references - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · s....

39

Upload: others

Post on 03-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat
Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

190

REFERENCES

Chapter 1

[1] C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology, Indian edition, Wiley

& Sons Inc (Asia), 2007.

[2] M. Kohler, W. Fritzsche, Nanotechnology-An Introduction to Nanostructuring

Techniques, Wiley VCH, Weinheim, 2004.

[3] G. Cao, Nanostructures and Nanomaterials-Synthesis, Properties and

Applications, Imperial College Press, London, 2004.

[4] G.A. Ozin, A.C. Arsenault, Nanochemistry: A Chemical Approach to

Nanomaterials, RSC, Cambridge, 2005.

[5] A.D. Pomogailo, V.N. Kestelman, Metallopolymers Nanocomposites, Springer,

Berlin, 2005.

[6] B. Bhushan, Introduction to Nanotechnology, in: B. Bhushan (Eds.) Springer

Handbook of Nanotechnology, Springer, Berlin, 2004, pp. 1-6.

[7] Y. Lu, J. Zhong, Zinc oxide-Based Nanostructures, in: Todd Steiner (Eds)

Semiconductor Nanostructures for Optoelectronic Applications, Artech House,

Inc. Boston, 2004, pp. 187-228.

[8] P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A Chiou, J. Hong, and J.G. Lu,

ZnO nanowires synthesized by vapor trapping CVD method, Chem. Mater. 16

(2004) 5133-5137.

[9] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Thin-film

transistor fabricated in single-crystalline transparent oxide semiconductor,

Science 300 (2003) 1269-1272.

[10] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, T. Mise, Novel device

structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide

back and front contacts, Sol Energy 77 (2004) 739-747.

[11] S.Y. Lee, E.S. Shim, H.S. Kang, S.S. Pang, J.S. Kang, Fabrication of ZnO thin

film diode using laser annealing, Thin Solid Films 473 (2005) 31-34.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

191

[12] R. Könenkamp, R.C. Word, C. Schlegel, Vertical nanowire light-emitting diode,

Appl. Phys. Lett. 85 (2004) 6004-6006.

[13] S.T. McKinstry, P. Muralt, Thin film piezoelectric for MEMS, J. Electroceram.

12 (2004) 7-17.

[14] Z.L. Wang, X.Y. Kong, Y. Ding, P. Gao, W.L. Hughes, R. Yang, Y. Zhang,

Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces,

Adv. Func. Mater. 14 (2004) 943-956.

[15] M.S. Wagh, L.A. Patil, T. Seth, D.P. Amalnerkar, Surface cupricated SnO2-ZnO

thick films as a H2S gas sensor, Mater. Chem. Phys. 84 (2004) 228-233.

[16] Y. Ushio, M. Miyayama, H. Yanagida, Effects of interface states on gas-sensing

properties of a CuO/ZnO thin-film heterojunction, Sens. Actuat. B 17 (1994) 221-

226.

[17] H. Harima, Raman studies on spintronics materials based on wide bandgap

semiconductors, J. Phys.:Condens. Mat. 16 (2004) S5653-S5660.

[18] S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Dilute magnetic

semiconducting oxides, Semicond. Sci. Technol. 19 (2004) R59-R74.

[19] J. Nishii, F.M. Hossain, S.Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S.

Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma,, H.

Ohno, M. Kawasaki, High mobility thin film transistors with transparent ZnO

channels, Jpn. J. Appl. Phys. 42 (2003) L347-L349.

[20] F.M. Hossain, J. Nishii, S. Takagi, T. Sugihara, A. Ohtomo, T. Fukumura, H.

Koinuma, H. Ohno, M. Kawasaki, Modeling of grain boundary barrier

modulation in ZnO invisible thin film transistors, Physica E: Low-dimensional

Systems and Nanostructures 21 (2004) 911-915.

[21] B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, Spin-coated zinc oxide

transparent transistors, J. Phys. D: Appl. Phys. 36 (2003) L105-L107.

[22] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham,

R. He, H.-J. Choi, Controlled growth of ZnO nanowires and their optical

properties, Adv. Func. Mater. 12 (2002) 323-331.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

192

[23] Y. Ito, K. Kushida, K. Sugawara, H. Takeuchi, A 100 MHz ultrasonic transducer

array using ZnO thin film, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency

Control 42 (1995) 316-324.

[24] H-W. Ryu, B-S. Park, S.A. Akbar, W-S. Lee, K-J. Hong, Y-J. Seo, D-C. Shin, J-

S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens.

Actuat. B 96 (2003) 717-722.

[25] G. Sberveglieri, Recent developments in semiconducting thin-film gas sensors,

Sens. Actuat. B 23 (1995) 103-109.

[26] G.S.T. Rao, D. T. Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at

room temperature, Sens. Actuat. B 55 102 (2004) 166-169.

[27] X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, ZnO nanoparticulate thin

film: preparation, characterization and gas-sensing property, Sens. Actuat. B 102

(2004) 248-252.

[28] X. Wang, Y. Ding, C.J. Summers, Z.L. Wang, Large-scale synthesis of six-

nanometer-wide ZnO nanobelts, J. Phys. Chem. B 108 (2004) 8773-8777.

[29] L.M. Kukreja, S. Barik, P. Misra, Variable band gap ZnO nanostructures grown

by pulsed laser deposition, J. Cryst. Growth 268 (2004) 531-535.

[30] J.W. Chiou, K.P.K. Kumar, J.C. Jan, H.M. Tsai, C.W. Bao, W.F. Pong, F.Z.

Chien, M-H. Tsai, I-H. Hong, R. Klauser, J.F. Lee, J.J. Wu, S.C. Liu, Diameter

dependence of the electronic structure of ZnO nanorods determined by x-ray

absorption spectroscopy and scanning photoelectron microscopy, Appl. Phys.

Lett. 85 (2004) 3220-3222.

[31] J.R. Fried, Polymer Scince and Technology”, Prentice-Hall, India 2000.

[32] R. Sinha, Outline of Polymer Technology, Prentice-Hall, India, 2002.

[33] G.S. Misra, Introductory Polymer Chemistry, New Age International (P) Ltd,

New Delhi, 1993.

[34] R.J. Young, P.A. Lovell, Introduction to Polymer, Chapman and Hall, India,

1991.

[35] P. Mathews, Advance Chemistry, Cambridge University Press, Cambridge, 1993.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

193

[36] A.J. Heeger, Semiconducting and metallic polymers: The fourth generation of

polymeric materials, Synth. Met. 125 (2001) 23-42.

[37] F. Babudri, G.M. Farinola, F. Naso, Synthesis of conjugated oligomers and

polymers: the organometallic way, J. Mater. Chem. 14 (2004) 11-34.

[38] F. Mohammad, Stability of Electrically Conducting Polymers, in H.S. Nalwa

(Eds.) Handbook of Advance Electronic and Photonic Materials and Devices,

Academic Press, CA, USA, 2001, pp. 321-350.

[39] S.J. Dahem, Ph.D Dissertation, University of California, Santa Barbara, 1997.

[40] B.S. Mitchell, An Introduction to Material Engineering and Science for Chemical

and Material Engineers, John Wiley and Sons, New Jersey, 2004.

[41] K. Chang, Doctor of Philisophy dissertation, University of Rhodes Island, 2000.

[42] F. Rodriguz, Principle of polymer System Wiley, New York, 1996.

[43] R.L. Greene, G.B. Street, L.J.Suter, Superconductivity in polysulfur nitride

(SN)X, Phy. Rev. Lett. 34 (1975) 577-579.

[44] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis

of electrically conducting organic polymers: halogen derivatives of polyacetylene,

(CH)x, J. Chem. Soc. Chem. Commun. (1977) 578-580.

[45] N.C. Billingham, P.D. Calvert, P.J.S. Foot, F. Mohammad, Stability and

degradation of some electrically conducting polymers, Polym. Degrad. Stab. 19

(1987) 323-341.

[46] R. Kiebooms, R. Menon, K. Lee, Synthesis, Electrical,and Optical Properties of

Conjugated Polymers, in: H.S. Nalwa (Eds.) Handbook of Advance Electronic

and Photonic Materials and Devices, Academic Press, CA, USA, 2001, pp. 1-102.

[47] F.D. Kleist and N.B. Byrd, Preparation and properties of polyacetylene, J. Polym.

Sci., A1. 7 (1969) 3419-3425.

[48] H. Shirakawa, S. Ikeda, Cyclotrimerization of acetylene by the

tris(acetylacetonato) titanium(III)–diethylaluminum chloride system, J. Polym.

Sci.: Polym. Chem. Ed. 12 (1974) 929-937.

[49] A.G. MacDiarmid, Synthetic metals: a novel role for organic polymers,

Synth. Met. 125 (2002) 11-22.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

194

[50] W. Wang, E.A. Schiff, Polyaniline on crystalline silicon heterojunction solar

cells, Appl. Phys. Lett. 91 (2007) 133504-3.

[51] C. Arbizzani, M. Mastragostino, S. Panero, P. Prosperi, B. Scrosati,

Electrochemical characterization of a polymer/polymer rechargeable lithium

solid-state cell, Synth. Met. 28C (1989) 663-668.

[52] T. Matsunaga, H. Daifuku, T. Nakajima, T. Kawagoe, Polym. Adv. Tech. 1

(1990) 33-39.

[53] M. Angelopoulos, N. Patel, J.M. Shaw, N.C. Labianca, S. Rishton, Water soluble

conducting polyanilines: Applications in lithography, Vacuum Sci. Tech. B 11

(1993) 2794-2799.

[54] A. Espanet, C. Ecoffet, D.J. Lougnot, Photopolymerization by evanescent waves-

Revealing dramatic inhibiting effects of oxygen at submicrometer scale, J.

Polym.Sci.A:Polym.Chem. 37 (1999) 2075-2085.

[55] D.C. Trivedi, S.K. Dhawan, Grafting of electronically conducting polyaniline on

insulating surfaces, J. Mat. Chem. 2 (1992) 1091-1096.

[56] G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger,

Flexible light-emitting diodes made from soluble conducting polymers, Nature

357 (1992) 477- 479.

[57] Y.-D. Jin, H.-Z. Chen, P. L. Heremans, K. Aleksandrzak, H. J. Geise, G. Borghs,

M. V. Auweraer, Efficient blue polymer light-emitting diodes from a novel

biphenyl derivative, Synth. Met. 127 (2002) 155-158.

[58] S. Becker, C. Ego, A.C. Grimsdale, E.J.W. List, D. Marsitzky, A. Pogantsch, S.

Setayesh, G. Leising, K. Müllen, Optimisation of polyfluorenes for light emitting

applications, Synth. Met. 125 (2002) 73-80.

[59] S. Bhadra, D. Khastgir, N.K. Singh, J.H. Lee, Progress in preparation, processing

and applications of polyaniline, Prog. Polym. Sci. 34 (2009) 783-810.

[60] T. Kobayashi, H. Yoneyama, H. Tamura, Polyaniline film-coated electrodes as

electrochromic display devices, J. Electroanal. Chem. 161 (1984) 419-423.

[61] B.P. Jelle, G. Hagen, S. Nødland, Transmission spectra of an electrochromic

window consisting of polyaniline, prussian blue and tungsten oxide, Electrochem.

Acta 38 (1993) 1497-1500.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

195

[62] X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, ZnO nanoparticulate thin

film: preparation, characterization and gas-sensing property, Sens. Actuat. B 20

(2004) 248-252.

