energy and Finite Element Methods in Structural Mechan-ics. Hemisphere Publishing Corp., 1985.

288. L. Anand. On H. Hencky’s approximate strain-energy function for moderate deforma-tions. Journal of Applied Mechanics, 46:78–82, March 1979.

289. L. Anand. Moderate deformations in extension-torsion of incompressible isotropic elas-tic materials. Journal of the Mechanics and Physics of Solids, 34(3):293–304, 1986.

290. M. Degener, D.H. Hodges, and D. Petersen. Analytical and experimental study of beamtorsional stiffness with large axial elongation. Journal of Applied Mechanics, 55:171–178, March 1988.

291. R. Ledesma, Z.-D. Ma, G. Hulbert, and A. Wineman. A nonlinear viscoelastic bushingelement in multibody dynamics. Computational Mechanics, 17(5):287–296, September1996.

292. J. Kadlowec, A. Wineman, and G. Hulbert. Elastomer bushing response: Experimentsand nite element modeling. Acta Mechanica, 163(5):25–38, 2003.

293. P. Masarati and M. Morandini. Intrinsic deformable joints. Multibody System Dynamics,23(4):361–386, 2010.

294. MSC/ADAMS User’s Manual, 2007.295. Abaqus Theory Manual, Abaqus Version 6.7 edition.296. L.E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice Hall,

Inc., Englewood Cliffs, New Jersey, 1969.297. L. Euler. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes.

Bousquet, Lausanne and Geneva, 1744. Appendix I: De Curvis Elasticis.298. S.P. Timoshenko. On the correction factor for shear of the differential equation for

transverse vibrations of bars of uniform cross-section. Philosophical Magazine, 41:744–746, 1921.

299. S.P. Timoshenko. On the transverse vibrations of bars of uniform cross-section. Philo-sophical Magazine, 43:125–131, 1921.

300. E. Reissner. On one-dimensional nite-strain beam theory: the plane problem.Zeitschrift fur angewandte Mathematik und Physik, 23:795–804, 1972.

301. E. Reissner. On one-dimensional large-displacement nite-strain beam theory. Studiesin Applied Mathematics, 52:87–95, 1973.

302. E. Reissner. On nite deformations of space-curved beams. Zeitschrift fur angewandteMathematik und Physik, 32:734–744, 1981.

303. J.C. Simo. A nite strain beam formulation. the three-dimensional dynamic problem.Part I. Computer Methods in Applied Mechanics and Engineering, 49:55–70, 1985.

Page 16: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

718 References

304. J.C. Simo and L. Vu-Quoc. A three dimensional nite strain rod model. Part II: Compu-tational aspects. Computer Methods in Applied Mechanics and Engineering, 58:79–116,1986.

305. M. Borri and T. Merlini. A large displacement formulation for anisotropic beam analysis.Meccanica, 21:30–37, 1986.

306. D.A Danielson and D.H. Hodges. Nonlinear beam kinematics by decomposition of therotation tensor. Journal of Applied Mechanics, 54(2):258–262, 1987.

307. D.A Danielson and D.H. Hodges. A beam theory for large global rotation, moderatelocal rotation, and small strain. Journal of Applied Mechanics, 55(1):179–184, 1988.

308. V. Giavotto, M. Borri, P. Mantegazza, G. Ghiringhelli, V. Carmaschi, G.C. Maf oli, andF. Mussi. Anisotropic beam theory and applications. Computers & Structures, 16(1-4):403–413, 1983.

309. M. Borri, G.L. Ghiringhelli, and T. Merlini. Composite beam analysis: Linear analysis ofnaturally curved and twisted anisotropic beams. Technical report, Politecnico di Milano,1992.

310. V.L. Berdichevsky. On the energy of an elastic rod. Prikladnaya Matematika yMekanika, 45(4):518–529, 1982.

311. D.H. Hodges. A review of composite rotor blade modeling. AIAA Journal, 28(3):561–565, March 1990.

312. A.R. Atilgan, D.H. Hodges, and M.V. Fulton. Nonlinear deformation of compositebeams: Uni cation of cross-sectional and elastica analyses. Applied Mechanics Reviews,44(11):S9–S15, November 1991.

