research article incomplete -fibonacci and -lucas...

8
Hindawi Publishing Corporation Chinese Journal of Mathematics Volume 2013, Article ID 107145, 7 pages http://dx.doi.org/10.1155/2013/107145 Research Article Incomplete -Fibonacci and -Lucas Numbers José L. Ramírez Instituto de Matem´ aticas y sus Aplicaciones, Universidad Sergio Arboleda, Colombia Correspondence should be addressed to Jos´ e L. Ram´ ırez; [email protected] Received 10 July 2013; Accepted 11 September 2013 Academic Editors: B. Li and W. van der Hoek Copyright © 2013 Jos´ e L. Ram´ ırez. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define the incomplete k-Fibonacci and k-Lucas numbers; we study the recurrence relations and some properties of these numbers. 1. Introduction Fibonacci numbers and their generalizations have many interesting properties and applications to almost every field of science and art (e.g., see [1]). Fibonacci numbers are defined by the recurrence relation 0 = 0, 1 = 1, +1 = + −1 , ⩾ 1. (1) ere exist a lot of properties about Fibonacci numbers. In particular, there is a beautiful combinatorial identity to Fibonacci numbers [1] = ⌊(−1)/2⌋ =0 ( −−1 ). (2) From (2), Filipponi [2] introduced the incomplete Fibonacci numbers () and the incomplete Lucas numbers (). ey are defined by () = =0 ( −1− ) ( = 1, 2, 3, . . . ; 0 ≤ ≤ ⌊ −1 2 ⌋) , () = =0 ( ) ( = 1, 2, 3, . . . ; 0 ≤ ≤ ⌊ 2 ⌋) . (3) Further in [3], generating functions of the incomplete Fibonacci and Lucas numbers are determined. In [4], Djord- jevi´ c gave the incomplete generalized Fibonacci and Lucas numbers. In [5], Djordjevi´ c and Srivastava defined incom- plete generalized Jacobsthal and Jacobsthal-Lucas numbers. In [6], the authors define the incomplete Fibonacci and Lucas -numbers. Also the authors define the incomplete bivariate Fibonacci and Lucas -polynomials in [7]. On the other hand, many kinds of generalizations of Fibonacci numbers have been presented in the literature. In particular, a generalization is the -Fibonacci Numbers. For any positive real number , the -Fibonacci sequence, say { , } N , is defined recurrently by ,0 = 0, ,1 = 1, ,+1 = , + ,−1 , ⩾ 1. (4) In [8], -Fibonacci numbers were found by studying the recursive application of two geometrical transformations used in the four-triangle longest-edge (4TLE) partition. ese numbers have been studied in several papers; see [814]. For any positive real number , the -Lucas sequence, say { , } N , is defined recurrently by ,0 = 2, ,1 = , ,+1 = , + ,−1 . (5) If =1, we have the classical Lucas numbers. Moreover, , = ,−1 + ,+1 ,⩾1; see [15]. In [12], the explicit formula to -Fibonacci numbers is , = ⌊(−1)/2⌋ =0 ( −−1 ) −2−1 , (6) and the explicit formula of -Lucas numbers is , () = ⌊/2⌋ =0 ( ) −2i . (7)

Upload: others

Post on 07-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

Hindawi Publishing CorporationChinese Journal of MathematicsVolume 2013 Article ID 107145 7 pageshttpdxdoiorg1011552013107145

Research ArticleIncomplete 119896-Fibonacci and 119896-Lucas Numbers

Joseacute L Ramiacuterez

Instituto de Matematicas y sus Aplicaciones Universidad Sergio Arboleda Colombia

Correspondence should be addressed to Jose L Ramırez joselramirezimausergioarboledaeduco

Received 10 July 2013 Accepted 11 September 2013

Academic Editors B Li and W van der Hoek

Copyright copy 2013 Jose L Ramırez This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We define the incomplete k-Fibonacci and k-Lucas numbers we study the recurrence relations and some properties of thesenumbers

1 Introduction

Fibonacci numbers and their generalizations have manyinteresting properties and applications to almost every fieldof science and art (eg see [1]) Fibonacci numbers 119865

119899are

defined by the recurrence relation

1198650= 0 119865

1= 1 119865

119899+1= 119865119899+ 119865119899minus1 119899 ⩾ 1 (1)

There exist a lot of properties about Fibonacci numbersIn particular there is a beautiful combinatorial identity toFibonacci numbers [1]

119865119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 119894 minus 1

119894) (2)

From (2) Filipponi [2] introduced the incomplete Fibonaccinumbers119865

119899(119904) and the incomplete Lucas numbers119871

119899(119904)They

are defined by

119865119899(119904) =

119904

sum

119895=0

(119899 minus 1 minus 119895

119895) (119899 = 1 2 3 0 le 119904 le lfloor

119899 minus 1

2rfloor)

119871119899(119904) =

119904

sum

119895=0

119899

119899 minus 119895(119899 minus 119895

119895) (119899 = 1 2 3 0 le 119904 le lfloor

119899

2rfloor)

(3)

Further in [3] generating functions of the incompleteFibonacci and Lucas numbers are determined In [4] Djord-jevic gave the incomplete generalized Fibonacci and Lucasnumbers In [5] Djordjevic and Srivastava defined incom-plete generalized Jacobsthal and Jacobsthal-Lucas numbers

