report: global hydrological monitoring industry trends | aquatic informatics

30
Published by Research and insights on current industry challenges, standards, strategies, and best pracces in the water monitoring and data management industry.

Upload: christina-dian-parmionova

Post on 10-Mar-2016

215 views

Category:

Documents


1 download

DESCRIPTION

The hydrological monitoring industry is undergoing rapid evolution worldwide – how can you keep pace?

TRANSCRIPT

Page 1: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

18%

10%

30%

16%

6%

12%

25%

23%

14%

27%

8%14%

2%

11%6%

22%26%

Published by

Research and insights on current industry challenges, standards, strategies, and best practices in the water monitoring and data management industry.

Page 2: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Table of Contents

Executive SummarySection 1: ProfileType of OrganizationGeographic LocationBusiness Roles

SECTION 2: Network DesignNeeds ServedAreas of FocusStation DensitySize of NetworkNumber of VariablesPartnering & Co-operating

SECTION 3: TechnologyPrimary Monitoring TechnologiesCommunications TechnologiesMonitoring Techniques

SECTION 4: Quality ManagementQuality Management SystemStandard Operating Procedures

SECTION 5: Training & HRNumber of HydrographersHydrographer ActivitiesUnscheduled Field TripsDemographic Composition Gender BalanceAverage SalariesSalary ChangeEducationTraining

SECTION 6: Data Consumer & Stakeholder ExpectationsData Dissemination MethodsReal-Time Products & ServicesData Production ProcessVersion ControlGranularity & TimelinessAnalysisMetadata

SECTION 7: Data ManagementData Management ChallengesData Management SystemsEffectivenessSatisfactionFeaturesConclusions & RemarksPublished by Aquatic Informatics

4

46677

889

10101111

12121313

141415

15151616171718181919

2020212122222323

2324252627282930

Page 3: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

18%

44%

10%

30%

16%

6%

12%

25%

23%

14%

27%

8%14%

2%

11%6%

22%26%

Global Report

respondents reported using actively licensed commercial software. These respondents reported being better able to meet evolving stakeholder expectations for real-time data products and services, metadata availability, higher level analysis, and timely reporting and publishing. Up to 32% more respondents with actively licensed commercial software reported satisfaction with their data management system in areas such as system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Competing program goals; limited network resources; the rapid adoption of real-time technologies; massive and growing volumes of data; increased data complexity; mounting data consumer expectations … there is no shortage of challenges.

Water resource managers are being proactive in meeting these challenges. The “Global Hydrological Monitoring Industry Survey” has brought to light trends that promise a bright future. New technologies and data management solutions are being implemented so that real-time, high-quality data is more readily available to make important and timely decisions about precious water resources. Quality Management Systems and internationally accepted standards are being adopted to improve data quality and interoperability.

There is more good news. Survey results show that water resource managers forecast the size of their teams to grow by 23% more hydrographers. Salaries have increased in the past decade, which will help attract more hydrologists and hydrographers to the profession. More women are joining the field – they are forecast to make up 34% of the workforce by 2022. And education levels are on the rise – 74% of the workforce is reported to currently hold a bachelor’s degree or higher level education.

A common theme across environmental monitoring agencies is that hydrometric networks are being updated in response to both rapidly evolving end-user expectations and emergent technological opportunity. This finding is not unexpected. What is surprising is how diverse these adaptations have been. There is a lot of experimentation as each agency endeavors to solve many and various challenges with whatever opportunities are most readily available. Widespread convergence on the most successful solutions to common problems is forecast for the coming decade. The detailed findings - described in the following sections - can help you benchmark your organization’s progress and guide planning for future investments in a successful, modern network.

Executive SummaryAquatic Informatics collected responses online for the “Global Hydrological Monitoring Industry Survey” in September and October of 2012. Over 700 water program managers, hydrologists, engineers, scientists, and hydrographers participated in this international survey, representing hundreds of academic institutions, government agencies, national monitoring organizations, and engineering consulting firms.

The results show increased demand for hydrological monitoring networks to serve multiple needs (including reference for climate change and inventory for water availability) and to serve multiple purposes (including water quantity and continuous water quality monitoring). Yet 72% of water professionals reported that they would need more monitoring stations to adequately meet all of their program goals. There is good news or perhaps optimism in the industry: respondents forecast their network size to grow by 53% over the next decade. The projected increase in the volume of available data will provide new information for expanding priorities.

Data consumers today want real-time information. Meeting the growing information needs of stakeholders is also being addressed by the industry through the mass adoption of real-time monitoring and communications technologies. Digital multichannel data loggers and solid state electronic sensors are currently used by 71% and 67% of respondents, respectively. By 2022, automated sample collection and multi-parameter water quality sensors are expected to be used by 43% and 66% of respondents, respectively. With more continuous data being collected, water resource managers are turning to real-time communications technologies for data transmission. Respondents reported using digital data retrieval (e.g. logger files) for 63% of their stations in 2012. By 2022, approximately 40% of stations are forecasted to use web enabled sensors, satellite, and/or telephone to transmit water monitoring data.

The rapid adoption of continuous monitoring and real-time communication technologies has resulted in large volumes of complex data. Naturally, water resource professionals today are concerned with ensuring data quality, defensibility, and interoperability. They are implementing clearly documented Quality Management Systems and adopting internationally accepted standards. More specifically, 62% of question respondents have adopted “clearly communicated objective(s) for data quality.” 66% of respondents use, or plan to start using, the U.S. Geological Survey (USGS) accepted standard operating procedure reference documents. Water managers want to produce data that they can trust.

Consumers of hydrological data today also have high expectations – they want immediate access to continuous information that is quality controlled. Tolerance for data faults in dynamic data has declined. Demand for metadata and higher level analysis has increased. Quality controlled data is expected to be published sooner. Results show that by 2022, the most popular data publishing methods are forecasted to be Web 2.0 (e.g. dynamic content), Web services (e.g. SOAP, REST, WaterML, XML), and mobile device dissemination (e.g. iPhone), adopted by 59%, 52%, and 58% of water professionals, respectively.

How are water resource professionals managing the growing volumes of hydrological data to meet stakeholder demands for real-time information? They depend on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of environmental data from disparate sources. But the performance of data management systems varies. Office Software like Microsoft® Excel is still the most commonly used tool, used by 35% of respondents as their primary data management system. Other data management systems in use include custom solutions and integrated environmental systems. Additionally, 23% of

The hydrological monitoring industry is undergoing rapid evolution worldwide. The last decade has seen a paradigm shift in environmental monitoring technologies, standards, and best practices. The industry transformation will continue over the next decade.

The changes are real, significant, and substantial. The growing global population is placing unprecedented burden on water resources, needed not only for safe drinking water, but also to support our agriculture, energy, transportation, manufacturing, and civil infrastructure. Increasing climate uncertainty invalidates many historic assumptions creating a need for new information for water management and prediction. Regulations are growing in complexity. Water resource managers, hydrologists, and scientists are facing enormous pressure to meet the mounting expectations of stakeholders for high quality, real-time information.

In the fall of 2012, Aquatic Informatics conducted the “Global Hydrological Monitoring Industry Survey” to provide a better understanding of the current state of the industry and to offer further insights on how to address emerging challenges. This report quantifies the current trends and identifies the strategies being adopted in water monitoring and data management. It provides water resource professionals with the information that they need to benchmark their hydrological monitoring program against that of other organizations.

Page 4: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

4

Industry Report

respondents reported using actively licensed commercial software. These respondents reported being better able to meet evolving stakeholder expectations for real-time data products and services, metadata availability, higher level analysis, and timely reporting and publishing. Up to 32% more respondents with actively licensed commercial software reported satisfaction with their data management system in areas such as system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Competing program goals; limited network resources; the rapid adoption of real-time technologies; massive and growing volumes of data; increased data complexity; mounting data consumer expectations … there is no shortage of challenges.

Water resource managers are being proactive in meeting these challenges. The “Global Hydrological Monitoring Industry Survey” has brought to light trends that promise a bright future. New technologies and data management solutions are being implemented so that real-time, high-quality data is more readily available to make important and timely decisions about precious water resources. Quality Management Systems and internationally accepted standards are being adopted to improve data quality and interoperability.

There is more good news. Survey results show that water resource managers forecast the size of their teams to grow by 23% more hydrographers. Salaries have increased in the past decade, which will help attract more hydrologists and hydrographers to the profession. More women are joining the field – they are forecast to make up 34% of the workforce by 2022. And education levels are on the rise – 74% of the workforce is reported to currently hold a bachelor’s degree or higher level education.