313. A.R. Atilgan and D.H. Hodges. Uni ed nonlinear analysis for nonhomogeneousanisotropic beams with closed cross sections. AIAA Journal, 29(11):1990 – 1999,November 1991.

314. W.B. Yu, D.H. Volovoi, V.V. Hodges, and X. Hong. Validation of the variational asymp-totic beam sectional (VABS) analysis. AIAA Journal, 40(10):2105–2112, October 2002.

315. B. Popescu and Hodges D.H. Asymptotic treatment of the trapeze effect in nite ele-ment cross-sectional analysis of composite beams. International Journal of Non-LinearMechanics, 34(4):709–721, 1999.

316. D.H. Hodges. Nonlinear Composite Beam Theory. AIAA, Reston, Virginia, 2006.317. A.K. Noor, T. Belytschko, and J.C. Simo, editors. Analytical and Computational Models

of Shells, volume 3. ASME, CED, 1989.318. A.K. Noor. Bibliography of monographs and surveys on shells. Applied Mechanics

Review, 43(9):223–234, 1990.319. W.B. Yu, D.H. Hodges, and V.V. Volovoi. Asymptotic generalization of Reissner-

Mindlin theory: Accurate three-dimensional recovery for composite shells. ComputerMethods in Applied Mechanics and Engineering, 191(44):5087–5109, 2002.

320. W.B. Yu and D.H. Hodges. A geometrically nonlinear shear deformation theory forcomposite shells. Journal of Applied Mechanics, 71(1):1–9, 2004.

321. K.J. Bathe and E.N. Dvorkin. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. International Journal for NumericalMethods in Engineering, 21:367–383, 1985.

322. K.J. Bathe and E.N. Dvorkin. A formulation of general shell elements - The use mixedinterpolation of tensorial components. International Journal for Numerical Methods inEngineering, 22:697–722, 1986.

323. M.L. Bucalem and K.J. Bathe. Higher-order MITC general shell elements. InternationalJournal for Numerical Methods in Engineering, 36:3729–3754, 1993.

324. R.D. Cook, Malkus D.S., and M.E. Plesha. Concept and Applications of the FiniteElements Method. John Wiley & Sons, New York, 1989.

Page 17: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

References 719

325. M.A. Cris eld and G. Jelenic. Objectivity of strain measures in the geometricallyexact three-dimensional beam theory and its nite-element implementation. Proceed-ings of the Royal Society, London: Mathematical, Physical and Engineering Sciences,455(1983):1125–1147, 1999.

326. G. Jelenic and M.A. Cris eld. Geometrically exact 3D beam theory: Implementation ofa strain-invariant nite element for static and dynamics. Computer Methods in AppliedMechanics and Engineering, 171:141–171, 1999.

327. A. Ibrahimbegovic, F. Frey, and I. Kozar. Computational aspects of vector-like param-eterization of three-dimensional nite rotations. International Journal for NumericalMethods in Engineering, 38(21):3653–3673, 1995.

328. A. Cardona and M. Geradin. A beam nite element non-linear theory with nite rotation.International Journal for Numerical Methods in Engineering, 26:2403–2438, 1988.

329. M.A. Cris eld. A consistent co-rotational formulation for non-linear, three-dimensionalbeam-elements. Computer Methods in Applied Mechanics and Engineering, 81:131–150, 1990.

330. P. Betsch and P. Steinmann. Frame-indifferent beam element based upon the geometri-cally exact beam theory. International Journal for Numerical Methods in Engineering,54:1775–1788, 2002.

331. I. Romero and F. Armero. An objective nite element approximation of the kinematics ofgeometrically exact rods and its use in the formulation of an energymomentum conserv-ing scheme in dynamics. International Journal for Numerical Methods in Engineering,54:1683–1716, 2002.