In [6] the authors define the incomplete Fibonacci and Lucas119901-numbers Also the authors define the incomplete bivariateFibonacci and Lucas 119901-polynomials in [7]

On the other hand many kinds of generalizations ofFibonacci numbers have been presented in the literature Inparticular a generalization is the 119896-Fibonacci Numbers

For any positive real number 119896 the 119896-Fibonacci sequencesay 119865

119896119899119899isinN is defined recurrently by

1198651198960= 0 119865

1198961= 1 119865

119896119899+1= 119896119865119896119899+ 119865119896119899minus1

119899 ⩾ 1

(4)

In [8] 119896-Fibonacci numbers were found by studyingthe recursive application of two geometrical transformationsused in the four-triangle longest-edge (4TLE) partitionThese numbers have been studied in several papers see [8ndash14]

For any positive real number 119896 the 119896-Lucas sequence say119871119896119899119899isinN

is defined recurrently by

1198711198960= 2 119871

1198961= 119896 119871

119896119899+1= 119896119871119896119899+ 119871119896119899minus1

(5)

If 119896 = 1 we have the classical Lucas numbers Moreover119871119896119899= 119865119896119899minus1

+ 119865119896119899+1

119899 ⩾ 1 see [15]In [12] the explicit formula to 119896-Fibonacci numbers is

119865119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 119894 minus 1

119894) 119896119899minus2119894minus1

(6)

and the explicit formula of 119896-Lucas numbers is

119871119896119899(119909) =

lfloor1198992rfloor

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2i (7)

2 Chinese Journal of Mathematics

From (6) and (7) we introduce the incomplete 119896-Fibonacci and 119896-Lucas numbers and we obtain new recurrentrelations new identities and their generating functions

2 The Incomplete 119896-Fibonacci Numbers

Definition 1 The incomplete 119896-Fibonacci numbers aredefined by

119865119897

119896119899=

119897

sum

119894=0

(119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

0 le 119897 le lfloor119899 minus 1

2rfloor (8)

In Table 1 some values of incomplete 119896-Fibonacci num-bers are provided

We note that

119865lfloor(119899minus1)2rfloor

1119899= 119865119899 (9)

For 119896 = 1 we get incomplete Fibonacci numbers [2]Some special cases of (8) are

1198650

119896119899= 119896119899minus1

(119899 ge 1)

1198651

119896119899= 119896119899minus1

+ (119899 minus 2) 119896119899minus3

(119899 ge 3)

1198652

119896119899= 119896119899minus1

+ (119899 minus 2) 119896119899minus3

+(119899 minus 4) (119899 minus 3)

2119896119899minus5

(119899 ge 5)

119865lfloor(119899minus1)2rfloor

119896119899= 119865119896119899 (119899 ge 1)

119865lfloor(119899minus3)2rfloor

119896119899=

119865119896119899minus119899119896

2(119899 even)

119865119896119899minus 1 (119899 odd)

(119899 ge 3)

(10)

21 Some Recurrence Properties of the Numbers 119865119897119896119899

Proposition 2 The recurrence relation of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is

119865119897+1

119896119899+2= 119896119865119897+1

119896119899+1+ 119865119897

119896119899 0 le 119897 le

119899 minus 2

2 (11)

The relation (11) can be transformed into the nonhomoge-neous recurrence relation

119865119897

119896119899+2= 119896119865119897

119896119899+1+ 119865119897

119896119899minus (119899 minus 1 minus 119897

119897) 119896119899minus1minus2119897

(12)

Proof Use Definition 1 to rewrite the right-hand side of (11)as

119896

119897+1

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894 minus 1

119894) 119896119899minus2119894minus1

=

119897+1

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894+1

+

119897+1

sum

119894=1

(119899 minus 119894

119894 minus 1) 119896119899minus2119894+1

= 119896119899minus2119894+1

(

119897+1

sum

119894=0

[(119899 minus 119894

119894) + (

119899 minus 119894

119894 minus 1)]) minus 119896

119899+1

(119899

minus1)

=

119897+1

sum

119894=0

(119899 minus 119894 + 1

119894) 119896119899minus2119894+1

minus 0

= 119865119897

119896119899+2

(13)

Proposition 3 One has119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894119896119894

= 119865119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904 minus 1

2 (14)

Proof (by induction on 119904) Sum (14) clearly holds for 119904 = 0 and119904 = 1 (see (11)) Now suppose that the result is true for all119895 lt 119904 + 1 we prove it for 119904 + 1

119904+1

sum

119894=0

(119904 + 1

119894)119865119897+119894

119896119899+119894119896119894

=

119904+1

sum

119894=0

[(119904

119894) + (

119904

119894 minus 1)]119865119897+119894

119896119899+119894119896119894

=

119904+1

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894119896119894

+

119904+1

sum

119894=0

(119904

119894 minus 1)119865119897+119894

119896119899+119894119896119894

= 119865119897+119904

119896119899+2119904+ (

119904

119904 + 1)119865119897+119904+1

119896119899+119904+1119896119904+1

+

119904

sum

119894=minus1

(119904

119894) 119865119897+119894+1

119896119899+119894+1119896119894+1

= 119865119897+119904

119896119899+2119904+ 0 +

119904

sum

119894=0

(119904

119894) 119865119897+119894+1

119896119899+119894+1119896119894+1

+ (119904

minus1)119865119897

119896119899

= 119865119897+119904

119896119899+2119904+ 119896

119904

sum

119894=0

(119904

119894) 119865119897+119894+1

119896119899+119894+1119896119894

+ 0

= 119865119897+119904

119896119899+2119904+ 119896119865119897+119904+1

119896119899+2119904+1

= 119865119897+119904+1

119896119899+2119904+2

(15)