[63] C.A. Cutler, A.K. Burrell, D.L. Officer, C.O. Too, G.G. Wallace, Effect of

electron withdrawing or donating substituents on the photovoltaic performance of

polythiophenes, Synth. Met. 128 (2002) 35-42.

[64] Z. Wei, C.F.J. Faul, Aniline oligomers – architecture, function and new

opportunities for nanostructured materials, Macromol. Rapid Commun. 29 (2008)

280-292.

[65] N. Gospodinova, L. Terlemezyan, Conducting polymers prepared by oxidative

polymerization: polyaniline, Prog. Polym. Sci. 23 (1998) 1443-1484.

[66] E.T. Kang, K.G. Neoh, K.L.Tan, Polyaniline: A polymer with many interesting

intrinsic redox states, Prog. Polym. Sci. 23 (1998) 277-324.

[67] N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical

engineering Prog. Polym. Sci. 32 (2007) 876-921.

[68] R.S. Kohlman, A. Zibold, D.B. Tanner, G.G. Ihas, T. Ishiguro, Y.G. Min, A.G.

MacDiarmid, A.J. Epstein, Limits for Metallic Conductivity in Conducting

Polymers, Phys. Rev. Lett. 78 (1997) 3915-3918.

[69] Y.N. Xia, J.M. Wiesinger, A.G. MacDiarmid, A.J. Epstein, Camphorsulfonic acid

fully doped polyaniline emeraldine salt: Conformations in different solvents

studied by an ultraviolet/visible/near-infrared spectroscopic method, Chem.

Mater. 7 (1995) 443-445.

[70] S.M. Long, K.R. Brenneman, A. Saprigin, R.S. Kohlman, A.J. Epstein, M.

Angelopoulos, S.L. Buchwalter, A. Rossi, W. Zheng, A.G. MacDiarmid,

Aggregation and interchain “self” doping in emeraldine base, Synth. Met. 84

(1997) 809-810.

[71] J.Y. Shimano, A.G. MacDiarmid, Polyaniline, a dynamic block copolymer: key to

attaining its intrinsic conductivity, Synth. Met. 123 (2001) 251-262.

[72] K. Lee, S. Cho, S.H. Park, A.J. Heeger, C.-W. Lee, S.-H.Lee, Metallic transport

in polyaniline, Nature 441 (2006) 65-68.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

196

[73] A.G. MacDiarmid, Proceed. Nobel Symp.in: W.R. Salaneck and I. Lundstorm

(Eds.) (Oxford Scientific Press) Oxford (1992).

[74] C. Kittel, Introduction to Solid State Physics, John Wiley, New York 1986.

[75] G.C. Burns, Solid State Physics, Academic Press, Orlando 1976.

[76] S.J. Daham, Ph.D Dissertation, University of California, Santa Barbara, 1997.

[77] J.L. Bredas, J. Cornil, F. Meyers, D. Beljonne, Electronic structure and optical

response of Highly conducting and semiconducting conjugated polymers and

oligomers, in T.A. Skotheim (Eds.) Handbook of Conducting Polymers, Marcel

Decker, New York, 1986, pp. 1-25.

[78] B.G. Yacobi, Semiconductor Materials-An Introduction to Basic Principles,

Kluwer Academic Publishers, New York, 2004.

[79] W.B. Geneti, Ph.D Dissertation, Norman Oklahoma 1998.

[80] P.J. Phillips, Polymer Crystal, Reports on progress in Physics, 53 (1980) 549-604.

[81] A.R. Blythe, Electrical Properties of Polymers, Cambridge University Press,

Cambridge, 1979.

[82] J.L. Bredas, G.B. Street, Polarons, Bipolarons, and Solitons in Conducting

Polymers, Acc. Chem. Res. 18 (1985) 309-315.

[83] S.K.M. Jönsson, W.R. Salaneck, M. Fahlman, Spectroscopy of

ethylenedioxythiophene-derived systems: from gas phase to surfaces and

interfaces found in organic electronics, J. Electron Spectro. Phenom. 137 (2004)

805-809.

[84] S. Timpanaro, M. Kemerink, F.J. Touwslager, M.M. De Kok, S. Schrader,

Morphology and conductivity of PEDOT/PSS films studied by scanning–

tunneling microscopy, Chem. Phys. Lett. 394 (2004) 339-345.

[85] J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of electrical conductivity of

poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of

solvents, Synth. Met. 126 (2002) 311-316.

[86] F. Mott, E. Davis, Electronic Processes in non Crystalline Materials,

Oxford:Clarendon Press, New York, 1979.

[87] J.G. Speight, P. Kovacic, F.W. Koch, Synthesis and properties of polyphenyls and

polyphenylenes, J. Macromol. Sci. Rev. Macromol. Chem. 5 (1971) 295-386.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

197

[88] V. Singh, A.N. Tiwari, A.R. Kulkarni, Electrical behavior of attritor processed

Al/PMMA composites, Mater. Sci. Engg. B 41 (1996) 310-313.

[89] A. Malliaris, D.T. Turner, Influence of particle size on the electrical resistivity of

compacted mixtures of polymeric and metallic powders, J. Appl. Phys. 42 (1971)

614-618.

[90] J. Jansen, On the critical conductive filler loading in antistatic composites, J.

Appl. Phys. 46 (1975) 966-969.

[91] F. Lux, Models proposed to explain the electrical conductivity of mixtures made

of conductive and insulating materials, J. Mater. Sci. 28 (1993) 285-301.

[92] S. Krickpatrick, Percolation and conduction, Rev. Mod. Phys. 45 (1973) 574-588.

[93] S. M. Rhodes, Ph.D Dissertation, University of Akron 2007.

[94] E.P. Mamunya, V.V. Davidenko, E.V. Lebedev, Percolation conductivity of

polymer composites filled with dispersed conductive filler, Polym. Compos. 16

(1995) 319-324.

[95] F. Lux, Percolation in electrical conductive polymer/filler systems. I: Density/

filler curves according to a new thermodynamic percolation model, Polym. Engr.

Sci. 33 (1993) 334-342.

[96] V.G. Shevchenko, A.T. Ponomarenko, Transport processes in electrically

conducting dispersly filled polymer composites, Russ. Chem. Rev. 52 (1983) 757-

765.

[97] M.Q. Zhang, J.R. Xu, H.M. Zeng, Q. Huo, Z.Y. Zhang, Fractal approach to the

critical filler volume fraction of an electrically conductive polymer composite, J.

Mater. Sci. 30 (1995) 4226-4232.

[98] M.M. Castillo-Ortega, M.B. Inoue, M. Inoue, Chemical synthesis of highly

conducting polypyrrole by the use of copper(II) perchlorate as an oxidant, Synth.

Met. 28 (1989) 65-70.

[99] H. Naarmann, N. Theophilow, New process for the production of metal-like,

stable polyacetylene, Synth. Met. 22 (1987) 1-8.

[100] D. MacInnes Jr. , M.A. Druy, P.J. Nigrey, D.P. Nairns, A.G. MacDiarmid, A. J.

Heeger, Organic batteries: reversible n- and p- type electrochemical doping of

polyacetylene, (CH)x, J. Chem. Soc. Commun. 317 (1981) 317-319.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

198

[101] J.C. Chiang, A.G. MacDiarmid, Polyaniline: Protonic acid doping of the

emeraldine form to the metallic regime, Synth. Met. 13 (1986) 193-205.

[102] A.G. MacDiarmid, A.J. Epstein, Polyanilines: A novel class of conducting

polymers, Faraday Discuss Chem. Soc. 88 (1989) 317-332.

[103] A.G. MacDiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Polyaniline: A new

concept in conducting polymers, Synth. Met. 18 (1987) 285-290.

[104] S. Roth, H. Bleirer, Solitons in polyacetylene, Adv. in Phys. 36 (1987) 385-462.

[105] A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Solitons in conducting

polymers, Rev. Mod. Phys. 60 (1988) 781-850.

[106] S. Kivelson, Electron Hopping Conduction in the Soliton Model of Polyacetylene,

Phys. Rev. Lett. 46 (1981) 1344-1348.

[107] A.J. Epstein, H. Rommelmann, R. Bigelow, H. W. Gibson, D. M. Hoffmann, D.B.

Tanner, Role of solitons in nearly metallic polyacetylene, Phys. Rev. Lett. 50

(1983) 866-1869.

[108] S. Stafstrom, J.L. Bredas, Evolution of the electronic structure of polyacetylene

and polythiophene as a function of doping level and lattice conformation, Phys.

Rev. B 38 (1988) 4180-4191.

[109] C. Pratt, Report on Conducting Polymers (1996) 1-15.

[110] M.O. Ansari, M.Phill dissertation, Aligarh Muslim University, Aligarh, 2008.

[111] S.C. Sharma, Composite Materials, Narosa Publishing House, New Delhi, 2000.

[112] L.C. Lew, Y. Voon, Y. Zhang, B. Lassen, M. Willatzen, Q. Xiong, P.C. Eklund,

Electronic properties of semiconductor nanowires, J. Nanosci. Nanotechnol. 8

(2008) 1-26.

[113] H. Akita, T. Hattori, Studies on molecular composite-Processing of molecular

composites using a precursor polymer for poly(p-phenylene benzobisthiazole), J.

Polym. Sci. B: Polym. Phys. 37 (1999) 189-197.

[114] J. Jordan, K. I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental

trends in polymer nanocomposites-a review, Mater. Sci. Eng. A 393 (2005) 1-11.

[115] F. Lin, Thesis Master of Applied Science in Chemical Engineering, University of

Waterloo, Ontario, Canada 2006.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

199

[116] A. Usuki, N. Hasegawa, M. Kato, S. Kobayashi, Polymer-clay nanocomposites,

Adv. Polym. Sci. 179 (2005) 135-195.

[117] S.T. Selvan, Fabrication of Inorganic Nanocomposites Using Self-Assembly

and Sol-Gel Processing, in L.M. Liz-Marzán, P. V. Kamat (Eds.) Nanoscale

Materials, Kluwer Academic Publishers, Dordrecht (2003) pp. 246-272.

[118] S.S. Pesetskii, S.P. Bogdanovich, N.K. Myshkin, Tribological behavior of

polymer nanocomposites produced by dispersion of nanofillers in molten

thermoplastics, in: B.J. Briscoe (Eds) Tribology of Polymeric Nanocomposites-

Tribology and Interface Engineering Series, 55 Elsevier, Amsterdam, 2008, pp.

82-107.

[119] S.C. Tjong, Synthesis and Structure–Property Characteristics of Clay–Polymer

Nanocomposites, in: S.C. Tjong (Eds.) Nanocrystalline materials-Their Synthesis-

Structure-Property Relationship and Applications, Elsevier, 2006, pp. 311-348.

[120] L.S. Schadler, Polymer-based and polymer-filled nanocomposites, in: P M Ajayan

(Eds.), Nanocomposite Science and Technology, Wiley-VCH Verlag, 2003, pp.

77-154.

[121] D.B. Barber, C.R. Pollock, L.L. Beecroft, C.K. Ober, Amplification by optical

composites, Opt. Lett. 22 (1997) 1247-1249.

[122] C.I. Park, O.O. Park, J.G. Lim, H.J. Kim, The fabrication of syndiotactic

polystyrene/organophilic clay nanocomposites and their properties, Polymer 42

(2001) 7465-7475.