A common theme across environmental monitoring agencies is that hydrometric networks are being updated in response to both rapidly evolving end-user expectations and emergent technological opportunity. This finding is not unexpected. What is surprising is how diverse these adaptations have been. There is a lot of experimentation as each agency endeavors to solve many and various challenges with whatever opportunities are most readily available. Widespread convergence on the most successful solutions to common problems is forecast for the coming decade. The detailed findings - described in the following sections - can help you benchmark your organization’s progress and guide planning for future investments in a successful, modern network.

Executive SummaryAquatic Informatics collected responses online for the “Global Hydrological Monitoring Industry Survey” in September and October of 2012. Over 700 water program managers, hydrologists, engineers, scientists, and hydrographers participated in this international survey, representing hundreds of academic institutions, government agencies, national monitoring organizations, and engineering consulting firms.

The results show increased demand for hydrological monitoring networks to serve multiple needs (including reference for climate change and inventory for water availability) and to serve multiple purposes (including water quantity and continuous water quality monitoring). Yet 72% of water professionals reported that they would need more monitoring stations to adequately meet all of their program goals. There is good news or perhaps optimism in the industry: respondents forecast their network size to grow by 53% over the next decade. The projected increase in the volume of available data will provide new information for expanding priorities.

Data consumers today want real-time information. Meeting the growing information needs of stakeholders is also being addressed by the industry through the mass adoption of real-time monitoring and communications technologies. Digital multichannel data loggers and solid state electronic sensors are currently used by 71% and 67% of respondents, respectively. By 2022, automated sample collection and multi-parameter water quality sensors are expected to be used by 43% and 66% of respondents, respectively. With more continuous data being collected, water resource managers are turning to real-time communications technologies for data transmission. Respondents reported using digital data retrieval (e.g. logger files) for 63% of their stations in 2012. By 2022, approximately 40% of stations are forecasted to use web enabled sensors, satellite, and/or telephone to transmit water monitoring data.

The rapid adoption of continuous monitoring and real-time communication technologies has resulted in large volumes of complex data. Naturally, water resource professionals today are concerned with ensuring data quality, defensibility, and interoperability. They are implementing clearly documented Quality Management Systems and adopting internationally accepted standards. More specifically, 62% of question respondents have adopted “clearly communicated objective(s) for data quality.” 66% of respondents use, or plan to start using, the U.S. Geological Survey (USGS) accepted standard operating procedure reference documents. Water managers want to produce data that they can trust.

Consumers of hydrological data today also have high expectations – they want immediate access to continuous information that is quality controlled. Tolerance for data faults in dynamic data has declined. Demand for metadata and higher level analysis has increased. Quality controlled data is expected to be published sooner. Results show that by 2022, the most popular data publishing methods are forecasted to be Web 2.0 (e.g. dynamic content), Web services (e.g. SOAP, REST, WaterML, XML), and mobile device dissemination (e.g. iPhone), adopted by 59%, 52%, and 58% of water professionals, respectively.

How are water resource professionals managing the growing volumes of hydrological data to meet stakeholder demands for real-time information? They depend on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of environmental data from disparate sources. But the performance of data management systems varies. Office Software like Microsoft® Excel is still the most commonly used tool, used by 35% of respondents as their primary data management system. Other data management systems in use include custom solutions and integrated environmental systems. Additionally, 23% of

The hydrological monitoring industry is undergoing rapid evolution worldwide. The last decade has seen a paradigm shift in environmental monitoring technologies, standards, and best practices. The industry transformation will continue over the next decade.

The changes are real, significant, and substantial. The growing global population is placing unprecedented burden on water resources, needed not only for safe drinking water, but also to support our agriculture, energy, transportation, manufacturing, and civil infrastructure. Increasing climate uncertainty invalidates many historic assumptions creating a need for new information for water management and prediction. Regulations are growing in complexity. Water resource managers, hydrologists, and scientists are facing enormous pressure to meet the mounting expectations of stakeholders for high quality, real-time information.

In the fall of 2012, Aquatic Informatics conducted the “Global Hydrological Monitoring Industry Survey” to provide a better understanding of the current state of the industry and to offer further insights on how to address emerging challenges. This report quantifies the current trends and identifies the strategies being adopted in water monitoring and data management. It provides water resource professionals with the information that they need to benchmark their hydrological monitoring program against that of other organizations.

66% use, or plan to start using, the U.S. Geological Survey (USGS) accepted

standard operating procedure reference

documents.

Page 5: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

2

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

respondents reported using actively licensed commercial software. These respondents reported being better able to meet evolving stakeholder expectations for real-time data products and services, metadata availability, higher level analysis, and timely reporting and publishing. Up to 32% more respondents with actively licensed commercial software reported satisfaction with their data management system in areas such as system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Competing program goals; limited network resources; the rapid adoption of real-time technologies; massive and growing volumes of data; increased data complexity; mounting data consumer expectations … there is no shortage of challenges.

Water resource managers are being proactive in meeting these challenges. The “Global Hydrological Monitoring Industry Survey” has brought to light trends that promise a bright future. New technologies and data management solutions are being implemented so that real-time, high-quality data is more readily available to make important and timely decisions about precious water resources. Quality Management Systems and internationally accepted standards are being adopted to improve data quality and interoperability.

There is more good news. Survey results show that water resource managers forecast the size of their teams to grow by 23% more hydrographers. Salaries have increased in the past decade, which will help attract more hydrologists and hydrographers to the profession. More women are joining the field – they are forecast to make up 34% of the workforce by 2022. And education levels are on the rise – 74% of the workforce is reported to currently hold a bachelor’s degree or higher level education.

A common theme across environmental monitoring agencies is that hydrometric networks are being updated in response to both rapidly evolving end-user expectations and emergent technological opportunity. This finding is not unexpected. What is surprising is how diverse these adaptations have been. There is a lot of experimentation as each agency endeavors to solve many and various challenges with whatever opportunities are most readily available. Widespread convergence on the most successful solutions to common problems is forecast for the coming decade. The detailed findings - described in the following sections - can help you benchmark your organization’s progress and guide planning for future investments in a successful, modern network.

Executive SummaryAquatic Informatics collected responses online for the “Global Hydrological Monitoring Industry Survey” in September and October of 2012. Over 700 water program managers, hydrologists, engineers, scientists, and hydrographers participated in this international survey, representing hundreds of academic institutions, government agencies, national monitoring organizations, and engineering consulting firms.

The results show increased demand for hydrological monitoring networks to serve multiple needs (including reference for climate change and inventory for water availability) and to serve multiple purposes (including water quantity and continuous water quality monitoring). Yet 72% of water professionals reported that they would need more monitoring stations to adequately meet all of their program goals. There is good news or perhaps optimism in the industry: respondents forecast their network size to grow by 53% over the next decade. The projected increase in the volume of available data will provide new information for expanding priorities.

Data consumers today want real-time information. Meeting the growing information needs of stakeholders is also being addressed by the industry through the mass adoption of real-time monitoring and communications technologies. Digital multichannel data loggers and solid state electronic sensors are currently used by 71% and 67% of respondents, respectively. By 2022, automated sample collection and multi-parameter water quality sensors are expected to be used by 43% and 66% of respondents, respectively. With more continuous data being collected, water resource managers are turning to real-time communications technologies for data transmission. Respondents reported using digital data retrieval (e.g. logger files) for 63% of their stations in 2012. By 2022, approximately 40% of stations are forecasted to use web enabled sensors, satellite, and/or telephone to transmit water monitoring data.

The rapid adoption of continuous monitoring and real-time communication technologies has resulted in large volumes of complex data. Naturally, water resource professionals today are concerned with ensuring data quality, defensibility, and interoperability. They are implementing clearly documented Quality Management Systems and adopting internationally accepted standards. More specifically, 62% of question respondents have adopted “clearly communicated objective(s) for data quality.” 66% of respondents use, or plan to start using, the U.S. Geological Survey (USGS) accepted standard operating procedure reference documents. Water managers want to produce data that they can trust.

Consumers of hydrological data today also have high expectations – they want immediate access to continuous information that is quality controlled. Tolerance for data faults in dynamic data has declined. Demand for metadata and higher level analysis has increased. Quality controlled data is expected to be published sooner. Results show that by 2022, the most popular data publishing methods are forecasted to be Web 2.0 (e.g. dynamic content), Web services (e.g. SOAP, REST, WaterML, XML), and mobile device dissemination (e.g. iPhone), adopted by 59%, 52%, and 58% of water professionals, respectively.