Proposition 4 For 119899 ge 2119897 + 2119904minus1

sum

119894=0

119865119897

119896119899+119894119896119904minus1minus119894

= 119865119897+1

119896119899+119904+1minus 119896119904

119865119897+1

119896119899+1 (16)

Chinese Journal of Mathematics 3

Table 1 The numbers 119865119897119896119899 for 1 ⩽ 119899 ⩽ 10

nl 0 1 2 3 41 12 k3 k2 119896

2

+ 1

4 k3 1198963

+ 2119896

5 k4 1198964

+ 31198962

1198964

+ 31198962

+ 1

6 k5 1198965

+ 41198963

1198965

+ 41198963

+ 3119896

7 k6 1198966

+ 51198964

1198966

+ 51198964

+ 61198962

1198966

+ 51198964

+ 61198962

+ 1

8 k7 1198967

+ 61198965

1198967

+ 61198965

+ 101198963

1198967

+ 61198965

+ 101198963

+ 4119896

9 k8 1198968

+ 71198966

1198968

+ 71198966

+ 151198964

1198968

+ 71198966

+ 151198964

+ 101198962

1198968

+ 71198966

+ 151198964

+ 101198962

+ 1

10 k9 1198969

+ 81198967

1198969

+ 81198967

+ 211198965

1198969

+ 81198967

+ 211198965

+ 201198963

1198969

+ 81198967

+ 211198965

+ 201198963

+ 5119896

Proof (by induction on 119904) Sum (16) clearly holds for 119904 = 1(see (11)) Now suppose that the result is true for all 119895 lt 119904We prove it for 119904

119904

sum

119894=0

119865119897

119896119899+119894119896119904minus119894

= 119896

119904minus1

sum

119894=0

119865119897

119896119899+119894119896119904minus119894minus1

+ 119865119897

119896119899+119904

= 119896 (119865119897+1

119896119899+119904+1minus 119896119904

119865119897+1

119896119899+1) + 119865119897

119896119899+119904

= (119896119865119897+1

119896119899+119904+1+ 119865119897

119896119899+119904) minus 119896119904+1

119865119897+1

119896119899+1

= 119865119897+1

119896119899+119904+2minus 119896119904+1

119865119897+1

119896119899+1

(17)

Note that if 119896 in (4) is a real variable then 119865119896119899= 119865119909119899

andthey correspond to the Fibonacci polynomials defined by

119865119899+1(119909) =

1 if 119899 = 0119909 if 119899 = 1119909119865119899(119909) + 119865

119899minus1(119909) if 119899 gt 1

(18)

Lemma 5 One has

1198651015840

119899(119909) =

119899119865119899+1(119909) minus 119909119865

119899(119909) + 119899119865

119899minus1(119909)

1199092 + 4

=119899119871119899(119909) minus 119909119865

119899(119909)

1199092 + 4

(19)

See Proposition 13 of [12]

Lemma 6 One haslfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

((1198962

+ 4) 119899 minus 4) 119865119896119899minus 119899119896119871

119896119899

2 (1198962 + 4)

(20)

Proof From (6) we have that

119896119865119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 1 minus 119894

119894) 119896119899minus2119894

(21)

By deriving into the previous equation (respect to 119896) it isobtained

119865119896119899+ 1198961198651015840

119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 2119894) (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

= 119899119865119896119899minus 2

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

(22)

From Lemma 5

119865119896119899+ 119896(

119899119871119896119899minus 119896119865119896119899

1198962 + 4)

= 119899119865119896119899minus 2

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

(23)

From where after some algebra (20) is obtained

Proposition 7 One has

lfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899=

4119865119896119899+ 119899119896119871

119896119899

2 (1198962 + 4)(119899 even)

(1198962

+ 8) 119865119896119899+ 119899119896119871

119896119899

2 (1198962 + 4)(119899 odd)

(24)

4 Chinese Journal of Mathematics

Table 2 The numbers 119871119897119896119899 for 1 ⩽ 119899 ⩽ 9

nl 0 1 2 3 41 k2 119896

2

1198962

+ 2

3 1198963

1198963

+ 3119896

4 1198964

1198964

+ 41198962

1198964

+ 41198962

+ 2

5 1198965

1198965

+ 51198963

1198965

+ 51198963

+ 5119896

6 1198966

1198966

+ 61198964

1198966

+ 61198964

+ 91198962

1198966

+ 61198964

+ 91198962

+ 2

7 1198967

1198967

+ 71198965

1198967

+ 71198965

+ 141198963

1198967

+ 71198965

+ 141198963

+ 7119896

8 1198968

1198968

+ 81198966

1198968

+ 81198966

+ 201198964

1198968

+ 81198966

+ 201198964

+ 161198962

1198968

+ 81198966

+ 201198964

+ 161198962

+ 2

9 1198969

1198969

+ 91198967

1198969

+ 91198967

+ 271198965

1198969

+ 91198967

+ 271198965

+ 301198963

1198969

+ 91198967

+ 271198965

+ 301198963

+ 9119896

Prooflfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899

= 1198650

119896119899+ 1198651

119896119899+ sdot sdot sdot + 119865

lfloor(119899minus1)2rfloor

119896119899

= (119899 minus 1 minus 0

0) 119896119899minus1

+ [(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

]