[123] H. Ge, Y. Hu, S. Yang, X. Jiang, C. Yang, Preparation, characterization, and drug

release behaviors of drug-loaded ε-caprolactone/L-lactide copolymer

nanoparticles, J. Appl. Polym. Sci. 75 (2000) 874-882.

[124] G. Carotenuto, Y.-S. Her, E. Matijević, Preparation and characterization of

nanocomposite thin films for optical devices, Ind. Eng. Chem. Res. 35 (1996)

2929-2932.

[125] Y. Ke, J. Lü, X. Yi, J. Zhao, Z. Qi, The effects of promoter and curing process on

exfoliation behavior of epoxy/clay nanocomposites, J. Appl. Polym. Sci. 78

(2000) 808-815.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

200

[126] M.H. Noh, D.C. Lee, Comparison of characteristics of SAN–MMT

nanocomposites prepared by emulsion and solution polymerization, J. Appl.

Polym. Sci. 74 (1999) 2811-2819.

[127] A. Ravve, Principle of Polymer Chemistry, 2nd Ed., Kluwer academic publishers,

New York, 2000.

[128] A.P. Kumar, D. Depan, N.S. Tomer, R. P. Singh, Nanoscale particles for polymer

degradation and stabilization-Trends and future perspectives, Prog. Polym. Sci. 34

(2009) 479-515.

[129] S.A.S. Alariqi, A.P. Kumar, B.S.M. Rao, R.P. Singh, Stabilization of γ-sterilized

biomedical polyolefins by synergistic mixtures of oligomeric stabilizers. Part II.

Polypropylene matrix, Polym. Degrad. Stab. 92 (2007) 299-309.

[130] J.F. Rabek, B. R ̊anby, Role of singlet oxygen in photo-oxidative degradation and

photostabilization of polymers, Polym. Eng. Sci. 15 (1975) 40-43.

[131] P.P. Klemchuk, Degradable plastics: A critical review, Polym. Degrad. Stab. 27

(1990) 183-202.

[132] S.A.S. Alariqi, A.P. Kumar, B.S.M. Rao, A.K. Tevtia, R.P. Singh

Stabilization of γ-sterilized biomedical polyolefins by synergistic mixtures of

oligomeric stabilizers, Polym. Degrad. Stab. 91 (2006) 2451-2464.

[133] F. Mohammad, in H.S. Nalwa (Eds.), Handbook of Organic Conductive

Molecules and Polymers, John Wiley, Chichester, 1997, pp. 797

[134] F. Mohammad, D.Phill. Thesis, University of Sussex, Sussex, 1987.

[135] A.A. Ahmad, PhD Thesis, Aligarh Muslim University, Aligarh, 2003.

Chapter 2

[1] T. Hasell, J. Yang, W. Wang, J. Li, P. D. Brown, M. Poliakoff, E. Lester, S. M.

Howdle, Preparation of polymer-nanoparticle composite beads by a nanoparticle-

stabilised suspension polymerization, J. mater. Chem. 17 (2007) 4382-4386.

[2] L.M. Liz-Marzán, P.V. Kamat, Nanoscale Materials, Kluwer Academic Publisher,

Dordrecht, 2003.

[3] J. Mongillo, Nanotechnology 101, Greenwood Press, Westport, 2007.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

201

[4] K.J. Rao, K. Mahesh, S. Kumar, A strategic approach for preparation of oxide

nanomaterials, Bull. Mater. Sci. 28 (2005) 19-24.

[5] C.W. Bunn, The lattice dimensions of zinc oxide, Proc. Phys. Soc. London 47

(1935) 836-842.

[6] T.C. Damen, S. P. S. Porto, B. Tell, Raman effect in zinc oxide, Phys. Rev. 142

(1966) 570-574.

[7] S.P.S. Porto, B. Tell, T. C. Damen, Near-forward raman scattering in zinc oxide,

Phys. Rev. Lett. 16 (1966) 450-452.

[8] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin,

S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J.

Appl. Phys. 98 (2005) 041301-103.

[9] G. Galli, J.E. Coker, Epitaxial ZnO on sapphire, Appl. Phys. Lett. 16 (1970) 439-

441.

[10] D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng. B 80

(2001) 383-387.

[11] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, and V.I.

Vdovin, K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, J.M. Zavada,

V.A. Dravin, Proton implantation effects on electrical and recombination

properties of undoped ZnO, J. Appl. Phys. 94 (2003) 2895-2900.

[12] S.J. Pearton, C.R. Abernathy, G.T. Thaler, R.M. Frazier, D.P. Norton, F. Ren,

Y.D. Park, J.M. Zavada, I.A. Buyanova, W.M.Chen, A.F. Hebard, Wide bandgap

GaN-based semiconductors for spintronics, J. Phys.: Condens. Matter 16 (2004)

R209-R245.

[13] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO nanostructures, defects and

devices, Materialstoday 10 (2007) 40-48.

[14] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent progress in

processing and properties of ZnO, Prog. Mater. Sci. 50 (2005) 293-340.

[15] X.D. Bai, P.X. Gao, Z.L. Wang, E.G. Wang, Dual-mode mechanical resonance of

individual ZnO nanobelts, Appl. Phys. Lett. 82 (2003) 4806-4808.

[16] W.L. Hughes, Z.L. Wang, Nanobelts as nanocantilevers, Appl. Phys. Lett. 82

(2003) 2886-2888.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

202

[17] M. Catti, Y. Noel and R. Dovesi, Full piezoelectric tensors of wurtzite and zinc

blende ZnO, ZnS by first-principles calculations, J. Phys. Chem. Solids 64 (2003)

2183-2190.

[18] A.D. Corso, M. Posternak, R. Resta, A. Balderschi, Ab initio study of

piezoelectricity and spontaneous polarization in ZnO, Phys. Rev. B 50 (1994)

10715-10721.

[19] X.Y. Kong, Z.L. Wang, Spontaneous polarization-induced nanohelixes,

nanosprings, and nanorings of piezoelectric nanobelts, Nano. Lett. 3 (2003) 1625-

1631.

[20] C.H. Liu, W.C. Yiu, F.C.K. Au, J.X. Ding, C.S. Lee, S.T. Lee, Electrical

properties of zinc oxide nanowires and intramolecular p-n junctions, Appl. Phys.

Lett. 83 (2003) 3168-3170.

[21] F.M. Hossain, J. Nishii, S. Takagi, T. Sugihara, A. Ohtomo, T. Fukumura, H.

Koinuma, H. Ohno, M. Kawasaki, Modeling of grain boundary barrier

modulation in ZnO invisible thin film transistors, Physica E:Low-dimensional

Systems and Nanostructures 21 (2004) 911-915.

[22] P.-C. Chang, Z. Fan, W. Tseng, D. Wang, W. Chiou, J. Hong, J.G. Lu, ZnO

nanowires synthesized by vapor trapping CVD method, Chem. Mater. 16 (2004)

5133-5137.

[23] W.I. Park, J.S. Kim, G.-C. Yi, M.H. Bae, H.-J. Lee, Fabrication and electrical

characteristics of high-performance ZnO nanorod field-effect transistors, Appl.

Phys. Lett. 85 (2004) 5052-5055.

[24] X.Y. Kong, Z.L. Wang, Polar-surface dominated ZnO nanobelts and the

electrostatic energy induced nanohelixes, nanosprings, and nanospirals, Appl.

Phys. Lett. 84 (2004) 975-977.

[25] W.I. Park, Y.H. Jun, S.W. Jung, G. Yi, Excitonic emissions observed in ZnO

single crystal nanorods, Appl. Phys. Lett. 82 (2003) 964-966.

[26] Y. Gu, I.L. Kuskovsky, M. Yin, S. O’Brien, G.G. Neumark, Quantum

confinement in ZnO nanorods, Appl. Phys. Lett. 85 (2004) 3833-3835.

[27] I. Shalish, H. Temkin, V. Narayanamurti, Size-dependent surface luminescence in

ZnO nanowires, Phys. Rev. B. 69 (2004) 245401-245405.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

203

[28] Z. Fan, P. Chang, E.C. Walter, C. Lin, H.P. Lee, R.M. Penner, J.G. Lu,

Photoluminescence and polarized photodetection of single ZnO Nanowires, Appl.

Phys. Lett. 85 (2004) 6128-6130.

[29] X. Wang, Y. Ding, C.J. Summers, Z.L. Wang, Large-scale synthesis of six-

nanometer-wide ZnO nanobelts, J. Phys. Chem. B 108 (2004) 8773-8777.

[30] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P.

Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292 (2001)

1897-1899.

[31] C. Liu, J.A. Zapien, Y. Yao, X. Meng, C.S. Lee, S. Fan, Y. Lifshitz, S.T. Lee,

High-density, ordered ultraviolet light-emitting ZnO nanowire arrays, Adv.

Mater. 15 (2003) 838-841.

[32] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet

photodetectors and optical switches, Adv. Mater. 14 (2002) 158-160.

[33] A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional

metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151-180.

[34] R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth,

Appl. Phys. Lett. 4 (1964) 89-90.

[35] N.S. Ramgir, D.J. Late, A.B. Bhise, M.A. More, I.S. Mulla, D.S. Joag, K.

Vijayamohanan, ZnO multipods, submicron wires and spherical structures and

their unique field emission behavior, J. Phys. Chem. B 110 (2006) 18236-18242.

[36] J.-H. Park, J.-G. Park, Synthesis of ultrawide ZnO nanosheets, Curr. Appl. Phys. 6

(2006)1020-1023.

[37] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic growth of

zinc oxide nanowires by vapor transport, Adv. Mater. 13 (2001) 113-116.

[38] J. Zhang, Y. Yang, B. Xu, F. Jiang, J. Li, Shape-controlled synthesis of ZnO

nano- and micro-structures, J. Cryst. Growth 280 (2005) 509-515.

[39] D. Cui, F. Tian, Y. Kong, I. Titushikin and H. Gao, Effects of single-walled

carbon nanotubes on the polymerase chain reaction, Nanotechnology 15 (2004)

254-157.

[40] J.-J. Wu, S.-C. Liu, Low-temperature growth of well-aligned ZnO nanorods by

chemical vapor deposition, Adv. Mater. 14 (2002) 215-218.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

204

[41] J. Cembrero, A. Elmanouni, B. Hartiti, M. Mollar, B. Marí, Nanocolumnar ZnO

films for photovoltaic applications, Thin Solid Films 198 (2004) 451-452.

[42] Q. Wang, G. Wang, J. Jie, X. Han, B. Xu, J.G. Hou, Annealing effect on optical

properties of ZnO films fabricated by cathodic electrodeposition, Thin Solid

Films 492 (2005) 61-65.

[43] R.E. Marotti, D. N. Guerra, C. Bello, G. Machado, E. A. Dalchiele, Bandgap

energy tuning of electrochemically grown ZnO thin films by thickness and

electrodeposition potential, Sol. Energy Mater. Sol. Cells 82 (2004) 85-103.

[44] M.H. Wong, A. Berenov, X. Qi, M.J. Kappers, Z.H. Barber, B. Illy, Z. Lockman,

M.P. Ryan, J.L. MacManus-Driscoll, Electrochemical growth of ZnO nano-rods

on polycrystalline Zn foil, Nanotechnology 14 (2003) 968-973.

[45] M.A. Vergés, A. Mifsud, C.J. Serna , Formation of rod-like zinc oxide

microcrystals in homogeneous solutions, J. Chem. Soc. Faraday Trans. 86 (1990)

959-963.