How are water resource professionals managing the growing volumes of hydrological data to meet stakeholder demands for real-time information? They depend on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of environmental data from disparate sources. But the performance of data management systems varies. Office Software like Microsoft® Excel is still the most commonly used tool, used by 35% of respondents as their primary data management system. Other data management systems in use include custom solutions and integrated environmental systems. Additionally, 23% of

The hydrological monitoring industry is undergoing rapid evolution worldwide. The last decade has seen a paradigm shift in environmental monitoring technologies, standards, and best practices. The industry transformation will continue over the next decade.

The changes are real, significant, and substantial. The growing global population is placing unprecedented burden on water resources, needed not only for safe drinking water, but also to support our agriculture, energy, transportation, manufacturing, and civil infrastructure. Increasing climate uncertainty invalidates many historic assumptions creating a need for new information for water management and prediction. Regulations are growing in complexity. Water resource managers, hydrologists, and scientists are facing enormous pressure to meet the mounting expectations of stakeholders for high quality, real-time information.

In the fall of 2012, Aquatic Informatics conducted the “Global Hydrological Monitoring Industry Survey” to provide a better understanding of the current state of the industry and to offer further insights on how to address emerging challenges. This report quantifies the current trends and identifies the strategies being adopted in water monitoring and data management. It provides water resource professionals with the information that they need to benchmark their hydrological monitoring program against that of other organizations.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Up to 32% more respondents with actively licensed

commercial software reported satisfaction

with their data management system.

5

Page 6: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 50 100 150 200

Academic Institution

Environmental NGO

Government – International

Government – Municipal

Government – National (e.g. USGS)

Government – Regional

Government – State/Provincial

Government – Tribal (First Nation)

Private Sector – Consulting Engineering

Private Sector – Hydropower

Private Sector – Mining / Oil / Gas

Other

23%3%

1%5%

19%9%

19%1%

15%2%1%

4%

Which of the following best describes your organization?

respondents reported using actively licensed commercial software. These respondents reported being better able to meet evolving stakeholder expectations for real-time data products and services, metadata availability, higher level analysis, and timely reporting and publishing. Up to 32% more respondents with actively licensed commercial software reported satisfaction with their data management system in areas such as system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Competing program goals; limited network resources; the rapid adoption of real-time technologies; massive and growing volumes of data; increased data complexity; mounting data consumer expectations … there is no shortage of challenges.

Water resource managers are being proactive in meeting these challenges. The “Global Hydrological Monitoring Industry Survey” has brought to light trends that promise a bright future. New technologies and data management solutions are being implemented so that real-time, high-quality data is more readily available to make important and timely decisions about precious water resources. Quality Management Systems and internationally accepted standards are being adopted to improve data quality and interoperability.

There is more good news. Survey results show that water resource managers forecast the size of their teams to grow by 23% more hydrographers. Salaries have increased in the past decade, which will help attract more hydrologists and hydrographers to the profession. More women are joining the field – they are forecast to make up 34% of the workforce by 2022. And education levels are on the rise – 74% of the workforce is reported to currently hold a bachelor’s degree or higher level education.

A common theme across environmental monitoring agencies is that hydrometric networks are being updated in response to both rapidly evolving end-user expectations and emergent technological opportunity. This finding is not unexpected. What is surprising is how diverse these adaptations have been. There is a lot of experimentation as each agency endeavors to solve many and various challenges with whatever opportunities are most readily available. Widespread convergence on the most successful solutions to common problems is forecast for the coming decade. The detailed findings - described in the following sections - can help you benchmark your organization’s progress and guide planning for future investments in a successful, modern network.

Executive SummaryAquatic Informatics collected responses online for the “Global Hydrological Monitoring Industry Survey” in September and October of 2012. Over 700 water program managers, hydrologists, engineers, scientists, and hydrographers participated in this international survey, representing hundreds of academic institutions, government agencies, national monitoring organizations, and engineering consulting firms.

The results show increased demand for hydrological monitoring networks to serve multiple needs (including reference for climate change and inventory for water availability) and to serve multiple purposes (including water quantity and continuous water quality monitoring). Yet 72% of water professionals reported that they would need more monitoring stations to adequately meet all of their program goals. There is good news or perhaps optimism in the industry: respondents forecast their network size to grow by 53% over the next decade. The projected increase in the volume of available data will provide new information for expanding priorities.

Data consumers today want real-time information. Meeting the growing information needs of stakeholders is also being addressed by the industry through the mass adoption of real-time monitoring and communications technologies. Digital multichannel data loggers and solid state electronic sensors are currently used by 71% and 67% of respondents, respectively. By 2022, automated sample collection and multi-parameter water quality sensors are expected to be used by 43% and 66% of respondents, respectively. With more continuous data being collected, water resource managers are turning to real-time communications technologies for data transmission. Respondents reported using digital data retrieval (e.g. logger files) for 63% of their stations in 2012. By 2022, approximately 40% of stations are forecasted to use web enabled sensors, satellite, and/or telephone to transmit water monitoring data.

The rapid adoption of continuous monitoring and real-time communication technologies has resulted in large volumes of complex data. Naturally, water resource professionals today are concerned with ensuring data quality, defensibility, and interoperability. They are implementing clearly documented Quality Management Systems and adopting internationally accepted standards. More specifically, 62% of question respondents have adopted “clearly communicated objective(s) for data quality.” 66% of respondents use, or plan to start using, the U.S. Geological Survey (USGS) accepted standard operating procedure reference documents. Water managers want to produce data that they can trust.

Consumers of hydrological data today also have high expectations – they want immediate access to continuous information that is quality controlled. Tolerance for data faults in dynamic data has declined. Demand for metadata and higher level analysis has increased. Quality controlled data is expected to be published sooner. Results show that by 2022, the most popular data publishing methods are forecasted to be Web 2.0 (e.g. dynamic content), Web services (e.g. SOAP, REST, WaterML, XML), and mobile device dissemination (e.g. iPhone), adopted by 59%, 52%, and 58% of water professionals, respectively.

How are water resource professionals managing the growing volumes of hydrological data to meet stakeholder demands for real-time information? They depend on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of environmental data from disparate sources. But the performance of data management systems varies. Office Software like Microsoft® Excel is still the most commonly used tool, used by 35% of respondents as their primary data management system. Other data management systems in use include custom solutions and integrated environmental systems. Additionally, 23% of

The hydrological monitoring industry is undergoing rapid evolution worldwide. The last decade has seen a paradigm shift in environmental monitoring technologies, standards, and best practices. The industry transformation will continue over the next decade.

The changes are real, significant, and substantial. The growing global population is placing unprecedented burden on water resources, needed not only for safe drinking water, but also to support our agriculture, energy, transportation, manufacturing, and civil infrastructure. Increasing climate uncertainty invalidates many historic assumptions creating a need for new information for water management and prediction. Regulations are growing in complexity. Water resource managers, hydrologists, and scientists are facing enormous pressure to meet the mounting expectations of stakeholders for high quality, real-time information.

In the fall of 2012, Aquatic Informatics conducted the “Global Hydrological Monitoring Industry Survey” to provide a better understanding of the current state of the industry and to offer further insights on how to address emerging challenges. This report quantifies the current trends and identifies the strategies being adopted in water monitoring and data management. It provides water resource professionals with the information that they need to benchmark their hydrological monitoring program against that of other organizations.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

The over 700 respondents represent

a variety of organizations, global geographic regions, and business roles.

6

Page 7: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Which of the following best describes your role?

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 50 100 150 250

Consulting engineer / contractor

Data consumer

Engineer/hydrologist

Field operations

Program manager

Scientist/researcher

Other

200

31%9%

13%34%

5%

6%2%

5%

60%

8%

12%

5%

11%North

America

South America Africa

Asia

Australia &Oceania Region

Europe

In what country is your environmental monitoring network located?

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Survey results represent environmental

monitoring organizations with

networks located in 90 countries.