+ sdot sdot sdot +

[[[[

[

(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

]]]]

]

= (lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 0

0) 119896119899minus1

+ lfloor119899 minus 1

2rfloor(119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1 minus 119894) (

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

= (lfloor119899 minus 1

2rfloor + 1)119865

119896119899minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

(25)

From Lemma 6 (24) is obtained

3 The Incomplete 119896-Lucas Numbers

Definition 8 The incomplete 119896-Lucas numbers are defined by

119871119897

119896119899=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

0 le 119897 le lfloor119899

2rfloor (26)

InTable 2 somenumbers of incomplete 119896-Lucas numbersare provided

We note that

119871lfloor1198992rfloor

1119899= 119871119899 (27)

Some special cases of (26) are

1198710

119896119899= 119896119899

(119899 ge 1)

1198711

119896119899= 119896119899

+ 119899119896119899minus2

(119899 ge 2)

1198712

119896119899= 119896119899

+ 119899119896119899minus2

+119899 (119899 minus 3)

2119896119899minus4

(119899 ge 4)

119871lfloor1198992rfloor

119896119899= 119871119896119899 (119899 ge 1)

119871lfloor(119899minus2)2rfloor

119896119899=

119871119896119899minus 2 (119899 even)

119871119896119899minus 119899119896 (119899 odd)

(119899 ge 2)

(28)

Chinese Journal of Mathematics 5

31 Some Recurrence Properties of the Numbers 119871119897119896119899

Proposition 9 One has

119871119897

119896119899= 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1 0 le 119897 le lfloor

119899

2rfloor (29)

Proof By (8) rewrite the right-hand side of (29) as

119897minus1

sum

119894=0

(119899 minus 2 minus 119894

119894) 119896119899minus2minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=1

(119899 minus 1 minus 119894

119894 minus 1) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=0

[(119899 minus 1 minus 119894

119894 minus 1) + (

119899 minus 119894

119894)] 119896119899minus2119894

minus (119899 minus 1

minus1)

=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

+ 0

= 119871119897

119896119899

(30)

Proposition 10 The recurrence relation of the incomplete 119896-Lucas numbers 119871119897

119896119899is

119871119897+1

119896119899+2= 119896119871119897+1

119896119899+1+ 119871119897

119896119899 0 le 119897 le lfloor

119899

2rfloor (31)

The relation (31) can be transformed into the nonhomoge-neous recurrence relation

119871119897

119896119899+2= 119896119871119897

119896119899+1+ 119871119897

119896119899minus119899

119899 minus 119897(119899 minus 119897

119897) 119896119899minus2119897

(32)

Proof Using (29) and (11) we write

119871119897+1

119896119899+2= 119865119897

119896119899+1+ 119865119897+1

119896119899+3

= 119896119865119897

119896119899+ 119865119897minus1

119896119899minus1+ 119896119865119897+1

119896119899+2+ 119865119897

119896119899+1

= 119896 (119865119897

119896119899+ 119865119897+1

119896119899+2) + 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1

= 119896119871119897+1

119896119899+1+ 119871119897

119896119899

(33)

Proposition 11 One has

119896119871119897

119896119899= 119865119897

119896119899+2minus 119865119897minus2

119896119899minus2 0 le 119897 le lfloor

119899 minus 1

2rfloor (34)

Proof By (29)

119865119897

119896119899+2= 119871119897

119896119899+1minus 119865119897minus1

119896119899 119865

119897minus2

119896119899minus2= 119871119897minus1

119896119899minus1minus 119865119897minus1

119896119899 (35)

whence from (31)

119865119897

119896119899+2minus 119865119897minus2

119896119899minus2= 119871119897

119896119899+1minus 119871119897minus1

119896119899minus1= 119896119871119897

119896119899 (36)

Proposition 12 One has

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

= 119871119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904

2 (37)

Proof Using (29) and (14) we write

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

=

119904

sum

119894=0

(119904

119894) [119865119897+119894minus1

119896119899+119894minus1+ 119865119897+119894

119896119899+119894+1] 119896119894

=

119904

sum

119894=0

(119904

119894) 119865119897+119894minus1

119896119899+119894minus1119896119894

+

119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894+1119896119894

= 119865119897minus1+119904

119896119899minus1+2119904+ 119865119897+119904

119896119899+1+2119904= 119871119897+119904

119896119899+2119904

(38)

Proposition 13 For 119899 ge 2119897 + 1

119904minus1

sum

119894=0

119871119897

119896119899+119894119896119904minus1minus119894

= 119871119897+1

119896119899+119904+1minus 119896119904

119871119897+1

119896119899+1 (39)

The proof can be done by using (31) and induction on 119904

Lemma 14 One has

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

=119899

2[119871119896119899minus 119896119865119896119899] (40)

The proof is similar to Lemma 6

Proposition 15 One has

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899=

119871119896119899+119899119896

2119865119896119899

(119899 even)1

2(119871119896119899+ 119899119896119865

119896119899) (119899 odd)

(41)