332. I. Romero. The interpolation of rotations and its application to nite element models ofgeometrically exact rods. Computational Mechanics, 34(2):121–133, 2004.

333. A. Ibrahimbegovic and R.L. Taylor. On the role of frame-invariance in structural me-chanics models at nite rotations. Computer Methods in Applied Mechanics and Engi-neering, 191:5159–5176, 2002.

334. A.A. Shabana. A computer implementation of the absolute nodal coordinate formulationfor exible multibody dynamics. Nonlinear Dynamics, 16(3):293–306, 1998.

335. T.J.R. Hughes. Stability, convergence, and growth and decay of energy of the averageacceleration method in nonlinear structural dynamics. Computers & Structures, 6:313–324, 1976.

336. C. Farhat, L. Crivelli, and M. Geradin. Implicit time integration of a class of constrainedhybrid formulations - Part I: Spectral stability theory. Computer Methods in AppliedMechanics and Engineering, 125:71–107, 1995.

337. C. Lunk and B. Simeon. Solving constrained mechanical systems by the family ofNewmark and α-methods. Zeitschrift fur angewandte Mathematik und Mechanik,86(10):772–784, 2006.

338. L.O. Jay and D. Negrut. Extensions of the HHT-α method to differential algebraicequations in mechanics. Electronic Transactions on Numerical Analysis, 26(1):190–208, 2007.

339. D. Negrut, R. Rampalli, G. Ottarsson, and A. Sajdak. On an implementation of the HHTmethod in the context of index 3 differential-algebraic equations of multibody dynamics.Journal of Computational and Nonlinear Dynamics, 2(1):73–85, January 2007.

340. M. Arnold and O. Bruls. Convergence of the generalized-α scheme for constrainedmechanical systems. Multibody System Dynamics, 18(2):185–202, 2007.

341. C. Johnson. Numerical Solutions of Partial Differential Equations by the Finite ElementMethod. Cambridge University Press, Cambridge, 1987.

Page 18: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

720 References

342. C. Johnson, U. Navert, and V. Pitkaranta. Finite element methods for linear hyper-bolic problems. Computer Methods in Applied Mechanics and Engineering, 45:285–312, 1984.

343. C. Johnson and V. Szepessy. Convergence of a nite element method for a nonlin-ear hyperbolic conservation law. Technical Report 1985-25, Mathematics Department,Chalmers University of Technology, Goteborg, Sweden, 1985.

344. T.R.J. Hughes and M. Hulbert. Space-time nite element formulations for elasto-dynamics: Formulation and error estimates. Computer Methods in Applied Mechanicsand Engineering, 66:339–363, 1988.

345. M. Hulbert. Space-Time Finite Element Methods for Second-Order Hyperbolic Equa-tions. PhD thesis, Stanford University, 1989.

346. O.A. Bauchau and N.J. Theron. Energy decaying scheme for non-linear beam models.Computer Methods in Applied Mechanics and Engineering, 134:37–56, 1996.

347. O.A. Bauchau and T. Joo. Computational schemes for nonlinear elasto-dynamics. In-ternational Journal for Numerical Methods in Engineering, 45:693–719, 1999.

348. O.A. Bauchau, J.Y. Choi, and C.L. Bottasso. On the modeling of shells in multibodydynamics. Multibody System Dynamics, 8(4):459–489, 2002.

349. C.L. Bottasso and M. Borri. Integrating nite rotations. Computer Methods in AppliedMechanics and Engineering, 164:307–331, 1998.

350. M. Borri, C.L. Bottasso, and L. Trainelli. A novel momentum-preserving energy-decaying algorithm for nite element multibody procedures. In Jorge Ambrosio andMichal Kleiber, editors, Proceedings of Computational Aspects of Nonlinear StructuralSystems with Large Rigid Body Motion, NATO Advanced Research Workshop, Pultusk,Poland, July 2-7, pages 549–568, 2000.

351. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover Publi-cations, Inc., New York, 1964.

Page 19: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

Index

Absolute acceleration, 58Absolute system of units, 60Absolute velocity, 58Acceleration

absolute, 58Coriolis, 168inertial, 58relative, 168

Acceleration level constraint, 364, 427, 438,442, 445, 446

Acceleration projection method, 442Active column solver, 486, 657Addition theorem, 135–136Admissible

momentum eld, 581stress eld, 581

Algebraic variable, 498Ampli cation matrix, 667Angular acceleration vector, 137Angular distortion, 582, 592Angular momentum, 75, 97, 202, 312Angular velocity vector, 129–133Augmented Lagrangian formulation, 477,

499Augmented Lagrangian term, 493Axial vector, 23

Base vector, 5893D space, 50derivatives, 44, 52of a surface, 41

Baumgarte’s method, 474–476Bi-quaternion, 546

algebra, 546–547Bilateral contact, 87Bound vector, 13Boundary conditions

displacement, 582force, 581geometric, 582natural, 581

Bushing element, 570

Calculus of variations, 284Cam-follower pair, 179Candidate contact point, 368Canonical basis, 118Cartesian basis, 6Cartesian coordinates, 31Cartesian rotation vector, 531, 537–538Cauchy-Green deformation tensor, 593Cayley’s

formula, 514motion parameters, 544–545rotation parameters, 513–514

Cayley-Gibbs-Rodriguesmotion parameters, 563–564rotation parameters, 532, 538–539

Center of mass, 95Central force, 66Change of

basis, 116, 193, 194frame, 155, 193, 194

Characteristic equation, 24Characteristic exponent, 338Compatible

O. A. Bauchau, Flexible Multibody Dynamics,DOI 10.1007/978-94-007-0335-3 © Springer Science+Business Media B.V. 2011

Page 20: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

722 Index

strain eld, 582velocity eld, 582virtual strain eld, 585virtual velocity eld, 585

Component mode synthesis, 484–485Components of a vector, 6Composition of rotations, 124–127, 518,

523, 530Con guration constraint, 362Con guration space, 258Conformal rotation vector, 539Conservative force, 62–65Constrained problem, 359Constraint

acceleration level, 364, 427, 438, 442,445, 446

con guration, 362holonomic, 362–364, 392–394, 427kinematic, 362matrix, 357, 363, 426nonholonomic, 364–365, 402, 403, 427rheonomic, 363, 392, 402scleronomic, 362, 363, 392, 402velocity level, 364, 427, 428, 446violation, 432, 441, 444, 446

Continuous friction law, 89Contravariant component, 13Convected

basis, 588frame, 599

CoordinatesCartesian, 31curvilinear, 32cylindrical, 54orthogonal curvilinear, 53path, 39spherical, 55surface, 49, 369

Coriolis acceleration, 168Coulomb’s friction law, 88Covariant component, 13Cross product, 7Curvature

geodesic, 42normal, 42tensor, 143–145vector, 143

Curvebinormal vector, 33

curvature, 33, 143Frenet’s triad, 33intrinsic parameterization, 32natural parameterization, 32normal vector, 33osculating plane, 33planar, 34radius of curvature, 33radius of twist, 33tangent vector, 32twist, 33, 143

Curve sliding joint, 419Curvilinear coordinates, 32Cylindrical coordinates, 54Cylindrical joint, 415

D’Alembert’s principle, 295–303, 385Dashpot

constant, 70rectilinear, 70torsional, 70

Deformation gradient tensor, 592Deformed con guration, 589Degree of freedom, 259, 284, 362Determinant of tensor, 22Determination of

Euler angles, 110Euler parameters, 518the rotation parameter vector, 529

Differentialdisplacement vector, 263motion vector, 196position vector, 263rotation vector, 148work, 61