7

Page 8: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 100

250

350

500

Reference(climate/land-use change)

Scientific investigation

Inventory of water availability

Water treaty obligations

Water license & regulatorycompliance

Real-time risk management(e.g. flood forecasting)

Real-time operations (e.g. reservoirmgmt, fish flow releases)

Watershed stewardship

Planning / policy

Stormwater or urban runoff

Other

50 150

200

300

400

450

IncreasedStableDecreasedDon't KnowNot Applicable

68%

67%

57%

25%

45%

59%

50%

51%

57%

50%

11%

20%

24%

24%

25%

27%1%

10%14%

27%17%

2%

18%2%

5%13%

23%2%

8%15%

25%2%

10%10%

25%4%

6% 5%

21%3%

9% 15%

5%1%

12%27%

1%3%5%

3%3%2%

4%5%

6%

Have the needs served by your hydrological monitoring network (or client networks) changed? Please select all the applicable needs served by your organization below by indicating any change in their demand over the past decade (since 2002)?

600

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

8

Page 9: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

5

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 100

250

350

Water quantity

Continuous waterquality monitoring

Discrete water quality

Groundwater

Meteorologicalmonitoring

Other

50 150

200

300

400

IncreasedStableDecreasedDon't Know

50%

47%

33%

39%

44%

8%

9%

7%

7%

7%

5%

1%

30%

28%

29%

25%

30%

6%

5%

8%

14%

13%

8%

16%

0 100

250

350

500

Water quantity

Continuous waterquality monitoring

Discrete water quality

Groundwater

Meteorological monitoring

Other

50 150

200

300

400

450

PrimarySecondaryNot Applicable

550

70%

44%

30%

43%

40%

8%

22%

41%

41%

30%

43%

4%

6%

12%

26%

23%

14%

27%

Have the areas of focus of your monitoring network (or client networks) changed? Please indicate your primary area of focus and all secondary areas of interest.

Please indicate how the proportion of total resources dedicated to that program has changed in the past decade (since 2002).

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

92% of question participants rated

“water quantity” as either a primary (70%)

or secondary (22%) area of focus.

9

Page 10: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

In your opinion, how would the density of your network’s monitoring stations need to change in order to fully meet your program purposes?

0 50 100 150 200

Increase by more than 100%(i.e. more than double

the network density)

Increase by 50% to 100%

Increase by up to 50%

No change –the monitoring network

is sufficiently dense

Could be decreasedwithout compromisingend user requirements

Don't Know

250

22%21%

16%3%

29%

10%

0 90 180 270 360

2002 (PAST):# of stations

2012 (PRESENT):# of stations

2022 (FORECAST):# of stations

450

269412

228

Is the size of your network (or client networks) changing over time? Please indicate the number (#) of monitoring stations that your organization managed in 2002, 2012, and 2022, including stations that you cooperated on or co-managed.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

72% of question respondents indicated that they would need

to increase the density of their network to

fully meet their program goals.

10

Page 11: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 20 40 60 80

2002 (PAST):# of geophysical variables

2002 (PAST):# of station health variables

2012 (PRESENT):# of geophysical variables

2012 (PRESENT):# of station health variables

2022 (FORECAST):# of geophysical variables

2022 (FORECAST):# of station health variables

199

1270

25

For an average station, how many geophysical variables and station health variables are you monitoring? Please indicate the number of variables monitored in 2002, 2012, and 2022.

370 180

360

Co-operatedor co-managed

in 2002

Co-operating orco-managing in 2012

Will co-operate orco-manage in 2022

90 270

450

YesNoDon’t Know

54%

66%

62%

34%

27%

13%

10%

6%

23%

Does your organization co-operate or co-manage any component of its monitoring network with other agencies / organizations? Is this changing over time?

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

66% of organizations represented in the

survey co-operate or co-manage at least acomponent of their monitoring network with other agencies.

11

Page 12: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 180

360

Staff Gauges

Analogpapercharts

Digitalmulti channel

data loggers

Mechanicalsensors

Solid stateelectronic

sensors

Non-contactsensors

Mechanicalcurrent meter

Acousticmeasurement

devices

Dilutiongauging

Paperfield

forms

Handheldfield

computers

Manual bottle

samples

Automatedsample

collection

Multi-parameter

water quality

Other

90 270

450

200220122022

59%60%

48%

35%19%

8%

37%71%

66%

39%37%

26%

34%67%

64%

6%26%

37%

41%42%

28%

15%47%

52%

11%15%

19%

51%49%

30%

23%60%

59%

59%65%

49%

19%37%

43%

26%61%

66%

4%8%

9%

Are the primary technologies used in your network changing? Please select all the technologies significantly used (i.e. making up 10% or more of your network) in 2002, 2012, and 2022.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

12

Page 13: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 200 400

Stage dischargerating curves

Control structures

Index velocity

Other

100 300

200220122022 500

70%89%

75%41%

56%54%

31%15%36%

3%6%

7%

0% 40% 80%

Analog data retrieval

Digital data retrieval

Radio

Telephone

Satellite

Web enabledsensors

20% 60%

200220122022

4%

16%27%

41%

20%40%

40%33%

24%28%

20%16%

68%63%

46%22%

26%38%

Are your data communications technologies changing? Please select the approximate percentage (%) of stations using the following technologies in 2002, 2012, and 2022. Sums can exceed 100% due to redundant communications technologies used at a single station.

Are your hydrometric monitoring techniques changing? Please select all techniques significantly used (at least 5% of the time) in 2002, 2012, and 2022 (forecast).

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

By 2022, approximately 40% of stations are expected to

use web enabled sensors, satellite, and telephone to transmit

water monitoring data.

13

Page 14: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 140

260

Clearly communicatedobjective(s) for

data quality

Clearly communicatedobjective(s) forservice delivery

Clearly communicatedobjective(s) for

data security

Verificationof data

quality objective(s)using SOP

Audit of SOPcompliance

End-user feedbackfor measurement

of QMS objectives

Continuousimprovement

based onfeedback

70 210

350

Currently ImplementedPlan to Implement No Plans to ImplementDon't Know

62%19%

8%11%

49%21%

12%16%

42%

16%22%

17%

14%

38%23%

22%

21%

23%17%

34%

19%31%

17%28%

39%18%

15%23%

Please indicate your organization's plans for the implementation of the following components of a Quality Management System (QMS).

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

62% of question respondents have

implemented “clearly communicated

objective(s) for data quality.”

14

Page 15: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

If you use, or plan to start using, any internationally accepted standard operating procedure reference documents please specify which ones.

0 50 100 150 200

U.S. GeologicalSurvey (USGS)

International StandardsOrganization (ISO)

World MeteorologicalOrganization (WMO)

Other

250

39%

13%43%

300 350

66%

0 5 10 15 20

2002: # of hydrographers

2012: # of hydrographers

2022: # of hydrographers

25

24

30

24

Is the number of stream hydrographers in your organization changing? Please indicate the number (#) of stream hydrographers in your organization in 2002, 2012, and 2022 (forecast).

30

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

66% use, or plan to start using, the U.S. Geological Survey (USGS) accepted

standard operating procedure reference

documents.

15

Page 16: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

0% 10% 20%

Unscheduledsurvey field visits

(e.g. event response)

Unscheduledmaintenance

field visits(e.g. emergency repairs)

5% 15%

200220122022

23%22%

19%

19%20%

19%

25%

Is the percentage of field trips that are unscheduled changing over time? Please indicate the percentage (%) of total field trips unscheduled in 2002, 2012, and 2022 (forecast).

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0% 20% 40%

Field work

Data processing& management

Hydrology training &professional development

General training(e.g. health & safety)

Administration,communication,

& other10% 30%

200220122022

37%38%

39%

30%35%

39%

13%17%

20%

11%15%

18%

16%21%

23%

50%

Are the activities of the stream hydrographer(s) in your organization changing? Please select the approximate percentage (%) of time dedicated to various responsibilities in 2002, 2012, and 2022 (forecast). The totals should sum to 100%.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

From 2002 to 2022, the percentage of field

trips that are unscheduled is expected

to increase moderately from38% to 42%.

16

Page 17: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0% 20% 40%

Recent hires(0 to 10 years)

Mid-career

Eligible for retirementwithin 10 years

10% 30%

200220122022

24%

29%

26%

35%

36%

40%

30%

35%

38%

Is the demographic composition of your hydrologist / hydrographer workforce changing? Please select the approximate percentage (%) of your hydrologists / hydrographers that are recent hires, mid-career, and retiring within the next 10 years. The totals should sum to 100% for each 2002, 2012, and 2022 (forecast).

0% 10% 20%

Percentageof Women

5% 15%

200220122022 25% 35%30% 40%

34%

24%

16%

Please indicate the gender balance of your hydrologist / hydrographer workforce?

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

By 2022, female hydrologists are forecast to make up 34% of the

workforce.