[46] L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, Purpose-built anisotropic

metal oxide material: 3D highly oriented microrod array of ZnO, J. Phys. Chem.

B 105 (2001) 3350-3352.

[47] J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z.F. Ren, Broadband ZnO single-

nanowire light-emitting diode, Nano Lett. 6 (2006)1719-1722.

[48] G.T. Du, W. F. Liu, J.M. Bian, L.Z. Hu, H.W. Liang, X.S. Wang, A.M. Liu, T.P.

Yang, Room temperature defect related electroluminescence from ZnO

homojunctions grown by ultrasonic spray pyrolysis, Appl. Phys. Lett. 89 (2006)

052113-0522115.

[49] D.G. Thomas, Interstitial zinc in zinc oxide, J. Phys. Chem. Solids 3 (1957) 229-

237.

[50] R. Könenkamp, R.C. Word, M. Godinez, Ultraviolet electroluminescence from

ZnO/polymer heterojunction light-emitting diodes, Nano Lett. 5 (2005) 2005-

2008.

[51] J. Suehiro, N. Nakagawa, S.-i. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T.

Okada, M. Hara, Dielectrophoretic fabrication and characterization of a ZnO

nanowire-based UV photosensor, Nanotechnology 17 (2006) 2567-2573.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

205

[52] W. Lee, M.-C. Jeong, J.-M. Myoung, Catalyst-free growth of ZnO nanowires by

metal-organic chemical vapour deposition (MOCVD) and thermal

evaporation, Acta Mater. 529 (2004) 3949-3957.

[53] Y. Huang, X. Bai, Y. Zhang, in situ mechanical properties of individual ZnO

nanowires and the mass measurement of nanoparticles, J. Phys.: Condens. Matter

18 (2006) L179-L184.

[54] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist and A. Hagfeldt, A 5%

efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes,

Sol. Energy Mater. Sol. Cells 73 (2002) 51-58.

[55] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata,

H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye

into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films,

J. Phys. Chem. B 108 (2004) 4818-4822.

[56] B. O’Regan scGrätzel, A low-cost, high-efficiency solar cell based on dye-

sensitized colloidal TiO2 films Nature 353 (1991) 737-740.

[57] P. Chandrasekhar, Conducting Polymer, Kluwer Academic Publishers, Dordrecht,

1999.

[58] A. Khatoon, M. Phill Dissertation, Aligarh Muslim University, Aligarh, 2006.

[59] M.A. De Paoli, W.A. Gazotti, Electrochemistry, polymers and opto-electronic

devices: a combination with a future, J. Braz. Chem. Soc. 13 (2002) 410-424.

[60] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis

of electrically conducting organic polymers: halogen derivatives of polyacetylene,

(CH)x, J. Chem. Soc., Chem. Commun., 1977, 578-580.

[61] W.A. Gazotti Jr., G.C.-Miceli, A. Geri, M.A. de Paoli, A solid-state

electrochromic device based on two optically complementary conducting

polymers, Adv. Mater. 10 (1998) 60-64.

[62] G. Yu, K. Pakbaz and A. J. Heeger, Optocoupler made from semiconducting

polymers, J. Electron. Mater, 23 (1994) 925-928.

[63] G. Yu, J. Wang, J. McElvain, A.J. Heeger, Large-area, full-color image sensors

made with semiconducting polymers, Adv. Mater. 10 (1998) 1431-1434.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

206

[64] S.V. Frolov, A. Fujii, D. Chinn, M. Hirohata, R. Hidayat, M. Taraguchi, T.

Masuda, K. Yoshino, Z. V. Vardeny, Microlasers and micro-LEDs from

disubstituted polyacetylene, Adv.Mater. 10 (1998) 869-872.

[65] T. Matsunaga, H. Daifuku, T. Nakajima, T. Kawagoe, Development of

polyaniline–lithium secondary battery, Polym. Adv. Technol. 1 (1990) 33-39.

[66] B. Scrosati, Conducting polymers: Advanced materials for new design,

rechargeable lithium batteries, Polym. Int. 47 (1998) 50-55.

[67] G.G. Wallace, M. Smyth, H. Zhao, Conducting electroactive polymer-based

biosensors, Trends in Analy. Chem. 18 (1999) 245-251.

[68] Y. Li, S. Dong, Electrochemically controlled release of adenosine 5 -triphosphate

from polypyrrole film, J. Chem. Soc. Chem. Commun. 11 (1992) 827-828.

[69] N. Langsam, L. M. Robeson, Substituted propyne polymers-part II. Effects of

aging on the gas permeability properties of poly[1-(trimethylsilyl)propyne] for

gas separation membranes, Polym. Eng. Sci. 29 (1989) 44-54.

[70] C. Arbizzani, M. Mastragostino, L. Meneghello, Characterization by impedance

spectroscopy of a polymer-based supercapacitor, Electrochim. Acta 40 (1995)

2223-2228.

[71] R. Racicot, R. Brown, S.C. Yang, Corrosion protection of aluminum alloys by

double-strand polyaniline, Synth. Met. 85(1997) 1263-1264.

[72] B. Wessling, Passivation of metals by coating with polyaniline: Corrosion

potential shift and morphological changes, Adv. Mater. 6 (1994) 226-228.

[73] N. Gospodinova, L. Terlemezyan, Conducting polymers prepared by oxidative

polymerization: polyaniline, Prog. Polym. Sci. 23 (1998) 1443-1484.

[74] E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: A polymer with many interesting

intrinsic redox states, Prog. Polym. Sci. 23 (1998) 277-324.

[75] N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical

engineering, Prog. Polym. Sci. 32 (2007) 876-921.

[76] Z. Wei, C.F.J. Faul, Aniline oligomers: Architecture, function and new

opportunities for nanostructured materials, Macromol. Rapid Comm. 29 (2008)

280-292.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

207

[77] H. Letheby, On the production of a blue substance by the electrolysis of sulphate

of aniline, J. Chem. Soc. 15 (1862) 161-163.

[78] O. Meth-Cohn, M. Smith, What did W. H. perkin actually make when he oxidised

aniline to obtain mauveine?, J. Chem. Soc., Perkin Trans. 1 (1994) 5-7.

[79] O. Meth-Cohn, A.S. Travis, The mauveine mystery, Chem. Br. 31 (1995) 547-

550.

[80] Y. Cao, A. Andreatta, A.J. Heeger, P. Smith, Influence of chemical

polymerization conditions on the properties of polyaniline, Polymer 30 (1989)

2305-2311.

[81] R. Mazeikiene, A. Malinauskas, Deposition of polyaniline on glass and platinum

by autocatalytic oxidation of aniline with dichromate, Synth. Met. 108 (2000) 9-

14.

[82] E.M. Geniès, M. Lapkowski, J.F. Penneau, Cyclic voltammetry of polyaniline:

interpretation of the middle peak, J. Electroanal. Chem. 249 (1988) 97-107.

[83] M. Khalid, M.Phill Dissertation, Aligarh Muslim University, Aligarh, 2005.

[84] H. Naarmann, P. Srohriegel, in Handbook of Polymer Synthesis, Part-B, 1390

(H.R. Kricheldorf, Ed.), Marcel Dekker, New York (1992).

[85] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, P. Holler, The genesis of

polyaniline nanotubes, Polymer 47 (2006) 8253-8262.

[86] R. Mazeikiene, A. Malinauskas, Deposition of polyaniline on glass and platinum

by autocatalytic oxidation of aniline with dichromate, Synth. Met. 108 (2000) 9-

14.

[87] R. Mathew, B.R. Mattes, M.P. Espe, A solid state NMR characterization of cross-

linked polyaniline powder, Synth. Met. 131 (2002) 141-147.

[88] C.H. Chen, Thermal and morphological studies of chemically prepared

emeraldine-base-form polyaniline powder, J. Appl. Polym. Sci. 89 (2003) 2142-

2148.

[89] R. Cruz-Silva, J. Romero-García, J.L. Angulo-Sánchez, E. Flores-Loyola, M. H.

Farías, F. F. Castillón, J. A. Díaz, Comparative study of polyaniline cast films

prepared from enzymatically and chemically synthesized polyaniline, Polymer 45

(2004) 4711-4717.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

208

[90] M. Trchová, P. Matějka, J. Brodinová, A. Kalendová, J. Prokeš, J. Stejskal,

Structural and conductivity changes during the pyrolysis of polyaniline base, J.

Polym. Degrad. Stab. 91 (2006) 114-121.

[91] L. Chen, Y. Yu, H. Mao, X. Lu, W. Zhang, Y. Wei, Synthesis of phenyl-capped

aniline heptamer and its UV–vis spectral study, Synth. Met. 149 (2005) 129-134.

[92] P. Sbaite, D. Huerta-Vilca, C. Barbero, M. C. Miras, A. J. Motheo, Effect of

electrolyte on the chemical polymerization of aniline, Eur. Polym. J. 40 (2004)

1445-1450.

[93] E. N. Konyushenko, J. Stejskal, M. Trchová, N. V. Blinova, P. Holler,

Polymerization of aniline in ice, Synth. Met. 158 (2008) 927-933.

[94] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, Oxidation of aniline:

Polyaniline granules, nanotubes, and oligoaniline microspheres, Macromolecules

41(2008) 3530-3536.

[95] Y. Fu, R. L. Elsenbaumer, Thermochemistry and kinetics of chemical

polymerization of aniline determined by solution calorimetry, Chem. Mater. 6

(1994) 671-677.

[96] J. Stejskal, R.G. Gilbert, Polyaniline:Preparation of a conducting polymer, Pure

Appl. Chem. 74 (2002) 857-867.

[97] S. Palaniappan, C. Saravanan, A. John, Emulsion polymerization pathway for

preparation of polyaniline-sulfate salt, using non ionic surfactant J. Macromol.

Sci. Pure Appl. Chem. A 42 (2005) 891-900.

[98] E.C. Venancio, P.-C. Wang, A.G. MacDiarmid, The azanes: A class of material

incorporating nano/micro self-assembled hollow spheres obtained by aqueous

oxidative polymerization of aniline, Synth. Met. 156 (2006) 357-369.

[99] J. Laska, J. Widlarz, Spectroscopic and structural characterization of low

molecular weight fractions of polyaniline, Polymer 46 (2005) 1485-1495.

[100] N.M. Kocherginsky, Z. Wang, Transmembrane redox reactions through

polyaniline membrane doped with fullerene C60, Synth. Met. 156 (2006) 558-565.

[101] N.V. Blinova, J. Stejskal, M. Trchová, G. Ćirić-Marjanović, I. Sapurina,

Polymerization of Aniline on Polyaniline Membranes, J. Phys. Chem. B, 111

(2007) 2440-2448.

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

209

[102] J. Stejskal, M. Spirkova, A. Riede, M. Helmstedt, P. Mokreva, J. Prokesm,

Polyaniline dispersions-The control of particle morphology, Polymer 40 (1999)

2487-2492.

[103] Y. Geng, J. Li, Z. Sun, X. Jing, F. Wang, Polymerization of aniline in an aqueous

system containing organic solvents, Synth. Met. 96 (1998) 1-6.

[104] J. Stejskal, A. Riede, D. Hlavatá, J. Proke, M. Helmstedt, P. Holler, The effect of

polymerization temperature on molecular weight, crystallinity, and electrical

conductivity of polyaniline, Synth. Met. 96 (1998) 55-61.