Proof An argument analogous to that of the proof ofProposition 7 yields

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899= (lfloor

119899

2rfloor + 1) 119871

119896119899minus

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

(42)

From Lemma 14 (41) is obtained

4 Generating Functions of the Incomplete119896-Fibonacci and 119896-Lucas Number

In this section we give the generating functions of incomplete119896-Fibonacci and 119896-Lucas numbers

Lemma 16 (see [3 page 592]) Let 119904119899infin

119899=0be a complex

sequence satisfying the following nonhomogeneous recurrencerelation

119904119899= 119886119904119899minus1+ 119887119904119899minus2+ 119903119899(119899 gt 1) (43)

6 Chinese Journal of Mathematics

where 119886 and 119887 are complex numbers and 119903119899 is a given complex

sequence Then the generating function 119880(119905) of the sequence119904119899 is

119880 (119905) =119866 (119905) + 119904

0minus 1199030+ (1199041minus 1199040119886 minus 1199031) 119905

1 minus 119886119905 minus 1198871199052 (44)

where 119866(119905) denotes the generating function of 119903119899

Theorem 17 The generating function of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is given by

119877119896119897(119909) =

infin

sum

119894=0

119865119897

119896119894119905119894

= 1199052119897+1

[1198651198962119897+1

+ (1198651198962119897+2

minus 1198961198651198962119897+1

) 119905 minus1199052

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(45)

Proof Let 119897 be a fixed positive integer From (8) and (12)119865119897

119896119899= 0 for 0 le 119899 lt 2119897 + 1 119865119897

1198962119897+1= 1198651198962119897+1

and 1198651198971198962119897+2

=

1198651198962119897+2

and

119865119897

119896119899= 119896119865119897

119896119899minus1+ 119865119897

119896119899minus2minus (119899 minus 3 minus 119897

119897) 119896119899minus3minus2119897

(46)

Now let

1199040= 119865119897

1198962119897+1 119904

1= 119865119897

1198962119897+2 119904

119899= 119865119897

119896119899+2119897+1 (47)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 119897 minus 2

119899 minus 2) 119896119899minus2

(48)

The generating function of the sequence 119903119899 is119866(119905) = 1199052(1minus

119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we get the

generating function 119877119896119897(119909) of sequence 119904

119899

Theorem 18 The generating function of the incomplete 119896-Lucas numbers 119871119897

119896119899is given by

119878119896119897(119909) =

infin

sum

119894=0

119871119897

119896119894119905119894

= 1199052119897

[1198711198962119897+ (1198711198962119897+1

minus 1198961198711198962119897) 119905 minus

1199052

(2 minus 119905)

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(49)

Proof The proof of this theorem is similar to the proof ofTheorem 17 Let 119897 be a fixed positive integer From (26) and(32)119871119897

119896119899= 0 for 0 le 119899 lt 2119897119871119897

1198962119897= 1198711198962119897

and1198711198971198962119897+1

= 1198711198962119897+1

and

119871119897

119896119899= 119896119871119897

119896119899minus1+ 119871119897

119896119899minus2minus119899 minus 2

119899 minus 2 minus 119897(119899 minus 2 minus 119897

119899 minus 2 minus 2119897) 119896119899minus2minus2119897

(50)

Now let

1199040= 119871119897

1198962119897 119904

1= 119871119897

1198962119897+1 119904

119899= 119871119897

119896119899+2119897 (51)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 2119897 minus 2

119899 + 119897 minus 2) 119896119899+2119897minus2

(52)

The generating function of the sequence 119903119899 is 119866(119905) = 1199052(2 minus

119905)(1 minus 119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we

get the generating function 119878119896119897(119909) of sequence 119904

119899

5 Conclusion

In this paper we introduce incomplete 119896-Fibonacci and119896-Lucas numbers and we obtain new identities In [17]the authors introduced the ℎ(119909)-Fibonacci polynomialsThat generalizes Catalanrsquos Fibonacci polynomials and the119896-Fibonacci numbers Let ℎ(119909) be a polynomial with realcoefficientsThe ℎ(119909)-Fibonacci polynomials 119865

ℎ119899(119909)119899isinN are

defined by the recurrence relation

119865ℎ0(119909) = 0 119865

ℎ1(119909) = 1

119865ℎ119899+1

(119909) = ℎ (119909) 119865ℎ119899(119909) + 119865

ℎ119899minus1(119909) 119899 ⩾ 1

(53)

It would be interesting to study a definition of incompleteℎ(119909)-Fibonacci polynomials and research their properties

Acknowledgments

The author would like to thank the anonymous referees fortheir helpful comments The author was partially supportedby Universidad Sergio Arboleda under Grant no USA-II-2011-0059

References

[1] T Koshy Fibonacci and Lucas Numbers with ApplicationsWiley-Interscience 2001

[2] P Filipponi ldquoIncomplete Fibonacci and Lucas numbersrdquoRendi-conti del CircoloMatematico di Palermo vol 45 no 1 pp 37ndash561996

[3] A Pinter and H M Srivastava ldquoGenerating functions ofthe incomplete Fibonacci and Lucas numbersrdquo Rendiconti delCircolo Matematico di Palermo vol 48 no 3 pp 591ndash596 1999

[4] G B Djordjevic ldquoGenerating functions of the incomplete gen-eralized Fibonacci and generalized Lucas numbersrdquo FibonacciQuarterly vol 42 no 2 pp 106ndash113 2004