17

Page 18: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

8%

Increased Significantly

Increased

How have your organization’s salaries for hydrologists / hydrographers changed relative to 10 years ago (accounting for inflation)?

6%

43%

30%

10%

3%

Stable

Decreased

Decreased SignificantlyDon’t Know

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

10K 30K 50K

Recent hires(0 to 10 years)

Mid-career

Eligible for retirementwithin 10 years

20K 40K 60K 80K 100K70K 90K

$47,767 $54,106

$63,725 $70,631

$77,373 $84,134

110K

What are the average salaries for your hydrologist / hydrographer workforce? Please indicate the average salary of your recent hires, mid-career, and retiring hydrologists / hydrographers, including the correct currency. Please skip this question if you cannot make a reliable estimate of the average salary for at least one category. Please indicate the currency for the salary information provided above.

Recent Hires (0 to 10 yrs) Mid-Career

Retirement within 10 yrs

Aswered Question

Canada $54,105.71 $70,631.33 $84,133.82 28

United States $47,766.80 $63,724.64 $77,372.97 88

In the United States, the average salary for recent hires (with 0 to

10 years of experience) is US$47,767

according to question respondents.

18

Page 19: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0% 20% 40%

Percent withbachelor’s

degreeor higher

10% 30%

200220122022

50% 70%60% 80%

82%

74%

62%

90%

Are the education levels of your hydrologist / hydrographer workforce changing? Please indicate the approximate percentage (%) with a bachelor’s degree or higher in 2002, 2012, and 2022 (forecast).

16%

Self-taught

In-housetraining

What are all the sources of hydrology training used by your organization? Please indicate the approximate percent-age (%) of training delivered via the following methods / sources. The total should add to 100%. Are you satisfied with the training resources?

24%

41%

14%

24%

Training from othermonitoring agencies

Academiccourses

Vendor training

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Results show that 74% of hydrologists and

hydrographers in the workforce today hold a

bachelor’s degree or higher level education.

19

Page 20: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

35%24%

7%

1%

Hard copy paperpublications

Telephone / storefronthuman-mediated exchange

Physicaldigital media

Web1.0(e.g. static HTML)

Web 2.0(e.g. dynamic content)

Web services (e.g. SOAP,REST, WaterML, XML, etc.)

Data dissemination viamobile devices

Other200220122022

69%57%

35%

40%

50%66%

47%27%

53%38%

7%46%

59%

34%52%

3%28%

58%

5%10%

Have your organization’s primary data dissemination methods and technologies changed? Please select all the communication methods and technologies significantly used in 2002, 2012, and 2022 (forecast).

0 50 100 150 200 250 300 350

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

2012, Web 2.0, Web services, and mobile

publishing are used by 46%, 34%, and 28%

of question respondents.

20

Page 21: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

0 60 120

Missing data

Estimated periods e.g. reconstructed

from surrogates)

Degradedquality data

(e.g. poorrating curve)

30 90

IncreasedStableDecreasedDon't KnowNot Applicable

33%

22%

23%

26%

33%

27%

19%16%

6%

12%21%

9%

19%22%

7%

150

Have end-users become more sophisticated in their understanding of the data production process? Please indicate if the number of queries or complaints about missing / estimated / degraded quality in the final data product has changed in the past decade (since 2002).

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 60 120

Real-time datacommunications fault

(i.e. missing data)

Spurious real-timedata errors

(e.g. spikes, flat lines)

Systematicreal-time data

errors (e.g. sensormis-calibration)

30 90

24%

16%

13%

26%

29%

27%

27%14%

10%

25%17%

10%

29%19%

11%

IncreasedStableDecreasedDon't KnowNot Applicable

Has end-user dependence on real-time products and services changed? Please indicate how end-user acceptance for data faults in real time data has changed over the past decade (since 2002).

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Participants reported an increase in the

number of complaints for missing data

(33%), estimated periods (22%), and

degraded data (23%) since 2002.

21

Page 22: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

0 60 120

Ability to say exactlywhat data was

publicly accessible

Ability to communicatethe data version

to the public

Ability to authenticatedata changes

Ability todifferentiate &

verify data path

30 90

IncreasedStableDecreasedDon't KnowNot Applicable

49%

56%

49%

27%

25%

27%

3% 12%8%

3%11%

5%

2%15%

5%44%

25%3%

18%8%

Have expectations for version control and traceability to source for published data changed? Please indicate how the importance of the following aspects of data auditability has changed over the past decade.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

0 60 120

2002 Daily means

2002 Unit values

2022 Daily means

2022 Unit values

30 90

AnnualQuarterlyWeeklyDynamicNot Applicable

39%

36%

13%

18%

15%

14%

6% 9%17%

6%11%

17%

10% 46%9%

10%11%

8%46%

10%

Are expectations changing with respect to the granularity and timeliness of quality controlled data? Please indicate the duration of the complete data production cycle (e.g. for final published, archival quality, products or reports) past, present, and forecast. The ‘dynamic’ choice represents continuous data production using web services.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

By 2022, 46% of respondents expect to report daily means and unit values dynamically

(in near real-time).

22

Page 23: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

42%

72%

76%

52%

83%

29%

18%

11%

30%

9%1%

4%

4%9%

3%

4%13%

10%

2%5%

3%

1%6%6%

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Specialized plotting(e.g. double mass curves,

piper plots)

Advanced statistics, trend /frequency analyses

Geospatial analysis(e.g. collective

analyses bybio-geo-physical

classification)

Synthesis reports /retrospective

analysis /case studies

Modeling (e.g.hydrologic /

hydraulic /water quality)

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

Have expectations for higher level analysis and interpretation of the data changed? Have expecta-tions for metadata and supplementary data access changed? Please indicate how the importance of the following services has changed over the past decade (since 2002).

63%

53%

53%

39%

43%

32%

35%

36%

42%

35%

9%6%

3%7%

6%

1%3%

1%

2%6%

2%

3%5%

1%

Site location& description

Station equipmentinformation

Station operationinformation/

gauge history

Field visit notes

Rating curves

Unpublishedobservational

data

Standardsreference

documents

IncreasedStableDecreasedDon't KnowNot Applicable 0 120

240

60 180

300

0 140

280

70 210

350

2%

35%

50%

35%

37%2%

4%

9%

6%2%

3%

13%

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

23

Page 24: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Many organizations do not have enough time,

qualified staff, nor the right data management

tools to publish massive volumes of continuous data as

quickly as expected.

24

Page 25: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

3%

Actively licencedcommercial hydrological

data managementsystem

Unsupported(or highly

customized)commercial hydrological

data managementsystem

35%23%

5%

10%24%

Which data management system does your organization primarily use? How many years have you been using it?

Custom solution –built by contractor

Custom solution –built & supported

in-house

Integratedenvironmental

system software(e.g. YSI, FTS, etc.)

Office software(E.g. Microsoft Excel)

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

28% of respondents use a commercial hydrological data

management system, either

actively licensed (23%) or unsupported (5%).

25

Page 26: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

0 80 160

Timeliness - real-timeproducts & services

Accuracy - archival dataquality & completeness

Defensibility - version control& traceability to source

Reporting - faster publishingof archival quality data

Analytics - higher levelanalysis & interpretation

Metadata -availability of

metadata

40 120

200

VeryEffectiveSomewhatEffectiveSomewhatIneffectiveIneffectiveDon't KnowNot Applicable

33%48%

11%4%

2%1%

22%47%

12%12%

2%4%

25%42%

13%9%

7% 1%

20%39%

22%11%

5% 1%

24%44%

13%10%

6% 2%

20%39%

16%11%

8% 4%

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

What is the effectiveness of your current data management system in enabling you to meet the expectations of today's data consumers?

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Respondents using commercial hydrological

software were more likely to rate their

system as very effective or effective (by 6 to

22% depending on the type of consumer

expectation).

26

Page 27: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

0 100

250

Total Cost ofOwnership

Ease of use / training

Data security

Responsiveness(e.g. to emerging technologies

& evolving end-userexpectations)

Performance(e.g. speed of data queries)

Reliability

Breadth offeatures/

functionality

50 150

200

Very SatisfiedSomewhat SatisfiedSomewhat UnsatisfiedUnsatisfiedDon’t Know

29%

22%

29%

15%

23%

28%

15%

39%

49%

38%

37%

41%19%

11%4%

7%17%

22%

43%16%

7%3%

39%22%

15%6%

11%5%

16%

15%10%

3%

11%10%

11%

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

What is your level of satisfaction with your existing system (inclusive of support) relative to the following attributes?