[105] K.M. Choi, K.H. Kim, J.S.Choi, Chemical and physical properties of

electrochemically prepared polyaniline p-toluenesulfonates, J. Phys.Chem. 93

(1989) 4659-4664.

[106] R. Ansari, M.B. Keivani, Polyaniline conducting electroactive polymers thermal

and environmental stability studies, E-J. Chem. 3 (2006) 202-217.

[107] J.C. Chiang, A.G. MacDiarmid, Polyaniline:Protonic acid doping of the

emeraldine form to the metallic regime, Synth. Met. 13 (1986) 193-205.

[108] W.W. Focke, G.E. Wnek, Y. Wei, Influence of oxidation state, pH, and

counterion on the conductivity of polyaniline, J. Phys. Chem. 91 (1987) 5813-

5818.

[109] M.R. Majidi, L.A.P. Kane-Maguire, G.G. Wallace, Enantioselective

electropolymerization of aniline in the presence of (+)- or (−)-camphorsulfonate

ion: a facile route to conducting polymers with preferred one-screw-sense

helicity, Polymer 35 (1994) 3113-3115.

[110] S.N. Bhadani, M.K. Gupta, S.K. Sen Gupta, Cyclic voltammetry and conductivity

investigations of polyaniline, J. App. Polym. Sci. 49 (1993) 397-403.

[111] M. Wan, M. Li, J. Li, Z. Liu, Structure and electrical properties of the oriented

polyaniline films, J. Appl. Polym. Sci. 53 (1994) 131-139.

[112] H. Pingsheng, Q. Xiaohua, L. Chune, Electric and dielectric properties of

polyaniline, Synth. Met. 57 (1993) 5008-5013.

[113] M. Angelopoulos, A. Ray, A.G. MacDiarmid, A.J. Epstein, Polyaniline:

Processability from aqueous solutions and effect of water vapor on conductivity,

Synth. Met. 21 (1987) 21-30.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

210

[114] A.G. Green and A.E. Woodhead, Aniline-black and allied compounds:P-1, J.

Chem. Soc. Trans. 97 (1910) 2388-2403.

[115] A.G. Green, A.E. Woodhead, Aniline-black and allied compounds:Part II, J.

Chem. Soc. Trans. 101 (1912) 1117-1123.

[116] G.E. Asturias, A.G. MacDiarmid, R.P. McCall, A.J. Epstein, The oxidation state

of “emeraldine” base, Synth. Met. 29 (1989) 157-162.

[117] J. Libert, J. Cornil, D.A. dos Santos, J.L. Brédas, From neutral A theoretical

investigation of the oligoanilines to polyanilines: chain-length dependence of the

electronic and optical properties, Phys. Rev. B 56 (1997) 8638-8650.

[118] O. Kwon, M.L. McKee, Calculations of band gaps in polyaniline from theoretical

studies of oligomers, J. Phys. Chem. B. 104 (2000) 1686-1694.

[119] J.E. de Albuquerque, L.H.C. Mattoso, R. M. Faria, J.G. Masters, A.G.

MacDiarmid, Study of the interconversion of polyaniline oxidation states by

optical absorption spectroscopy, Synth. Met. 146 (2004) 1-10.

[120] P.C. Innis, G.G. Wallace, Inherently conducting polymeric nanostructures, J.

Nano Sci. Nanotech. 2 (2002) 441-451.

[121] Rajesh, T. Ahuja, D. Kumar, Recent progress in the development of nano-

structured conducting polymers/nanocomposites for sensor applications, Sens.

Actuat. B 136 (2009) 275-286.

[122] D. Zhang, Y. Wang, Synthesis and applications of one-dimensional nano-

structured polyaniline: An overview, Mater. Sci. Eng. B 134 (2006) 9-19.

[123] F. Yan, G. Xue, Synthesis and characterization of electrically conducting

polyaniline in water-oil microemulsion J. Mater. Chem. 9 (1999) 3035-3039.

[124] B.-J. Kim, S.-G. Oh, M.-G. Han, S.-S. Im, Synthesis and characterization of

polyaniline nanoparticles in SDS micellar solutions, Synth. Met. 122 (2001) 297-

304.

[125] M. G.u Han, S. K. Cho, S. G. Oh, S. S. Im, Preparation and characterization of

polyaniline nanoparticles synthesized from DBSA micellar solution, Synthetic

Metals 126 (2002) 53-60.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

211

[126] M.S. Cho, S.Y. Park, J.Y. Hwang, H.J. Choi, Synthesis and electrical properties

of polymer composites with polyaniline nanoparticles, Mater. Sci. Eng. C 24

(2004) 15-18.

[127] S.Y. Park, M.S. Cho, H.J. Choi, Synthesis and electrical characteristics of

polyaniline nanoparticles and their polymeric composites. Curr. Appl. Phys. 4

(2004) 581-583.

[128] J. Huang, R.B. Kaner, Nanofiber formation in the chemical polymerization of

aniline: A mechanistic study, Angew. Chem. Int. Ed. 43 (2004) 5817-5821.

[129] J. Huang, R.B. Kaner, A General Chemical Route to Polyaniline Nanofibers, J.

Am. Chem. Soc. 126 (2004) 851-855.

[130] S. Dorey, C. Vasilev, L. Vidal, C. Labbe, N. Gospodinova, Ultrafine nano-colloid

of polyaniline, Polymer 46 (2005) 1309-1315.

[131] A.L. Cholli, M. Thiyagarajan, J. Kumar. V.S. Parmar, Biocatalytic approaches for

synthesis of conducting polyaniline nanoparticles, IUPAC Pure & Appl. Chem.

97 (2005) 339-344.

[132] G. Li, S. Pang, J. Liu, Z, Wang, Z. Zhang, Synthesis of Polyaniline

Submicrometer-Sized Tubes with Controllable Morphology, J. Nano Res. 8

(2006) 1039-1044.

[133] X. Jing, Y. Wang, D. Wu, J. Qiang, Sonochemical synthesis of polyaniline

nanofibers, Ultrasonics Sonochemistry 14 (2007) 75-80.

[134] J. Chen, Y. Xu, Y. Zheng, L. Dai, H. Wu, The design, synthesis and

characterization of polyaniline nanophase materials, C. R. Chimie 11 (2008) 84-

89.

[135] R. Ganesan, S. Shanmugam, A. Gedanken, Pulsed sonoelectrochemical synthesis

of polyaniline nanoparticles and their capacitance properties, Synth. Met. 158

(2008) 848-853.

[136] H.D. Tran, I. Norris, J.M. D’Arcy, H. Tsang, Y. Wang, B.R. Mattes, R.B. Kaner,

Substituted polyaniline nanofibers produced via rapid initiated polymerization,

Macromolecules 41 (2008) 7405-7410.

[137] X. Li, T. Zhuang, G. Wang, Y. Zhao, Stabilizer-free conducting polyaniline

nanofiber aqueous colloids and their stability, Mater. Lett. 62 (2008) 1431-1434.

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

212

[138] S. Xing, H. Zheng, G. Zhao, Preparation of polyaniline nanofibers via a novel

interfacial polymerization method, Synth. Met. 158 (2008) 59-63.

[139] I. Sapurina, J. Stejskal, The mechanism of the oxidative polymerization of aniline

and the formation of supramolecular polyaniline structures, Polym. Int. 57 (2008)

1295-1325.

[140] Y.-G. Han, T. Kusunose, T. Sekino, One-step reverse micelle polymerization of

organic dispersible polyaniline nanoparticles, Synth. Met. 159 (2009) 123-131.

[141] A. Rahy, J. Bae, A. Wu, S. K. Manohar, D.J. Yang, Nano-emulsion use for the

synthesis of polyaniline nano-grains or nano-fibers, Polym. Adv. Technol (2009)

DOI: 10.1002/pat.1562.

[142] C. Liu, K. Hayashi, K. Toko, A novel formation process of polyaniline micro-

/nanofiber network on solid substrates, Synth. Met. 159 (2009) 1077-1081.

[143] H. Zhang, X. Wang, J. Li, F. Wang, Facile synthesis of polyaniline nanofibers

using pseudo-high dilution technique, Synth. Met. 159 (2009) 1508-1511.

[144] Z. Zhang, J. Deng, M. Wan, Highly crystalline and thin polyaniline nanofibers

oxidized by ferric chloride, Mater. Chem. Phys. 115 (2009) 275-279.

[145] J. Fei, Y. Cui, X. Yan, Y. Yang, K. Wang, J. Li, Controlled fabrication of

polyaniline spherical and cubic shells with hierarchical nanostructures, ACS Nano

3 (2009) 3714-3718.

[146] D. Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: A unique polymer

nanostructure for versatile applications, Acc. of Chem. Res. 42 (2009) 135-145.

[147] G. Li, C. Zhang, Y. Li, H. Peng, K. Chen Rapid polymerization initiated by redox

initiator for the synthesis of polyaniline nanofibers, Polymer 51 (2010) 1934-

1939.

[148] R. Gangopadhyay, A. De, Conducting polymer nanocomposites: A brief overview,

Chem. Mater. 2000, 12, 608-622.

[149] L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge, G. K. L. Wong, Highly

monodisperse polymer-capped ZnO nanoparticles: preparation and optical

properties, Appl. Phys. Lett. 76 (2000) 2901-2903.

[150] H. Ishida, S. Campbell, J. Blackwell, General approach to nanocomposite

preparation, Chem. Mater. 12 (2000) 1260-1267.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

213

[151] H.L. Frisch, B. Xi, Y. Qin, M. Rafailovich, N.-L. Yang, X. Yan, Synthesis and

characterization of a conductive polyaniline/clay hybrid system, High Perform.

Polym. 12 (2000) 543-549.

[152] B.Z. Tang, Y. Geng, Q. Sun, X.X. Zhang, X. Jing, Processible nanomaterials with

high conductivity and magnetizability. Preparation and properties of maghemite/

polyaniline nanocomposite films, Pure Appl. Chem. 72 (2000) 157-162.

[153] S.-J. Su, N. Kuramoto, Processable polyaniline–titanium dioxide nanocomposites:

effect of titanium dioxide on the conductivity, Synth. Met. 114 (2000) 147-153.

[154] K. Rajehwar, N.R. de Tacconi, C.R. Chenthamarakshan, Semiconductor-based

composite materials: preparation, properties, and performance, Chem. Mater. 13

(2001) 2765-2782.

[155] K.M Jager, D.H. McQueen, I.A. Tchmutin, N.G. Ryvkina. M. Kluppel, Electron

transport and ac electrical properties of carbon black polymer composites, J. Phys.

D: Appl. Phys. 34 (2001) 2699-2707.

[156] N. Sukpirom, M.M. Lerner, Preparation of organic-inorganic nanocomposites

with a layered titanate, Chem. Mater. 13 (2001) 2179-2185.

[157] J.-M. Yeh, S.-J. Liou, C.-Y. Lai, P.-C. Wu, T.-Y. Tsai, Enhancement of corrosion

protection effect in polyaniline via the formation of polyaniline-clay

nanocomposite materials, Chem. Mater. 13 (2001) 1131-1136.

[158] J.-W. Shim, J.-W. Kim, S.-H. Han, I.-S. Chang, H.-K. Kim, H.-H. Kang, O.-S.

Lee, K.-D. Suh, Zinc oxide/polymethylmethacrylate composite microspheres by

in situ suspension polymerization and their morphological study, Coll. Surf. A:

Physicochem. Eng. Aspects 207 (2002) 105-111.