Differential-algebraic equation, 358, 395,427

Direction cosine matrix, 107, 108Director, 157, 632Displacement

boundary conditions, 582in nitesimal, 282interpolation matrix, 647virtual, 282

Displacement interpolation matrix, 641Dissipative force, 70Dot product, 5, 6Drift phenomenon, 432, 441, 444, 446, 463,

473

Page 21: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

Index 723

Dynamic equilibrium, 295, 323

Eigenpair, 24Eigenvalue, 23Eigenvector, 23Elastic material, 586Elastodynamics, 579–583

constitutive laws, 583dynamic equilibrium equations, 581strain-displacement relationships, 582velocity-displacement relationships, 582

Energetically conjugate, 198Energy

kinetic, 62, 204strain, 64, 68, 69

Energy closure equation, 71Equilibrium

dynamic, 295static, 59, 295

Eulermotion parameters, 547–551Parameters, 516–519

Euler angle, 109, 111, 112, 125, 136–141attitude, 112, 139bank, 112, 139heading, 112, 139nutation, 109, 111, 138, 139precession, 109, 111, 138, 139spin, 109, 111, 138, 139

Euler’sequations, 213, 227rst law, 98, 287

second law, 99, 287theorem on rotations, 112

Euler-Lagrange equation, 257Euler-Rodrigues

motion parameters, 563rotation parameters, 532, 538

Exponential map of rotation, 531, 537–538Extended vectorial parameterization,

533–537External force, 94, 279, 285, 287Externally applied force, 58, 61

Finite element method, 639First-order tensor, 117Flexible joint, 570, 601–613Floating frame of reference, 482–484, 569Force

central, 66conservative, 62–65dissipative, 70external, 94, 279, 285, 287externally applied, 58, 61impressed, 61, 94impulse of, 75, 100inertial, 295internal, 94, 279, 285, 287natural, 279non-conservative, 65, 70normal contact, 86, 87tangential contact, 86, 87vector, 13viscous, 70

Force boundary conditions, 581Frame

inertial, 57Free vector, 3Frenet’s triad, 143, 148Friction coef cient

kinetic, 88static, 88viscous, 89

Gauss’ formula, 46Gauss’ principle, 457Gauss-Codazzi conditions, 145, 146Gauss-Legendre quadrature, 699–701

points, 699weights, 699

Gaussian, 457Generalized

constraint force, 393, 403coordinate, 258coordinates, 287, 308force, 268, 287inertial force, 323momentum, 308, 323speed, 428velocities, 260

Generating function, 526, 531Geometric boundary conditions, 582Geometric nonlinearity, 661Geometric notation, 29Geometrically exact beam theory, 617Gravitational constant, 61Green deformation tensor, 593Green-Lagrange strain tensor, 593

Page 22: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

724 Index

Green-Saint Venant strain tensor, 593Gyroscopic moments, 227

Hamilton’s principle, 305–320, 392–394,402, 403, 586–588

Holonomicconstraint, 362–364, 392–394, 427system, 362

Hooke’s law, 583

Identity tensor, 23Impressed force, 61, 94Impulse of a force, 75, 100Independent quasi-acceleration, 460Independent quasi-velocity, 428Index notation, 29Index-1 formulation, 438Inertial

acceleration, 58force, 295frame, 14, 57velocity, 58

Infeasible direction, 277, 373In nitesimal

displacements, 282rotation vector, 526

Initial boundary value problem, 306Integrability conditions, 364Internal force, 94, 279, 285, 287Intrinsic

displacement of a rigid body, 163equations of motion, 314, 334

Invariantof a tensor, 24parameterization, 511

Jacobian, 50Jacobian matrix of the constraints, 357, 363Joint

curve sliding, 419cylindrical, 415planar, 416prismatic, 414revolute, 412screw, 416sliding, 421spherical, 417universal, 418

Kinematic

characteristic, 428constraint, 362constraints, 259parameter, 428

Kinematicallyadmissible direction, 277, 373admissible displacement eld, 582admissible virtual displacements, 263,