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Up to 32% more respondents who are

using commercial hydrological software reported being very or

somewhat satisfied with their system when

compared to respondents using custom solutions,

integrated environmental systems, and

Microsoft Office.

27

Page 28: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

392

389

385

383

382

383

390

388

384

381

382

386

382

382

382

381

Time series data editing & correction

Development & maintenance of rating curves & shifts

Data history / auditability (who, what, when, why)

Automated corrections

Support for other river discharge models (e.g. index

Data approval, locking, & workflow control

Ease of importing data (e.g. time series, gauging

Real time alerts & notifications

Integration with enterprise GIS

User web access to data management system

Reporting & report configurability

Discrete sample analysis (e.g. cluster analysis)

Data visualization options & interactivity

Level of integration with telemetry systems

Database security, backup, failover, & general system

CountResponseFeatures of a Data Management System

234

316

204

217

113

92

214

252

230

162

238

266

115

202

183

210

VeryImportant

100

62

109

95

154

163

121

98

133

157

117

98

174

138

118

112

SomewhatImportant

27

5

31

26

40

51

17

15

10

30

13

14

49

25

50

36

SomewhatUnimportant

24

3

27

21

43

43

21

4

4

13

6

2

25

11

23

12

NotImportant

7

3

14

24

32

34

17

19

7

19

8

6

19

6

8

11

Don’tKnow

QuestionTotals

answered question

Data dissemination & publication to data consumers

Please rate the importance of each of the following features in a data management system.

394

28

Page 29: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

18%

10%

30%

16%

6%

12%

18%

23%

14%

27%

8%14%

2%

11%6%

22%26%

34%

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Industry Report

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

Page 30: Report: Global Hydrological Monitoring Industry Trends | Aquatic Informatics

Geographic Location

The survey results represent environmental monitoring organizations with networks located in 90 countries around the world, including a high representation from the United States (42%) and Canada (15%). Six continents are represented: North America (60%), Asia (12%), Europe (11%), Africa (8%), South America (5%), and Australia and the Oceania Region (5%).

Business Roles

The majority of participants fit the role of scientist / researcher (34%), engineer / hydrologists (31%), program manager (13%), field operations (9%), and consulting engineer / contractor (6%).

Data Management Systems

Office Software (e.g. Microsoft Excel) is still the most commonly used tool to manage hydrological data – used by 35% of respondents as their primary data management system. 34% reported the use of a custom solution (24% build in-house and 10% build by a contractor) and 28% use a commercial hydrological data management system, either actively licensed (23%) or unsupported (5%).

Note: the USGS recently announced the retirement of its custom ADAPS system, in favorof the commercially available AQUARIUS Software. It is likely that large and smallorganizations around the world (which look to the USGS for best practices) will now followtheir lead and adopt commercial data management systems.

Section 1. ProfileThe “Global Hydrological Monitoring Industry Survey” was distributed to public and private organizations globally. It was promoted by Aquatic Informatics, the International Association of Hydrological Sciences (IAHS), the World Meteorological Organization (WMO), and the American Water Resources Association (AWRA). As a result of the broad distribution of the survey, respondents represent a variety of organizations, global geographic regions, and business roles.

Type of Organization

Question participants represented various types of environmental monitoring organizations, including: academic institutions (23%), national government agencies (19%), state and provincial governments (19%), consulting engineering firms (15%), and regional/municipal governments (14%).

SECTION 2: Network DesignThe business of monitoring water is complex and growing in complexity. Over the past decade there has been a significant increase in the demand for hydrological monitoring networks to serve multiple needs, including scientific investigation, reference for climate/land-use change, planning and policy, and inventory for water availability. Hydrological monitoring programs are also serving multiple purposes, including water quantity monitoring, continuous water quality management, meteorological monitoring, and groundwater management. Allocating resources to these areas of focus is a challenge with increasing pressures to provide better data to meet all program priorities.

And yet, water professionals report insufficient network density to meet all of their program purposes. This is perhaps why a growing majority of organizations are cooperating or co-managing at least some component of their monitoring network with other agencies. The good news is that survey respondents remain optimistic about the growth of their monitoring network. The average number of stations per network is forecasted to grow by 53% over the next decade, and even more drastic growth is expected in the number of combined geophysical and station health variables measured per station. While added resources will improve the ability of water resource managers to address the challenges of managing their network design, it will also contribute to the growing complexity and volume of data used to manage important water resources.

Needs Served

Hydrological monitoring networks are designed to serve a multitude of needs – 99% of respondents indicated that their network serves more than one need and over 115 participants selected “other” for this question. Some of the most common needs served include: scientific investigation (by 94% of question respondents), reference for climate/land-use change (90%), planning / policy (86%), and inventory of water availability (85%). It is also clear from the responses that the needs served by hydrological monitoring networks have increased in demand over the past decade.

Station Density

Water professionals who responded to this question feel that their current monitoring programs have an insufficient number of monitoring stations to adequately meet all of their program goals. Indeed, most (72%) indicated that they would need to increase the density of their network to fully meet their program goals:

22% by more than 100%, 21% by 50 to 100%, and29% by up to 50%.

Size of Network

There is good news: the size of networks is on the rise. With an average of 269 monitoring stations per network today, respondents reported an 18% increase in network size since 2002. Participants are optimistic about the growth of their network, forecasting a further 53% increase in their network over the next decade.

Areas of Focus

Hydrological monitoring is a multipurpose activity – water resource professionals identified an average of 4.2 primary and/or secondary areas of focus for their monitoring network. It is clear that “water quantity” rated highest in popularity, applicable to 92% of question participants as either a primary (70%) or secondary (22%) area of focus. Nearly 90 participants selected “other” in this question, noting areas of focus such as sediment transport, stable isotopes, and stormwater management. Note: Many people identified multiple areas of focus as primary.

Since 2002, there has generally been an “increase” in the resources dedicated to the following program purposes: water quantity (50%), continuous water quality (47%), meteorological monitoring (44%), groundwater (39%), and discrete water quality (33%).

Number of Variables

The average number of variables monitored per station has also grown since 2002 by approximately 29%, and the volume of data is expected to grow at a more rapid rate over the next decade. (Note: specific averages are not provided in this report because a number of participants appeared to provide a “total” rather than “average” number of stations, skewing the data.)

Partnering & Co-operating

The majority of organizations represented in the survey co-operate or co-manage at least a component of their monitoring network with other agencies, perhaps as a cost saving measure and to increase the volume of data they need to meet their program goals. The percentage of respondents who co-operate with other organizations has grown from 54% in 2002 to 66% today, and this is expected to remain fairly stable into 2022. Co-operating organizations specified, in order of popularity, included the USGS, state/provincial governments, Water Survey Canada, the US Bureau of Reclamation, and many others.

SECTION 3: TechnologyAs previously noted, results from the “Global Hydrological Monitoring Industry Survey” show that water resource professionals expect to manage 53% more monitoring stations by 2022 and that the average number of geophysical and station health variables monitored per station is on the rise. But these are not the only factors contributing to the drastic growth in the quantity and complexity of water data being managed.

The trends are revealing mass adoption of continuous monitoring and real-time communication technologies, resulting in incredible volumes of data. Today’s water resource managers are collecting, storing, managing, analyzing, and publishing more continuous hydrological data than ever before.

Primary Monitoring Technologies

The decline in the use of analog paper charts comes as no surprise – by 2022 only 8% of respondents expect analog paper charts to be significantly used in their network. The exciting trend is the rapid rate at which the industry is mass adopting technologies for continuous monitoring.

On the water quantity side, there has been major growth in the use of digital multichannel data loggers, from 37% of respondents in 2002 to 71% today. The use of solid state electronic sensors has also grown significantly from 34% of respondents ten years ago to 67% today. There is a similar trend for the use of acoustic measurement devices from 15% a decade ago to 47% today, and usage is forecasted to grow to 52% by 2022.

On the water quality side, the use of manual bottle sampling is reaching its peak – while 65% of respondents report using manual bottle sampling today, only 49% expect to use it significantly by 2022. The trends are towards the adoption of automated sample collection and multi-parameter water quality sensors used respectively by 37% and 61% of respondents today, with growth expected to continue to 43% and 66% by 2022.

SECTION 4: Quality ManagementWith larger volumes of data to manage than ever before, today’s water resource professionals are concerned with ensuring data quality and interoperability. They want to use the right and most current hydrological science and principles. They want to produce credible and defensible data. They want to compare their data to those of their peers. Most importantly, they want to produce data that they can trust. This is why today’s water managers are implementing clearly documented Quality Management Systems and adopting internationally accepted standard operating procedures.