[159] H. Xia, Q. Wang, Ultrasonic irradiation:A novel approach to prepare conductive

polyaniline/nanocrystalline titanium oxide composites, Chem. Mater. 14 (2002)

2158-2165.

[160] J.J. Hwang, H.J. Liu, Influence of organophilic clay on the morphology,

plasticizer-maintaining ability, dimensional stability, and electrochemical

properties of gel polyacrylonitrile (PAN) nanocomposite electrolytes,

Macromolecules 35 (2002) 7314-7319.

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

214

[161] J.-I. Sohn, J.W. Kim, B.H. Kim, J. Joo, H.J. Choi, Application of emulsion

intercalated conducting polymer-clay nanocomposite, Mol. Cryst. Liq. Cryst.

377(2002) 333-336.

[162] Y.S. Choi, K.H. Wang, M. Xu, I.J. Chung, Synthesis of exfoliated

polyacrylonitrile/Na-MMT nanocomposites via emulsion polymerization, Chem.

Mater. 14 (2002) 2936-2939.

[163] M. Abdullah, T. Morimito, K. Okuyama, Generating blue and red luminescence

from ZnO/Poly(ethylene glycol) nanocomposites prepared using in-situ method.

Adv. Func. Mater. 13 (2003) 800-804.

[164] J.I. Hong, L.S. Schadler, R.W. Siegel, E. Ma°rtensson, Rescaled electrical

properties of ZnO/low density polyethylene nanocomposites, Appl. Phys. Lett. 82

(2003) 1956-1958.

[165] S.C. Raghavendra, S. Khasim, M. Revanasiddappa, M.V.N.A. Prasad, A.B.

Kulkarni, Synthesis, characterization and low frequency a.c. conduction of

polyaniline/fly ash composites, Bull. Mater. Sci. 26 (2003) 733-739.

[166] M. Omastova, S. Podhradska, J. Prokes, I. Janigova, J. Stejskalc, Thermal ageing

of conducting polymeric composites, Polym. Degrad. Stab. 82 (2003) 251-256.

[167] D. Vollath, D.V. Szab´o, S. Schlabach, Oxide/polymer nanocomposites as new

luminescent materials, J. Nanopar. Res. 6 (2004) 181-191.

[168] Y. He, Preparation of polyaniline/nano-ZnO composites via a novel pickering

emulsion route, Powder Technology 147 (2004) 59-63.

[169] X. Li, G. Wang, X. Li, D. Lu, Surface properties of polyaniline/nano-TiO2

composites, Appl. Surf. Sci. 229 (2004) 395-401.

[170] W.J. Bae, K.H. Kim, W.H. Jo, Y.H. Park, Exfoliated nanocomposite from

polyaniline graft copolymer/clay, Macromolecules 37 (2004) 9850-9854.

[171] J. Kruenate, R. Tongpool, T. Panyathanmaporn, P. Kongrat, Optical and

mechanical properties of polypropylene modified by metal oxides, Surf. Interface

Anal. 36 (2004) 1044-1047.

[172] K. Sarma, A. Chattopa, Reversible encapsulation of nanometer-size polyaniline

and polyaniline-Au-nanoparticle composite in starch, Langmuir 20 (2004) 4733-

4737.

Page 27: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

215

[173] C. Sanchez, B. Julia´n, P. Belleville, M. Popall, Applications of hybrid organic-

inorganic nanocomposites, J. Mater. Chem. 15 (2005) 3559-3592.

[174] V. Khrenov, M. Klapper, M. Koch, K. Mu¨llen, Surface functionalized ZnO

particles designed for the use in transparent nanocomposites, Macromol. Chem.

Phys. 206 (2005) 95-101.

[175] S.-C. Hsu, W.-T. Whang, C.-H. Hung, P.-C. Chiang, Y.-N. Hsiao, Effect of the

polyimide structure and ZnO concentration on the morphology and characteristics

of polyimide/ZnO nanohybrid films, Macromol. Chem. Phys. 206 (2005) 291-

298.

[176] Y. He, A novel emulsion route to sub-micrometer polyaniline/nano-ZnO

composite fibers, Appl. Surf. Sci. 249 (2005) 1-6.

[177] J.-C. Xu, W.-M. Liu, Hu-Lin Li, Titanium dioxide doped polyaniline, Mater. Sci.

Eng. C 25 (2005) 444-447.

[178] S.K. Pillalamarri, F.D. Blum, A.T. Tokuhiro, M.F. Bertino, One-pot synthesis of

polyaniline-metal nanocomposites, Chem. Mater. 17 (2005) 5941-5944.

[179] S.R.C. Vivekchand, K.C. Kam, G. Gundiah, A. Govindaraj, A.K. Cheethamb,

C.N.R. Rao, Electrical properties of inorganic nanowire–polymer composites, J.

Mater. Chem. 15 (2005) 4922-4927.

[180] S. Geetha, K.K. Satheesh Kumar, D.C. Trivedi, Polyaniline reinforced conducting

E-glass fabric using 4-chloro-3-methyl phenol as secondary dopant for the control

of electromagnetic radiations, Comp. Sci. Technol. 65 (2005) 973-980.

[181] W.J.E. Bleek, M.M. Wienk, R.A.J. Janssen, Hybrid solar cells from regioregular

polythiophene and ZnO nanoparticles, Adv. Funct. Mater. 16 (2006) 1112-1116.

[182] E. Tang, G. Cheng, X. Ma, X. Pang, Q. Zhao, Surface modification of zinc oxide

nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surf. Sci. 252

(2006) 5227-5232.

[183] H.C. Pant, M.K. Patra, S.C. Negi, A. Bhatia, S.R. Vadera, N. Kumar, Studies on

conductivity and dielectric properties of polyaniline–zinc sulphide composites,

Bull. Mater. Sci. 29 (2006) 379-384.

Page 28: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

216

[184] S.V. Bhat, S.R.C. Vivekchand, Optical spectroscopic studies of composites of

conducting PANI with CdSe and ZnO nanocrystals, Chem. Phys. Lett. 433 (2006)

154-158.

[185] J.I. Hong, L.S. Schadler, R.W. Siegel, E. Ma°rtensson, Electrical behavior of low

density polyethylene containing an inhomogeneous distribution of ZnO

nanoparticles, J Mater Sci 41 (2006) 5810-5814.

[186] R.C. Patil, S. Radhakrishnan, Conducting polymer based hybrid nano-composites

for enhanced corrosion protective coatings, Prog. Org. Coat. 57 (2006) 332-336.

[187] M.M. Demir, M. Memesa, P. Castignolles, G, Wegner, PMMA/zinc oxide

nanocomposites prepared by in-situ bulk polymerization, Macromol. Rapid

Commun. 27 (2006) 763-770.

[188] A.D. Pomogailo, Synthesis and intercalation chemistry of hybrid organo-

inorganic nanocomposites, Polym. Sci. Ser. C 48 (2006) 85-111.

[189] H.V. Hoang, R. Holze, Electrochemical synthesis of polyaniline/montmorillonite

nanocomposites and their characterization, Chem. Mater. 18 (2006) 1976-1980.

[190] D.M.M. Krishantha, R.M.G. Rajapakse, D.T.B. Tennakoon, H.V.R. Dias, AC

impedance analysis of polyaniline–montmorillonite nanocomposites, Ionics 12

(2006) 287-294.

[191] L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, S. Wu, The

preparation and gas sensitivity study of polypyrrole/zinc oxide, Synth. Met. 156

(2006) 1078-1082.

[192] Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang, W. Chen, Polyaniline/TiO2 solar cells,

Synth. Met. 156 (2006) 721–723.

[193] F. Lin, Preparation and characterization of polymer TiO2 nanocomposites via in-

situ polymerization, Master thesis, University of Waterloo, 2006.

[194] R. Doufnoune, N. Haddaoui, F. Riahi, Elaboration and characterization of an

organic/inorganic hybrid material: Effect of the interface on the mechanical and

thermal behavior of PP/CaCO3 composite, Inter. J. Polym. Mater. 55 (2006) 815-

835.

Page 29: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

217

[195] X. He, J. Yang, L. Zhu, B. Wang, G. Sun, P. Lv, I.Y. Phang, T. Liu, Morphology

and melt rheology of nylon 11/clay nanocomposites, J. Appl. Polym. Sci. 102

(2006) 542-549.

[196] R.A. Vaia, J.F. Maguire, Polymer nanocomposites with prescribed morphology:

going beyond nanoparticle-filled polymers, Chem. Mater. 19 (2007) 2736-2751.

[197] J. Zhang, H. Feng, W. Hao, T. Wang, Luminescence of nanosized

ZnO/polyaniline films prepared by self-assembly, Ceram. Inter. 33 (2007) 785-

788.

[198] X. Ma, A. Liu, H. Xu, G. Li, Growth of ramification-like ZnO rods in the

presence of polyaniline, Colloid Polym Sci 285 (2007) 1631-1635.

[199] Y.-Q. Li, Y. Yang, S.-Y. Fu, Photo-stabilization properties of transparent

inorganic UV-filter/epoxy nanocomposites, Comp. Sci. Technol. 67 (2007) 3465-

3471.

[200] E. Tang, H. Liu, L. Sun, E. Zheng, G. Cheng, Fabrication of zinc

oxide/poly(styrene) grafted nanocomposite latex and its dispersion, Eur. Polym. J.

43 (2007) 4210-4218.

[201] X. Wang, P. Hu, Y. Fangli, L. Yu, Preparation and characterization of ZnO

hollow spheres and ZnO-carbon composite materials using colloidal carbon

spheres as templates, J. Phys. Chem. C 111 (2007) 6706-6712.

[202] G.K. Paul, A. Bhaumik, A.S. Patra, S.K. Bera, Enhanced photo-electric response

of ZnO/polyaniline layer-by-layer self-assembled films, Mater. Chem. Phys. 106

(2007) 360-363.

[203] C.-L. Zhu, S.-W. Chou, S.-F. He, W.-N. Liao, C.-C. Chen, Synthesis of core/shell

metal oxide/polyaniline nanocomposites and hollow polyaniline capsules,

Nanotechnology 18 (2007) 275604-275609.

[204] A. Yavuz, A. G¨ok, Preparation of TiO2/PANI composites in the presence of

surfactants and investigation of electrical properties, Synth. Met. 157 (2007) 235-

242.

[205] S. Bitao, M. Shixiong, S. Shixiong, T. Yongchun, B. Jie, Synthesis and

characterization of conductive polyaniline/TiO2 composite nanofibers, Front.

Chem. China 2 (2007) 123-126.

Page 30: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

218

[206] C. Bian, G. Xue, Nanocomposites based on rutile-TiO2 and polyaniline, Mater.

Lett. 61 (2007) 1299-1302.

[207] H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of

polyaniline-titanium dioxide nanocomposite thin film, Sens. Actuat. B 123 (2007)

107-113.

[208] D.S. Dhawale, R.R. Salunkhe, U.M. Patil, K.V. Gurav, A.M. More, C.D.

Lokhande, Room temperature liquefied petroleum gas (LPG) sensor based on p-

polyaniline/n-TiO2 heterojunction, Sens. Actuat. B 125 (2007) 644-650.

[209] J.C. Aphesteguy, S.E. Jacobo, Synthesis of a soluble polyaniline-ferrite

composite: magnetic and electric properties, J. Mater. Sci 42 (2007) 7062-7068.