277, 374inadmissible direction, 277, 373

Kineticenergy, 62, 204energy density function, 586rotational energy, 204translational energy, 204

Kronecker’s symbol, 6

Lagrange’sequations of the rst kind, 426formulation, 322–334, 394, 403, 426multiplier, 359multiplier method, 358–361, 385

Lagrangian, 307, 587representation, 589strain tensor, 593

Levi-Civita symbol, 8Linear momentum, 74, 97, 312Linear parameterization, 531Lower pair joint, 405–418

constraints, 408–412kinematics, 406–408

Maggi’s formulation, 428–435Mass matrix, 311, 426Material

basis, 588compliance matrix, 583coordinates, 589elastic, 586frame, 599line, 589stiffness matrix, 583

Material nonlinearity, 661Matrix notation, 29Metric of a space, 450Metric tensor, 591Mixed product, 10Modal

analysis, 572

Page 23: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

Index 725

expansion, 572Momentum

angular, 75, 97, 202, 312linear, 74, 97, 312

Moore-Penrose generalized inverse, 698Motion parameters

Cayley’s, 544–545Cayley-Gibbs-Rodrigues, 563–564Euler, 547–551Euler-Rodrigues, 563vector, 544, 545, 555Wiener-Milenkovic, 564

Motion tensor, 187–192Mozzi-Chasles’

axis, 163, 189theorem, 163

Natural boundary conditions, 581Natural force, 279Newton’s

rst law, 58second law, 59third law, 59

NewtonRaphson method, 658Non-conservative force, 65, 70Non-invariant parameterization, 511Non-vectorial parameterization, 511Nonholonomic

constraint, 364–365, 402, 403, 427quantity, 268vector, 130

Normal contact force, 86, 87Notation

geometric, 29index, 29matrix, 29

Null space, 429formulation, 442

Ordinary differential equation, 395Oriented line segment, 3Orthogonal

complement, 429curvilinear coordinates, 53parameterization, 51projection, 448vectors, 5

Orthonormal basis, 6Out-of-balance force array, 658

Parallel axis theorem, 205–206Parameterization

invariant, 511non-invariant, 511non-vectorial, 511vectorial, 511

Particle, 57path, 57speed, 39, 58

Path coordinates, 39Penalty method, 381Permutation symbol, 8Pfaf an form, 364Physical strain component, 592Pitch of a screw, 163Pivot equation, 213, 228Pivoting, 499, 500Plucker coordinates, 15, 187Planar

joint, 416motion, 227–237rotation, 108

Positive-de nite tensor, 23, 24Potential

de nition, 63function, 63, 66, 269of a conservative force, 63, 269of gravity force, 67of the body forces, 587of the constraint forces, 393of the surface tractions, 587

Principal axes of inertia, 207Principle of

angular impulse and momentum, 76, 101conservation of energy, 66D’Alembert’s, 295–303, 385Gauss, 458Hamilton, 305–320, 392–394, 402, 403,

586–588least action, 308linear impulse and momentum, 75, 101minimum total potential energy, 588virtual work, 271–287, 371–382, 583–585virtual work for a particle, 272virtual work for a particle system, 284work and energy, 62, 100, 214, 215

Prismatic joint, 414Product

cross, 7

Page 24: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

726 Index

dot, 5, 6mixed, 10scalar, 5, 6tensor, 9vector, 7

Product of inertia, 206Projection, 5Projection tensor, 12Projector

image, 448, 450kernel, 448, 450null space, 448, 450

Quaternion, 514algebra, 514–516operators, 514orthogonal, 516scalar part, 514unit, 516vector part, 514

Radius of twist, 46Rayleigh damping, 660Reaction force, 580Reciprocal vector, 13Rectilinear

dashpot, 70spring, 68

Referencecon guration, 589frame, 14

Re ection tensor, 13, 27Relative

acceleration, 168elongation, 592velocity, 167

Relative elongation, 582Rescaling operation, 534–537Revolute joint, 412Rheonomic constraint, 363, 392, 402Right-hand basis, 8Rodrigues’ rotation formula, 114Rotation parameters