Quality Management System

The most highly adopted component of a Quality Management System today is “clearly communicated objective(s) for data quality” – currently implemented by 62% of respondents to this question, with an additional 19% reporting plans for implementation by 2022.

“Clearly communicated objective(s) for service delivery” and “data security” are also currently implemented by 49% and 42% of respondents, respectively. These numbers are forecasted to jump by over 20% in the next decade.

Communications Technologies

The use of analog data retrieval is on the decline – while used for 38% of stations in 2002, this number is expected to drop to 22% by 2022. The most popular communications technology used today is digital data retrieval (e.g. logger files) used for 63% of stations, an increase of 18% since 2002. The most drastic trend is the adoption of web enabled sensors (e.g. Internet Protocol Communications) – while only used for 4% of stations in 2002, they are used for 20% of stations today, and are expected to double in usage by 2022. By 2022, approximately 40% of stations will each use web enabled sensors, satellite, and telephone to transmit water monitoring data. An interesting note: the results show that redundant technologies are being used as a best practice to guarantee timely availability of critical water data.

Monitoring Techniques

The stage discharge rating curve is the most common water monitoring technique, currently used by 89% of professionals who responded to this question. This technique may be reaching its height in popularity and applicability – while still the most common technique, only 75% of participants expect to be using it by 2022. This can perhaps be explained by the rise in use of the index velocity model. While only 15% of respondents used index velocity modeling in 2002, 31% use it today, and 36% forecast using it by 2022. The second most popular technique is control structures, currently used by 56% of survey participants.

Standard Operating Procedures

Most water resource professionals surveyed also use or plan to start using one or more sets of internationally accepted standard operating procedure reference documents. The most popular source is the U.S. Geological Survey (USGS), being adopted by 66% of respondents. Water professionals are also turning to the World Meteorological Organization (WMO) and International Standards Organization (ISO), selected by 43% and 39% of participants, respectively. This is good news for the industry – water professionals are working towards a better future with greater data quality, consistency, and interoperability.

SECTION 5: Training & HRWhile the average number of hydrographers per organization has not changed since 2002, the demographic composition of the workforce has. Women are making up a larger portion of the workforce – they are expected to account for one third of hydrologists and hydrographers by 2022. Survey results also show that the workforce is more educated, with nearly three quarters holding a bachelor’s degree or higher level education. Perhaps the most interesting trend for hydrologists and hydrographers, is the growth in salaries: 49% of respondents reported an increase or significant increase over the past decade. Results for the United States show that hydrographers in the middle of their career currently make an average annual salary of $63,725 USD.

Number of Hydrographers

While the complexity of hydrological program management has grown, the teams responsible for monitoring water resources have not. Respondents reported having approximately 24 hydrographers in their organization in 2002 as well as today. It is feasible that the mounting pressure on today’s hydrographers to do more with limited resources is leading to optimism in the growth of teams, which are expected to grow by an average of 6 hydrographers over the next decade.

Hydrographer Activities

“Field work” and “data processing & management” have and will continue to take up the majority of the stream hydrographer’s schedule. What is interesting is that over the past decade slightly less time is being dedicated to field work and more time is being dedicated to data processing, a trend that will continue over the next decade. This trend makes sense as new technologies require fewer scheduled field visits, while the growth in the volume of data they produce means more time is needed for data management.

Unscheduled Field Trips

Almost 60% of field visits today are scheduled. From 2002 to 2022, the percentage of field trips that are unscheduled is expected to increase moderately from 38% to 42%, with the growth coming from unscheduled survey field visits in response to hydrological events. Unscheduled maintenance field visits are expected to remain stable.

Demographic Composition

Recent hires are a growing demographic. While they made up 30% of hydrographer teams in 2002, they are expected to make up 38% by 2022. This means hydrology training and mentorship will continue to be important components of building successful teams.

Gender Balance

While historically a more male dominated profession, hydrology is attracting a growing number of females. Women accounted for only 16% of hydrographers in 2002, as reported by survey respondents. This number is forecasted to more than double to 34% by 2022.

Average Salaries

Salaries are a sensitive topic – only 200 survey participants completed this question. Salaries reported varied widely internationally, making it challenging to provide representative data outside of Canada and the Unites States. The average annual salaries for these countries are reported here in U.S. dollars (the exchange rate used was provided by the Bank of Canada on September 28, 2012). For the United States, respondents reported that recent hires (0 to 10 years) earn an average salary of $47,767 while those eligible for retirement within 10 years earn $77,373 annually.

Salary Change

Organizations today must pay more to compete for qualified hydrographers. 49% of survey respondents indicated that hydrologist salaries have increased or increased significantly over the past decade, while only 13% reported a decrease or significant decrease.

SECTION 6: Data Consumer & Stakeholder ExpectationsData consumer and stakeholder expectations are mounting. Today, end-users expect immediate access to continuous environmental information that is accurate. They want access to dynamic hydrological data via the web and mobile devices, and more, they want access to web services.

Stakeholders have lower tolerance for data faults in dynamic data. They are also less accepting of missing, estimated, and degraded quality data. They expect published data to be auditable, supported by version control and traceability to source. Quality controlled data must be available sooner.

In fact, today’s data consumers expect more than high quality real-time data. Their demand for metadata and supplementary data has also increased significantly over the past decade. And they expect higher level analysis and interpretation. Survey respondents report an increase in the importance of modeling, geospatial analysis, advanced statistics, trending, frequency analysis, specialized plotting, synthesis reports, and retrospective analysis. The evolving expectations of data end-users create no shortage of challenges for today’s time- and resource-limited water resource professionals.

Data Dissemination Methods

Once amongst the most popular data dissemination methods, expensive print and telephone communications are on the decline – only 35% and 24% of respondents expect to be using these methods by 2022, respectively. The trend shows the rapid adoption of communication methods that support real-time data publication. Web 2.0, Web services, and mobile publishing are used by 46%, 34%, and 28% of survey respondents today, representing growth rates ranging between 500 to 900% since 2002. These three real-time communications methods are forecasted to be the most popular by 2022.

Education

The workforce for hydrologists and hydrographers is becoming more educated. Today, 74% hold a bachelor’s degree or higher level education, as reported by survey respondents. This number can be compared to 62% in 2002 and is forecasted to grow to 82% by 2022. This higher education is likely a contributing factor in the increase of salaries for hydrologists and hydrographers.

Training

In-house training is the most popular source of hydrology training used by 41% of organizations surveyed, followed by academic courses (24%), and self-taught options like Internet research (24%). Survey participants reported their general satisfaction the training options. Depending on the training source, only between 18% and 21% said that they were not satisfied, indicating some room for improvement.

Real-Time Products & Services

Today, stakeholders and end-users are generally less tolerant of data faults related to real-time products and services. Their acceptance of spurious real-time data errors is more likely to have decreased (25%) than increased (16%). The same trend is true for the acceptance of systematic real-time data errors, which is more likely to have decreased (29%) than increased (13%). The expectations of data end-users have evolved over the past decade. They want real-time data they can trust, requiring today’s water resource managers to automate the QA/QC of their real-time data.

Data Production Process

Data consumers are generally less tolerant today of missing, estimated, and degraded quality data than they were 10 year ago. More survey participants reported an increase in the number of queries or complaints for missing data (33%), estimated periods (22%), and degraded data (23%), than a decrease (19%, 12%, and 19% respectively).

Version Control

A more drastic change in data end-user expectations pertains to version control and source traceability. Most (or 56% of) survey respondents reported that the importance of “communicating the data version to the public” has increased over the past decade, with only 3% reporting a decrease. 49% indicated that the importance of “authenticating exactly who made changes to the data, when, how, and why” has increased, while only 2% reported a decrease. Users want published data they can trust, and data auditability builds that trust.

Granularity & Timeliness

Quality controlled data is available sooner today than it was ten years ago, and this trend will continue into 2022. Ten years ago, 39% of respondents published their daily means annually and 36% published unit values annually. By 2022, 46% of respondents expect to report daily means dynamically and 46% forecast publishing unit values dynamically.

Specialized hydrologic data management systems are commercially available to meet the evolving needs of hydrologists and to support current industry standards for water information management. Results from this survey show that actively licenced commercial software is used by 23% of water professionals. These respondents reported being able to better meet the evolving expectations of data consumers for faster reporting and publishing, the availability of metadata, and the delivery of real-time products and services. These water resource professionals also reported higher satisfaction rates with their commercial data management system, in all areas including system responsiveness to emerging technologies, performance, reliability, data security, and breadth of features.