[210] X.-X. Liu, L.-J. Bian, L. Zhang, L.-J. Zhang, Composite films of polyaniline and

molybdenum oxide formed by electrocodeposition in aqueous media, J Solid State

Electrochem 11 (2007) 1279-1286.

[211] X. Lei, Z. Su, Conducting polyaniline-coated nano silica by in situ chemical

oxidative grafting polymerization, Polym. Adv. Technol. 18 (2007) 472-476.

[212] D.J. Frankowski, M.D. Capracotta, J.D. Martin, S.A. Khan, R.J. Spontak,

Stability of organically modified montmorillonites and their polystyrene

nanocomposites after prolonged thermal treatment, Chem. Mater. 19 (2007) 2757-

2767.

[213] A. Gök, M. Omastová, J. Proken, Synthesis and characterization of red

mud/polyaniline composites:Electrical properties and thermal stability, Eur.

Polym. J. 43 (2007) 2471-2480.

[214] A. Pegoretti, A. Dorigato, A. Penati, Tensile mechanical response of polyethylene

-clay nanocomposites, eXP. Polym. Lett. 1 (2007) 123-131.

[215] M.L. Auad, S.R. Nutt, V. Pettarin, P.M. Frontini, Synthesis and properties of

epoxy-phenolic clay nanocomposites, eXP. Polym. Lett. 1 (2007) 629-639.

[216] F.F. Fang, J.H. Kim, H.J. Choi, Y. Seo, Organic/inorganic hybrid of

polyaniline/BaTiO3 composites and their electrorheological and dielectric

characteristics, J. Appl. Polym. Sci. 105 (2007) 1853-1860.

Page 31: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

219

[217] H.M. Lee, H.J. Choi, Synthesis and characterization of polyaniline-Na+-

montmorillonite nanocomposite by microemulsion polymerization, Mol. Cryst.

Liq. Cryst., 463 (2007) 221-225.

[218] N. Guo, S.A. DiBenedetto, D.-K. Kwon, L. Wang, M.T. Russell, M.T. Lanagan,

A. Facchetti, T.J. Marks, Supported metallocene catalysis for In situ synthesis of

high energy density, metal oxide nanocomposites, J. Am. Chem. Soc. 129 (2007)

766-767.

[219] J. Jeng, T.-Y. Chen, C.-F. Lee, N.-Y. Liang, W.-Y. Chiu, Growth mechanism and

pH-regulation characteristics of composite latex particles prepared from pickering

emulsion polymerization of aniline/ZnO using different hydrophilicities of oil

phases, Polymer 49 (2008) 3265-3271.

[220] J.H. Chen, C.-Y. Cheng, W.-Y. Chiu, C.-F. Lee, N.-Y. Liang, Synthesis of

ZnO/polystyrene composites particles by pickering emulsion polymerization, Eur.

Polym. J. 44 (2008) 3271-3279.

[221] B.K. Sharma, N. Khare, S.K. Dhawan, H.C. Gupta, Dielectric properties of nano

ZnO-polyaniline composite in the microwave frequency range, J. Alloys and

Comp. 477 (2008) 370-373.

[222] K. Dutta, S. Manna, S.K. De, Optical and electrical characterizations of ZnS

nanoparticles embedded in conducting polymer, Synth. Met. 159 (2008) 315-319.

[223] J. Zheng, G. Li , X. Ma, Y. Wang, G. Wu, Y. Cheng, Polyaniline-TiO2 nano-

composite-based trimethylamine QCM sensor and its thermal behavior studies,

Sens. Actuat. B 133 (2008) 374-380.

[224] X. Li, D. Wang, G. Cheng, Q. Luo, J. An, Y.g Wang, Preparation of polyaniline-

modified TiO2 nanoparticles and their photocatalytic activity under visible light

illumination, Appl. Cat. B 81 (2008) 267-273.

[225] T.-C. Mo, H.-W. Wang, S.-Y. Chen, Y.-C. Yeh, Synthesis and dielectric

properties of polyaniline/titanium dioxide nanocomposites, Ceram. Inter. 34

(2008) 1767-1771.

[226] S.K.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Microwave absorption

behaviors of polyaniline nanocomposites containing TiO2 nanoparticles, Cur.

Appl. Phys. 8 (2008) 391-394.

Page 32: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

220

[227] R. Ganesan, A. Gedanken, Organic-inorganic hybrid materials based on

polyaniline/TiO2 nanocomposites for ascorbic acid fuel cell systems,

Nanotechnology 19 (2008) 435709-435714.

[228] M.R. Karim, J.H. Yeum, M.S. Lee, K.T. Lim, Preparation of conducting

polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative

polymerization method, Reactive & Functional Polymers 68 (2008) 1371-1376.

[229] H. Tai, Y. Jiang G. Xie, J. Yu, X. Chen, Z. Ying, Influence of polymerization

temperature on NH3 response of PANI/TiO2 thin film gas sensor, Sens. Actuat. B

129 (2008) 319-326.

[230] S. Bourdo, Z. Li, A. S. Biris, F. Watanabe, T. Viswanathan, I. Pavel, Structural,

Electrical, and Thermal Behavior of Graphite-Polyaniline Composites with

Increased Crystallinity, Adv. Funct. Mater. 18 (2008) 432-440.

[231] R. Sharma, R. Malik, S. Lamba, S. Annapoorni, Metal oxide/polyaniline

nanocomposites: Cluster size and composition dependent structural and magnetic

properties, Bull. Mater. Sci. 31 (2008) 409-413.

[232] S. Manjunath, A.K. Koppalkar, M.V.N.A. Prasad, Dielectric Spectroscopy of

Polyaniline/Stanic Oxide (PANI/SnO2) Composites, Ferroelectrics 366 (2008) 22-

28.

[233] A. Olad, A. Rashidzadeh, Preparation and characterization of polyaniline/CaCO3

composite and its application as anticorrosive coating on iron, Iran. J. Chem. Eng.

5 (2008) 45-54.

[234] A. Esfandiari, H. Nazokdast, A.-S. Rashidi. M.-E. Yazdanshenas, Review of

polymer-organoclay nanocomposites, J. Appl. Sci. 8 (2008) 545-561.

[235] N.N. Binitha, S. Sugunan, Polyaniline/pillared montmorillonite clay composite

nanofibers, J. Appl. Polym. Sci. 107 (2008) 3367-3372.

[236] X. Ding, D. Han, Z. Wang, X. Xu, L. Niu, Q. Zhang, Micelle-assisted synthesis of

polyaniline/magnetite nanorods by in situ self-assembly process, J. Coll. Inter.

Sci. 320 (2008) 341-345.

[237] S.P. Sharma, M.V.S. Suryanarayana, A.K. Nigam, A.S. Chauhan, L.N.S. Tomar,

PANI/ZnO composite: Catalyst for solvent-free selective oxidation of sulfides,

Catalysis Commun. 10 (2009) 905-912.

Page 33: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

221

[238] J.D. Sudha, S. Sivakala, R. Prasanth, V.L. Reena, P.R. Nair, Development of

electromagnetic shielding materials from the conductive blends of polyaniline and

polyaniline-clay nanocomposite-EVA: Preparation and properties, Comp. Sci.

Tech. 69 (2009) 358-364.

[239] S. Radhakrishnana, C.R. Sijua, D. Mahantab, S. Patil, G. Madras, Conducting

polyaniline-nano-TiO2 composites for smart corrosion resistant coatings,

Electrochim. Acta 54 (2009) 1249-1254.

[240] G. C.Marjanovic, L. Dragicˇevic, M. Milojevic ,́ M. Mojovic, S. Mentus, B.

Dojcˇinovic ,́ B. Marjanovic ,́ J. Stejskal, Synthesis and characterization of self-

assembled polyaniline nanotubes/silica nanocomposites, J. Phys. Chem. B 113

(2009) 7116-7127.

[241] Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, Enhanced thermoelectric

performance of single-walled carbon nanotubes/polyaniline hybrid

nanocomposites, ACS Nano 4 (2010) 2445-2451.

[242] A.A. Khan, M. Khalid, Synthesis of nano-sized ZnO and polyaniline-zinc oxide

composite:Characterization, stability in terms of DC electrical conductivity

retention and application in ammonia vapor detection, J. Appl. Polym. Sci. 117

(2010) 1601-1607.

[243] J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, A.B. Karki, D.P. Young, Z. Guo,

Polyaniline-tungsten oxide metacomposites with tunable electronic properties, J.

Mater. Chem. DOI: 10.1039/c0jm02090g.

[244] G. Chakraborty, S. Ghatak, A.K. Meikap, T. Woods, R. Babu, W.J. Blau,

Characterization and electrical transport properties of polyaniline and multiwall

carbon nanotube composites, J. Polym. Sci. B: Polym. Phys. 48 (2010) 1767-

1775.

[245] S.J. Varma, S. Jayalekshmi, On the prospects of polyaniline and

polyaniline/MWNT composites for possible pressure sensing applications, J.

Appl. Polym. Sci. 117 (2010) 138-142.

Page 34: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

222

Chapter-3

[1] N.S. Pesika, Z. Hu, K.J. Stebe, P.C. Searson, Quenching of growth of ZnO

nanoparticles by adsorption of octanethiol, J. Phys. Chem. B 106 (2002) 6985-

6990.

[2] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, Low temperature synthesis of

flowerlike ZnO nanostructures by cetyltrimethyl-ammonium bromide-assisted

hydrothermal process. J. Phys. Chem. B 108 (2004) 3955-58.

[3] A.H. Ansari, F. Mohammad, S.P. Ansai, Production of zinc oxide nanoparticles at

atmospheric pressure and low temperature, Patent Application No. 235/DEL/2008

(India).

[4] Y. Cao, A. Andreatta, A.J. Heeger, P. Smith, Influence of chemical

polymerization conditions on the properties of polyaniline, Polymer 30 (1989)

2305-2311.

[5] S.P. Armes, Optimum reaction conditions for the polymerization of pyrrole by

iron (III) chloride in aqueous solution, Synth. Met. 20 (1987) 365-371.

[6] J.C. Chiang, A.G. MacDiarmid, Polyaniline: Protonic acid doping of the

emeraldine form to the metallic regime, Synth. Met. 13 (1986) 193-205.

[7] W. Luzny, M. Sniechowski, J. Laska, Structural properties of emeraldine base and

the role of water contents: X-ray diffraction and computer modelling study,

Synth. Met. 126 (2002) 27-35.

[8] A.A. Ahmed, Ph.D Thesis, Aligarh Muslim University, 2003.

[9] A. Khatoon, M. Phill. Dissertation, Aligarh Muslim University, 2006.

[10] R.C. Patil, S. Radhakrishnan, Conducting polymer based hybrid composites for

enhanced corrosion protective coatings, Prog. Org. Coat. 57 (2006) 332-336.

[11] F. Mohammad, S.P. Ansari, A simple route to prepare emeraldine base

nanoparticles, Patent Application No. 2398/DEL/2010 (India).

[12] H. Zhang, R. Zong, Y. Zhu, Photocorrosion inhibition and photoactivity

enhancement for zinc oxide via hybridization with monolayer polyaniline, J.

Phys. Chem. C 113(2009) 4605-4611.

[13] User’s manual, DC electrical conductivity measuring instrument, Scientific

Equipments and Services, Roorkee, India.

Page 35: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

223

Chapter 4

[1] N.S. Pesika, Z. Hu, K.J. Stebe, P.C. Searson, Quenching of growth of ZnO

nanoparticles by adsorption of octanethiol, J. Phys. Chem. B 106 (2002) 6985-

6990.