[5] G B Djordjevic and H M Srivastava ldquoIncomplete generalizedJacobsthal and Jacobsthal-Lucas numbersrdquo Mathematical andComputer Modelling vol 42 no 9-10 pp 1049ndash1056 2005

[6] D Tasci and M Cetin Firengiz ldquoIncomplete Fibonacci andLucas p-numbersrdquoMathematical and Computer Modelling vol52 no 9-10 pp 1763ndash1770 2010

[7] D Tasci M Cetin Firengiz andN Tuglu ldquoIncomplete bivariateFibonaccu and Lucas p-polynomialsrdquo Discrete Dynamics inNature and Society vol 2012 Article ID 840345 11 pages 2012

[8] S Falcon and A Plaza ldquoOn the Fibonacci k-numbersrdquo ChaosSolitons and Fractals vol 32 no 5 pp 1615ndash1624 2007

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

2 Chinese Journal of Mathematics

From (6) and (7) we introduce the incomplete 119896-Fibonacci and 119896-Lucas numbers and we obtain new recurrentrelations new identities and their generating functions

2 The Incomplete 119896-Fibonacci Numbers

Definition 1 The incomplete 119896-Fibonacci numbers aredefined by

119865119897

119896119899=

119897

sum

119894=0

(119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

0 le 119897 le lfloor119899 minus 1

2rfloor (8)

In Table 1 some values of incomplete 119896-Fibonacci num-bers are provided

We note that

119865lfloor(119899minus1)2rfloor

1119899= 119865119899 (9)

For 119896 = 1 we get incomplete Fibonacci numbers [2]Some special cases of (8) are

1198650

119896119899= 119896119899minus1

(119899 ge 1)

1198651

119896119899= 119896119899minus1

+ (119899 minus 2) 119896119899minus3

(119899 ge 3)

1198652

119896119899= 119896119899minus1

+ (119899 minus 2) 119896119899minus3

+(119899 minus 4) (119899 minus 3)

2119896119899minus5

(119899 ge 5)

119865lfloor(119899minus1)2rfloor

119896119899= 119865119896119899 (119899 ge 1)

119865lfloor(119899minus3)2rfloor

119896119899=

119865119896119899minus119899119896

2(119899 even)

119865119896119899minus 1 (119899 odd)

(119899 ge 3)

(10)

21 Some Recurrence Properties of the Numbers 119865119897119896119899

Proposition 2 The recurrence relation of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is

119865119897+1

119896119899+2= 119896119865119897+1

119896119899+1+ 119865119897

119896119899 0 le 119897 le

119899 minus 2

2 (11)

The relation (11) can be transformed into the nonhomoge-neous recurrence relation

119865119897

119896119899+2= 119896119865119897

119896119899+1+ 119865119897

119896119899minus (119899 minus 1 minus 119897

119897) 119896119899minus1minus2119897

(12)

Proof Use Definition 1 to rewrite the right-hand side of (11)as

119896

119897+1

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894 minus 1

119894) 119896119899minus2119894minus1

=

119897+1

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894+1

+

119897+1

sum

119894=1

(119899 minus 119894

119894 minus 1) 119896119899minus2119894+1

= 119896119899minus2119894+1

(

119897+1

sum

119894=0

[(119899 minus 119894

119894) + (

119899 minus 119894

119894 minus 1)]) minus 119896

119899+1

(119899

minus1)

=

119897+1

sum

119894=0

(119899 minus 119894 + 1

119894) 119896119899minus2119894+1

minus 0

= 119865119897

119896119899+2

(13)

Proposition 3 One has119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894119896119894

= 119865119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904 minus 1

2 (14)

Proof (by induction on 119904) Sum (14) clearly holds for 119904 = 0 and119904 = 1 (see (11)) Now suppose that the result is true for all119895 lt 119904 + 1 we prove it for 119904 + 1

119904+1

sum

119894=0

(119904 + 1

119894)119865119897+119894

119896119899+119894119896119894

=

119904+1

sum

119894=0

[(119904

119894) + (

119904

119894 minus 1)]119865119897+119894

119896119899+119894119896119894

=

119904+1

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894119896119894

+

119904+1

sum

119894=0

(119904

119894 minus 1)119865119897+119894

119896119899+119894119896119894

= 119865119897+119904

119896119899+2119904+ (

119904

119904 + 1)119865119897+119904+1

119896119899+119904+1119896119904+1

+

119904

sum

119894=minus1

(119904

119894) 119865119897+119894+1

119896119899+119894+1119896119894+1

= 119865119897+119904

119896119899+2119904+ 0 +

119904

sum

119894=0

(119904

119894) 119865119897+119894+1

119896119899+119894+1119896119894+1

+ (119904

minus1)119865119897

119896119899

= 119865119897+119904

119896119899+2119904+ 119896

119904

sum

119894=0

(119904

119894) 119865119897+119894+1

119896119899+119894+1119896119894

+ 0

= 119865119897+119904

119896119899+2119904+ 119896119865119897+119904+1

119896119899+2119904+1

= 119865119897+119904+1

119896119899+2119904+2

(15)

Proposition 4 For 119899 ge 2119897 + 2119904minus1

sum

119894=0

119865119897

119896119899+119894119896119904minus1minus119894

= 119865119897+1

119896119899+119904+1minus 119896119904

119865119897+1

119896119899+1 (16)