Data Management Challenges

Survey respondents were asked to describe their water data management challenges in an open-ended question. Nearly 250 water resource professionals shared their challenges in their own words. The most common responses can be categorized as follows.

Data Volumes. Many organizations are collecting more hydrological data than is being processed – they are data rich, but information poor. These organizations simply do not have enough time, qualified staff, nor the right data management tools to centralize, quality control, analyze, and publish massive volumes of continuous data to support the real-time information demands of stakeholders and end-users.

Lack of Funding/Staff/Training. Funding is limited. The number of qualified staff available to manage complex datasets is limited: “there is too much data and not enough staff.” Organizations are finding it challenging to attract, train, and retain qualified staff to consistently process hydrometric data, even with standard operating procedures in place.

Data Quality Control/Standards/Validation. Many water resource managers are finding it impossible to turn continuous data into real-time quality controlled information. They are finding it hard to implement standard operating procedures that support changing international standards. Staff turnover and the geographic dispersion of teams are making change management difficult. They are also finding it challenging to automate quality assurance and quality control (QA/QC) without the right tools in place.

Data Consolidation/Data Management System. Many water resource managers are ill-equipped to centrally manage of their water data. They are expected to store data in different locations, using disconnected software tools. Their legacy systems cannot be updated to meet current needs and data volumes. Historical data is difficult to access. Data is stored in various measures/units. These water resource managers need a customizable modern data management platform to support their real-time water data processing needs.

Data Dissemination. Respondents shared their challenges in publishing timely data to meet internal organization and external public demands. It is simply taking too long to process continuous data, and the reporting and publishing tools are either inflexible or not available to them.

Effectiveness

Today’s data management systems could be more effective in enabling water professionals to meet the expectations of data consumers. This is particularly true for organizations using custom solutions, integrated environmental systems, and Microsoft Office.

36% of these respondents (not using commercial software) rated their system as somewhat ineffective or ineffective in enabling them to meet consumer expectations for faster reporting and publishing. 34% of them reported system ineffectiveness in making metadata available – while only 10% of respondents with commercial software rated their system as somewhat ineffective or ineffective. Of respondents not using commercial software, 28% rated their system as ineffective in the timely delivery of real-time products and services. Organizations using commercial hydrological software were more likely to rate their system as very effective or effective (by 6 to 22% depending on the type of consumer expectation).

Satisfaction

Water resource managers can and should be more satisfied with their data management system. Again, more (up to 32% more) respondents who are using commercial hydrological software reported being very or somewhat satisfied with their system when compared to respondents using custom solutions, integrated environmental systems, and Microsoft Office.

While 47% of respondents not using commercial software reported dissatisfaction with their system’s responsiveness to emerging technologies and consumer expectations, only 16% with commercial software reported dissatisfaction. Respondents not using commercial software also showed high dissatisfaction with their system’s performance (37%), reliability (25%), data security (24%), and breadth of features (44%). The dissatisfaction rate of respondents using commercial software in these areas ranged from only 11% to 15%.

Features

Respondents rated the importance of 16 features of a data management system. This question confirmed that water resource professionals want a system with a wide breadth of features: 64% to 96% of respondents rated features as very or somewhat important, depending on the feature. The most important features as reported by water resource managers include: ease of importing data (96%), time series data editing and correction (92%), data history and auditability (92%), data visualization (90%), and database security, backup, failover, and general system enterprise awareness (89%).

Conclusions & Remarks

Hydrometric network managers continue to be very responsive to the many and various industry challenges and opportunities. Monitoring operations today are very different than they were a decade ago. While the average number of hydrographers has not changed, more needs are being served with more timely and higher quality data. It is clear that even this vastly improved effectiveness is not considered complete. Much more change is anticipated over the coming decade.

How are you managing the increase in needs served by your network? Are you responding by increasing the number of parameters monitored per station, by increasing the station density or by co-operating with other agencies?

How effectively are you using enabling technologies? The use of multi-channel data loggers, multi-probe sensors and acoustic doppler measurement devices are replacing more traditional technologies.

Are you meeting widely held expectations for data timeliness? What proportion of your network is connected to telemetry systems and what methods are you using for data publication?

The use of advanced technologies requires a better educated, highly skilled workforce. Are you paying enough and are your training methods sufficient to meet your needs over the coming decade?

Are you able to clearly state what your objectives are for data quality, service, and security? Are you able to demonstrate compliance with internationally recognized standard operating procedures?

Do you operate a data management system with sufficient features, performance, reliability, and security to support both (1) the ever increasing volume and complexity of water data and (2) the stakeholder expectations for timely delivery of information products and analyses?

The answers to these questions and the trends highlighted in the report can help you benchmark your network, helping you plan for future investments to ensure the continued success of your hydrological monitoring program.

Published by Aquatic Informatics

Aquatic Informatics™ Inc. provides leading software solutions that address critical water data management and analysis challenges for the rapidly growing environmental monitoring industry. It understands the challenges of environmental data management. Its flagship product AQUARIUS is carefully engineered to ensure a smooth transition to modern best practices for hydrometric monitoring.

AQUARIUS is the time series data management software used by the largest and most advanced hydrological and environmental monitoring agencies, including the USGS and Water Survey Canada, and it is scalable to fit the needs of any size of monitoring network. AQUARIUS has a simple design that combines an intuitive and efficient user interface with the latest hydrological science and techniques. AQUARIUS allows hydrologists and technicians to manage the data they collect more quickly and to a higher level of quality, so they can deliver more effectively on the evolving demands of stakeholders.

AQUARIUS is fully configurable to adapt to and support any Quality Management System. AQUARIUS excels in retrospective data analysis as well as real-time continuous work flow management. It has a unique portfolio of features for real-time sanity checking, error detection, data cleaning, data flagging, automatic bias corrections, and rating shift management to streamline quality controls. AQUARIUS automatically builds an auditable data processing, correction, and editing log, ensuring data defensibility. The AQUARIUS rating development tool is engineered to support the latest global standards set by the USGS, ISO, WMO, and OGC, to ensure the highest confidence in calculations of flow. Its flexible reporting and publishing tools include an extensive list of industry standard report templates and an integrated report template builder for customized reporting.

The AQUARIUS architecture is designed to manage and synchronize data from multiple networks for fast reliable solutions to difficult water management issues. Advanced support for data migration ensures continuity with legacy systems and its state-of-the-art architecture ensures your system is secure, scalable, and integrated. The intuitive AQUARIUS toolboxes combined with comprehensive training and support resources ensure rapid deployment and implementation in any operational environment.

Industry Report

Analysis

The demand for higher level analysis and interpretations has clearly increased since 2002. The importance of “modeling” has increased according to 83% of respondents. The importance of “geospatial analysis” and “advanced statistics, trend, and frequency analysis” has increased as reported by 76% and 72% of participants, respectively. Today’s data consumers want more than just high quality data, they also expect higher level analysis, including specialized plotting, synthesis reports, and retrospective analysis.

Metadata

Over the past decade, the demand for metadata and supplementary data has certainly increased. Most water professionals who responded to this question reported an increase in demand for site location and description (63%), station operation information and gauge history (53%), station equipment information (53%), and standards reference documents and training materials (50%).

So in addition to managing growing volumes of data, water resource professionals are expected to manage increasing volumes of metadata. The use of effective modern data management systems is more critical than ever before.

SECTION 7: Data ManagementIn today’s economy, water resource managers are expected to do more with less. The collections of hydrological data sets have become immensely large and complex, resulting from the rapid adoption of real-time technologies. To add to these challenges, data consumers want dynamic access to quality controlled data and higher level analysis. Water resource managers must rely on their data management systems to capture, store, correct, analyze, visualize, and report on vast volumes of disparate environmental data sources. They are dependent on their data management systems to publish hydrological data efficiently, accurately, and defensibly.

0 2

36.72

37.22

37.72

see how it workswatch AQUARIUS To watch a VIDEO demonstration of

AQUARIUS or to learn more, please visit www.aquaticinformatics.com.

Aquatic Informatics Inc.1100 – 570 Granville St.Vancouver, B.C. V6C 3P1tf: 1.877.870.AQUA (2782)p: +1.604.873.AQUA (2782)

[email protected]

© 2012 Aquatic Informatics Inc.