[2] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, Low temperature synthesis of

flowerlike ZnO nanostructures by cetyltrimethyl-ammonium bromide-assisted

hydrothermal process. J. Phys. Chem. B 108 (2004) 3955-3958.

[3] G.R. Gattorno, P.S.Jacinto, L. Rendon-Va´zquez, J. Ne´meth, I. De´ka´ny, D.

Dı´az, Novel synthesis pathway of ZnO nanoparticles from the spontaneous

hydrolysis of zinc carboxylate salts, J. Phys. Chem. B 107 (2003) 12597-12604.

[4] R. Viswantha, S. Sapra, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sharma,

Understanding the quantum size effects in ZnO nanocrystals, J. Mater. Chem. 14

(2004) 661-668.

[5] Y.H. Tong, Y.C. Liu, S.X. Lu, L. Dong, S.J. Chen, Z.Y. Xiao, The optical

properties of ZnO nanoparticles capped with polyvinyl butyral, J. Sol Gel Sci.

Tech. 30 (2004) 157-160.

[6] E. Hosono, S. Fujihara, T. Kimura, H. Imai, Non-basic solution routes to prepare

ZnO nanoparticles, J. Sol Gel Sci. Tech. 29 (2004) 71-79.

[7] Y. He, W. Sang, J. Wang, R. Wu, J. Min, Polymer-assisted complexing controlled

orientation growth of ZnO nanorods, J. Nano. Res. 7 (2005) 307-310.

[8] L.P. Bauermann, J. Bill, F. Aldinger, Bio-friendly synthesis of ZnO nanoparticles

in aqueous solution at near-neutral pH and low temperature, J. Phys. Chem. B 110

(2006) 5182-5185

[9] T. Kawano and H. Imai, Fabrication of Zno nanoparticles with various aspect

ratios through acidic and basic routes, Crystal Growth & Design 6 (2006) 1054-

1056.

[10] Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, M. Li, S. Liu, Y. Sui, Z. Liu, M. Yaun, G.

Zou, G. Wang, C. Shao, Y. Liu Fabrication and optical properties of large scale

ZnO nanotube bundles via a simple solution route, J. Phys. Chem. B 111 (2007)

17521-17526.

Page 36: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

224

[11] A.H. Ansari, F. Mohammad, S.P. Ansari, Production of zinc oxide nanoparticles

at atmospheric pressure and low temperature, Patent Application No.

235/DEL/2008 (India).

[12] I. Sapurina, J. Stejskal, The mechanism of the oxidative polymerization of aniline

and the formation of supramolecular polyaniline structures, Polym. Int. 57 (2008)

1295–1325.

[13] Rajesh, T. Ahuja, D. Kumar, Recent progress in the development of nano-

structured conducting polymers/nanocomposites for sensor applications, Sens.

Actuat. B 136 (2009) 275-286.

[14] D. Zhang, Y. Wang, Synthesis and applications of one-dimensional nano-

structured polyaniline: An overview, Mater. Sci. Eng. B 134 (2006) 9-19.

[15] G. Li, C. Zhang, Y. Li, H. Peng, K. Chen Rapid polymerization initiated by redox

initiator for the synthesis of polyaniline nanofibers, Polymer 51 (2010) 1934-

1939.

[16] J. Huang, R.B. Kaner, Nanofiber formation in the chemical polymerization of

aniline: A mechanistic study, Angew. Chem. Int. Ed. 43 (2004) 5817-5821.

[17] J. Huang, R.B. Kaner, A General Chemical Route to Polyaniline Nanofibers, J.

Am. Chem. Soc. 126 (2004) 851-855.

[18] X. Jing, Y. Wang, D. Wu, J. Qiang, Sonochemical synthesis of polyaniline

nanofibers, Ultrasonics Sonochemistry 14 (2007) 75-80.

[19] J. Chen, Y. Xu, Y. Zheng, L. Dai, H. Wu, The design, synthesis and

characterization of polyaniline nanophase materials, C. R. Chimie 11 (2008) 84-

89.

[20] J. Stejskal, I. Sapurina, M. Trchová, E. N. Konyushenko, Oxidation of aniline:

Polyaniline granules, nanotubes, and oligoaniline microspheres, Macromolecules

41(2008) 3530–3536.

[21] S.P. Surwade, N. Manohar, S.K. Manohar, Origin of bulk nanoscale morphology

in conducting polymers, Macromolecules 42 (2009) 1792-1795.

[22] D, Li, J. Huang, R.B. Kaner, Polyaniline nanofibers: A unique polymer

nanostructure for versatile applications, Acc. of Chem. Res. 42 (2009) 135-145.

Page 37: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

225

[23] F. Mohammad, S.P. Ansari, A simple route to prepare emeraldine base

nanoparticles, Patent Application No. 2398/DEL/2010 (India).

[24] Wei Pan, Sheng Lin Yang, Guang Li, Jian Ming Jiang, Electrical and structural

analysis of conductive polyaniline/polyacrylonitrile composites, Eur. Polym. J. 41

(2005) 2127–2133.

[25] N. Lü, X. Lü, X. Jin, C. Lü, Preparation and characterization of UV-curable

ZnO/polymer nanocomposite films, Polym. Int.. 56 (2007) 138-143.

[26] A. An`lovar, Z.C. Orel, M. Zigon, Nanocomposites with nano-to-sub-micrometer

size zinc oxide as an effective UV absorber, Polimeri 29 (2008) 84-87.

[27] A.A. Ahmad, PhD Thesis, Aligarh Muslim University, Aligarh, 2003.

[28] N.V. Blinova, J. Stejskal, M. Trchová, G. Ćirić-Marjanović, I. Sapurina,

Polymerization of Aniline on Polyaniline Membranes, J. Phys. Chem. B 111

(2007) 2440–2448.

[29] M.N. Kalasad, M.K.J. Rabinal,Tunnelling conductivity in conducting polymer

composites: a manifestation of chemical interaction, Phys. D: Appl. Phys. 42

(2009) 65414(5p).

[30] S. Song, L. Pan, Y. Li, Y. Shi, L. Pu, R. Zhang, Y.Z. Chin, Self-assembly of

polyaniline: mechanism study, J. Chem. Phys. 21 (2008) 187-192.

[31] X.B,Yan, Z.J. Han, Y. Yang, B.K. Tay,NO2 gas sensing with polyaniline

nanofibers synthesized by a facile aqueous/organic interfacial polymerization”,

Sensors and Actuators B 123 (2007) 107–113.

[32] C. Zhou, J. Han, R. Guo, Synthesis of polyaniline hierarchical structures in a

dilute SDS/HCl solution: nanostructure-covered rectangular Tubes,

Macromolecules 42 (2009) 1252-1257.

[33] A. Olad, A. Rashidzadeh, Preparation and characterization of polyaniline/CaCO3

composite and its application as anticorrosive coating on iron”, Iranian J. Chem.

Engg. 5 (2008) 45-54.

[34] Y. Yang, Cellulose Acetate, in: James E. Mark (Eds.), Polymer Data Handbook

Oxford University Press, New York (1999) pp. 49-56.

[35] D.S. Verma, H.L. Needle, D.E. Cagllostro, Benzoic acid degradation of

polyacrylonitrile fibres, Ind. Eng. Chem. Prod. Res. Dev. 20 (1981) 520-524.

Page 38: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

226

[36] Farsani et. al., Proceeding of world academy of Sci n tech. vol 38 ISSN 2070-

3740.

[37] B.D. Viers, Nylon 6,6 in: James E. Mark (Eds.), Polymer Data Handbook,

Oxford University Press, New York, 1999, pp. 189-206.

[38] M.S. Khan, R.A. Qazi, M.S. Wahid, Miscibility studies of PVC/PMMA and

PS/PMMA blends by dilute solution viscometry and FTIR, African J. Pure and

Appl. Chem. 2 (2008) 41-45.

[39] T.M. Madkour, Polycarbonate, in: James E. Mark (Eds.), Polymer Data

Handbook Oxford University Press, New York (1999) pp. 363-367.

[40] J.-C. Xu, W.-M. Liu, Hu-Lin Li, Titanium dioxide doped polyaniline, Mater. Sci.

Eng. C 25 (2005) 444–447.

[41] J.C. Aphesteguy, S.E. Jacobo, Synthesis of a soluble polyaniline-ferrite

composite: magnetic and electric properties, J. Mater. Sci 42 (2007) 7062-7068.

[42] L. Zhang, M. Wan, Polyaniline/TiO2 composite nanotubes, J. Phys. Chem. B 107

(2003) 6748-6753.

[43] J. Jeng, T.-Y. Chen, C.-F. Lee, N.-Y. Liang, W.-Y. Chiu, Growth mechanism and

pH-regulation characteristics of composite latex particles prepared from pickering

emulsion polymerization of aniline/ZnO using different hydrophilicities of oil

phases, Polymer 49 (2008) 3265-3271.

[44] J.S. Nogueira, J.R. Santos, A.J. Motheo, Effect of humidity on AC conductivity of

polyaniline and poly(o-methoxyaniline), J. Braz. Chem. Soc. 5 (1994) 209-212.

[45] N.D. Sankir, M. Sankir, R.O. Claus, Electrical and morphological characterization

of polyaniline/sulphonated poly(arylene ether sulfone) composite films, J. Mater.

Sci.: Mater. Electron. 19 (2008) 389-392.

[46] A.A. Ahmad, F. Mohammad, M.Z.A. Rahman, Preparation, characterization,

thermooxidative degradation and stability of polyaniline/polyacrylonitrile

composites in terms of direct current electrical conductivity retention, J. Appl.

Polym. Sci. 99 (2004) 437-448.

[47] A.A. Ahmad, F. Mohammad, Studies on electrically conducting polyaniline:nylon

6,6 comspoites: a potential material for electrical and electronic applications,

Solid State Phenomena 111 (2006) 95-98.

Page 39: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/11284/14/14_references.… · S. Park, G-P. Choi, ZnO sol–gel derived porous film for CO gas sensing, Sens. Actuat

227

[48] A.A. Ahmad, F. Mohammad, M.Z.A. Rahman, Composites of polyaniline and

cellulose acetate: preparation, characterization, thermo-oxidative degradation and

stability in terms of dc electrical conductivity, Synth. Met. 144 (2004) 29-49.

[49] R. Ansari,M.B. Keivani, Polyaniline conducting electroactive polymers:Thermal

and environmental stability studies, E-J. Chem. 3 (2006) 202-217.

[50] M.T. Cortés, E.V. Sierra, Effect of synthesis parameters in polyaniline: influence

on yield and thermal behavior, Polym. Bull. 56(2006) 37-45.

[51] Y. He, Preparation of polyaniline/nano-ZnO composites via a novel pickering

emulsion route, Powder Technology 147 (2004) 59-63.

[52] Y. He, A novel emulsion route to sub-micrometer polyaniline/nano-ZnO

composite fibers, appl. Surf. Sci. 249 (2005) 1-6.

[53] L.P. Bauermann, A. d. Campo, J. Bill, F. Aldinger, Heterogeneous Nucleation of

ZnO Using Gelatin as the organic matrix, Chem. Mater. 18 (2006) 2016-2020.

[54] E. Tang, G. Cheng, X, Maa, X. Pang, Q. Zhao, Surface modification of zinc oxide

nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surf. Sci. 252

(2006) 5227–5232.