Chinese Journal of Mathematics 3

Table 1 The numbers 119865119897119896119899 for 1 ⩽ 119899 ⩽ 10

nl 0 1 2 3 41 12 k3 k2 119896

2

+ 1

4 k3 1198963

+ 2119896

5 k4 1198964

+ 31198962

1198964

+ 31198962

+ 1

6 k5 1198965

+ 41198963

1198965

+ 41198963

+ 3119896

7 k6 1198966

+ 51198964

1198966

+ 51198964

+ 61198962

1198966

+ 51198964

+ 61198962

+ 1

8 k7 1198967

+ 61198965

1198967

+ 61198965

+ 101198963

1198967

+ 61198965

+ 101198963

+ 4119896

9 k8 1198968

+ 71198966

1198968

+ 71198966

+ 151198964

1198968

+ 71198966

+ 151198964

+ 101198962

1198968

+ 71198966

+ 151198964

+ 101198962

+ 1

10 k9 1198969

+ 81198967

1198969

+ 81198967

+ 211198965

1198969

+ 81198967

+ 211198965

+ 201198963

1198969

+ 81198967

+ 211198965

+ 201198963

+ 5119896

Proof (by induction on 119904) Sum (16) clearly holds for 119904 = 1(see (11)) Now suppose that the result is true for all 119895 lt 119904We prove it for 119904

119904

sum

119894=0

119865119897

119896119899+119894119896119904minus119894

= 119896

119904minus1

sum

119894=0

119865119897

119896119899+119894119896119904minus119894minus1

+ 119865119897

119896119899+119904

= 119896 (119865119897+1

119896119899+119904+1minus 119896119904

119865119897+1

119896119899+1) + 119865119897

119896119899+119904

= (119896119865119897+1

119896119899+119904+1+ 119865119897

119896119899+119904) minus 119896119904+1

119865119897+1

119896119899+1

= 119865119897+1

119896119899+119904+2minus 119896119904+1

119865119897+1

119896119899+1

(17)

Note that if 119896 in (4) is a real variable then 119865119896119899= 119865119909119899

andthey correspond to the Fibonacci polynomials defined by

119865119899+1(119909) =

1 if 119899 = 0119909 if 119899 = 1119909119865119899(119909) + 119865

119899minus1(119909) if 119899 gt 1

(18)

Lemma 5 One has

1198651015840

119899(119909) =

119899119865119899+1(119909) minus 119909119865

119899(119909) + 119899119865

119899minus1(119909)

1199092 + 4

=119899119871119899(119909) minus 119909119865

119899(119909)

1199092 + 4

(19)

See Proposition 13 of [12]

Lemma 6 One haslfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

((1198962

+ 4) 119899 minus 4) 119865119896119899minus 119899119896119871

119896119899

2 (1198962 + 4)

(20)

Proof From (6) we have that

119896119865119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 1 minus 119894

119894) 119896119899minus2119894

(21)

By deriving into the previous equation (respect to 119896) it isobtained

119865119896119899+ 1198961198651015840

119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 2119894) (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

= 119899119865119896119899minus 2

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

(22)

From Lemma 5

119865119896119899+ 119896(

119899119871119896119899minus 119896119865119896119899

1198962 + 4)

= 119899119865119896119899minus 2

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

(23)

From where after some algebra (20) is obtained

Proposition 7 One has

lfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899=

4119865119896119899+ 119899119896119871

119896119899

2 (1198962 + 4)(119899 even)

(1198962

+ 8) 119865119896119899+ 119899119896119871

119896119899

2 (1198962 + 4)(119899 odd)

(24)

4 Chinese Journal of Mathematics

Table 2 The numbers 119871119897119896119899 for 1 ⩽ 119899 ⩽ 9

nl 0 1 2 3 41 k2 119896

2

1198962

+ 2

3 1198963

1198963

+ 3119896

4 1198964

1198964

+ 41198962

1198964

+ 41198962

+ 2

5 1198965

1198965

+ 51198963

1198965

+ 51198963

+ 5119896

6 1198966

1198966

+ 61198964

1198966

+ 61198964

+ 91198962

1198966

+ 61198964

+ 91198962

+ 2

7 1198967

1198967

+ 71198965

1198967

+ 71198965

+ 141198963

1198967

+ 71198965

+ 141198963

+ 7119896

8 1198968

1198968

+ 81198966

1198968

+ 81198966

+ 201198964

1198968

+ 81198966

+ 201198964

+ 161198962

1198968

+ 81198966

+ 201198964

+ 161198962

+ 2

9 1198969

1198969

+ 91198967

1198969

+ 91198967

+ 271198965

1198969

+ 91198967

+ 271198965

+ 301198963

1198969

+ 91198967

+ 271198965

+ 301198963

+ 9119896

Prooflfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899

= 1198650

119896119899+ 1198651

119896119899+ sdot sdot sdot + 119865

lfloor(119899minus1)2rfloor

119896119899

= (119899 minus 1 minus 0

0) 119896119899minus1

+ [(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

]

+ sdot sdot sdot +

[[[[

[

(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

]]]]

]

= (lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 0

0) 119896119899minus1

+ lfloor119899 minus 1

2rfloor(119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1 minus 119894) (

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

= (lfloor119899 minus 1

2rfloor + 1)119865

119896119899minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

(25)