Cayley’s, 513–514Cayley-Gibbs-Rodrigues, 532, 538–539Euler-Rodrigues, 532, 538linear, 531vector, 512, 524Wiener-Milenkovic, 532, 539–541

Rotation tensor, 114properties, 115

Rotational kinetic energy, 204Rotationless formulation, 261

Scalar product, 5, 6Scaling

equations of motion, 490–504factor, 493

Scleronomic constraint, 297, 362, 363, 392,402

Screwaxis, 165joint, 416motion, 163, 165

Second-order tensor, 22Semi positive-de nite tensor, 23Shape function, 640Similarity transformation, 25Skew-symmetric part of tensor, 22Skew-symmetric tensor, 22Skyline solver, 499Sliding joint, 421Spectral radius, 667Spherical

coordinates, 55joint, 417

Springrectilinear, 68stiffness constant, 68stretch, 68torsional, 69un-stretched length, 68

Stability analysis, 336–344Staggered stabilization technique, 476State space, 260Static equilibrium, 59, 295Stationary point

of a de nite integral, 255of a function, 254

Straindirect, 582energy, 69shear, 582

Strain energydensity function, 586for spring, 68function, 68

Stress

Page 25: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

Index 727

direct, 581shear, 581

Surfacebase vectors, 41coordinates, 49, 369dilatation, 595equilibrium equations, 581rst metric tensor, 41

Gaussian curvature, 44line of curvature, 44, 629mean curvature, 44principal curvature, 44principal radii of curvature, 44, 631radius of twist, 45second metric tensor, 42traction, 580

SymbolKronecker’s, 6Levi-Civita, 8permutation, 8

Symmetric part of tensor, 22Symmetric tensor, 22System of particles, 286

Tangent operator, 134, 138Tangential contact force, 86, 87Tensor

Cauchy-Green deformation, 593characteristic equation, 24curvature, 143–145deformation gradient, 592determinant, 22rst-order, 117

Green deformation, 593Green-Lagrange strain, 593Green-Saint Venant strain, 593identity, 23invariant, 24Lagrangian strain, 593metric, 591of mass moments of inertia, 203operation, 119positive-de nite, 23, 24product, 9projection, 12re ection, 13, 27rotation, 114second-order, 22semi positive-de nite, 23

skew-symmetric, 22skew-symmetric part, 22symmetric, 22symmetric part, 22trace, 22

Time integration schemes, 664–685Torsional

dashpot, 70spring, 69

Total kinetic energy, 586Total mechanical energy, 65Total strain energy, 586Trace of tensor, 22Translational kinetic energy, 204

Unconstrained problem, 359Unilateral contact, 87Unit vector, 4Universal constant of gravitation, 60Universal joint, 418

Variation ofthe position vector, 263

Vectorangular acceleration, 137angular velocity, 129–133axial, 23bound, 13component, 6curvature, 143differential rotation, 148force, 13free, 3nonholonomic, 130norm, 4null, 4orthogonal, 5product, 7reciprocal, 13unit, 4

Vectorial parameterization, 511of motion, 554–564of rotation, 524–537

Velocityabsolute, 58inertial, 58relative, 167

Velocity level constraint, 364, 427, 428, 446Virtual

Page 26: References3A978-94-007-0335-3%2F… · References 1. O. Bottema and B. Roth. Theoretical Kinematics.Dover Publications, Inc., New York, 1979. 2. F.B. Hildebrand. Advanced Calculus

728 Index

displacements, 272, 282rotation vector, 264

Virtual displacementdependent forces, 282rigid bodies, 283vector, 263

Virtual work, 268external, 285internal, 285

Viscous force, 70

Viscous friction law, 89Volumetric strain, 596

Warping, 619, 629Weingarten’s formula, 46Wiener-Milenkovic

motion parameters, 564rotation parameters, 532, 539–541

Workdifferential, 61