From Lemma 6 (24) is obtained

3 The Incomplete 119896-Lucas Numbers

Definition 8 The incomplete 119896-Lucas numbers are defined by

119871119897

119896119899=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

0 le 119897 le lfloor119899

2rfloor (26)

InTable 2 somenumbers of incomplete 119896-Lucas numbersare provided

We note that

119871lfloor1198992rfloor

1119899= 119871119899 (27)

Some special cases of (26) are

1198710

119896119899= 119896119899

(119899 ge 1)

1198711

119896119899= 119896119899

+ 119899119896119899minus2

(119899 ge 2)

1198712

119896119899= 119896119899

+ 119899119896119899minus2

+119899 (119899 minus 3)

2119896119899minus4

(119899 ge 4)

119871lfloor1198992rfloor

119896119899= 119871119896119899 (119899 ge 1)

119871lfloor(119899minus2)2rfloor

119896119899=

119871119896119899minus 2 (119899 even)

119871119896119899minus 119899119896 (119899 odd)

(119899 ge 2)

(28)

Chinese Journal of Mathematics 5

31 Some Recurrence Properties of the Numbers 119871119897119896119899

Proposition 9 One has

119871119897

119896119899= 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1 0 le 119897 le lfloor

119899

2rfloor (29)

Proof By (8) rewrite the right-hand side of (29) as

119897minus1

sum

119894=0

(119899 minus 2 minus 119894

119894) 119896119899minus2minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=1

(119899 minus 1 minus 119894

119894 minus 1) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=0

[(119899 minus 1 minus 119894

119894 minus 1) + (

119899 minus 119894

119894)] 119896119899minus2119894

minus (119899 minus 1

minus1)

=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

+ 0

= 119871119897

119896119899

(30)

Proposition 10 The recurrence relation of the incomplete 119896-Lucas numbers 119871119897

119896119899is

119871119897+1

119896119899+2= 119896119871119897+1

119896119899+1+ 119871119897

119896119899 0 le 119897 le lfloor

119899

2rfloor (31)

The relation (31) can be transformed into the nonhomoge-neous recurrence relation

119871119897

119896119899+2= 119896119871119897

119896119899+1+ 119871119897

119896119899minus119899

119899 minus 119897(119899 minus 119897

119897) 119896119899minus2119897

(32)

Proof Using (29) and (11) we write

119871119897+1

119896119899+2= 119865119897

119896119899+1+ 119865119897+1

119896119899+3

= 119896119865119897

119896119899+ 119865119897minus1

119896119899minus1+ 119896119865119897+1

119896119899+2+ 119865119897

119896119899+1

= 119896 (119865119897

119896119899+ 119865119897+1

119896119899+2) + 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1

= 119896119871119897+1

119896119899+1+ 119871119897

119896119899

(33)

Proposition 11 One has

119896119871119897

119896119899= 119865119897

119896119899+2minus 119865119897minus2

119896119899minus2 0 le 119897 le lfloor

119899 minus 1

2rfloor (34)

Proof By (29)

119865119897

119896119899+2= 119871119897

119896119899+1minus 119865119897minus1

119896119899 119865

119897minus2

119896119899minus2= 119871119897minus1

119896119899minus1minus 119865119897minus1

119896119899 (35)

whence from (31)

119865119897

119896119899+2minus 119865119897minus2

119896119899minus2= 119871119897

119896119899+1minus 119871119897minus1

119896119899minus1= 119896119871119897

119896119899 (36)

Proposition 12 One has

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

= 119871119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904

2 (37)

Proof Using (29) and (14) we write

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

=

119904

sum

119894=0

(119904

119894) [119865119897+119894minus1

119896119899+119894minus1+ 119865119897+119894

119896119899+119894+1] 119896119894

=

119904

sum

119894=0

(119904

119894) 119865119897+119894minus1

119896119899+119894minus1119896119894

+

119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894+1119896119894

= 119865119897minus1+119904

119896119899minus1+2119904+ 119865119897+119904

119896119899+1+2119904= 119871119897+119904

119896119899+2119904

(38)

Proposition 13 For 119899 ge 2119897 + 1

119904minus1

sum

119894=0

119871119897

119896119899+119894119896119904minus1minus119894

= 119871119897+1

119896119899+119904+1minus 119896119904

119871119897+1

119896119899+1 (39)

The proof can be done by using (31) and induction on 119904

Lemma 14 One has

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

=119899

2[119871119896119899minus 119896119865119896119899] (40)

The proof is similar to Lemma 6

Proposition 15 One has

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899=

119871119896119899+119899119896

2119865119896119899

(119899 even)1

2(119871119896119899+ 119899119896119865

119896119899) (119899 odd)

(41)

Proof An argument analogous to that of the proof ofProposition 7 yields

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899= (lfloor

119899

2rfloor + 1) 119871

119896119899minus

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

(42)

From Lemma 14 (41) is obtained

4 Generating Functions of the Incomplete119896-Fibonacci and 119896-Lucas Number

In this section we give the generating functions of incomplete119896-Fibonacci and 119896-Lucas numbers

Lemma 16 (see [3 page 592]) Let 119904119899infin

119899=0be a complex

sequence satisfying the following nonhomogeneous recurrencerelation

119904119899= 119886119904119899minus1+ 119887119904119899minus2+ 119903119899(119899 gt 1) (43)

6 Chinese Journal of Mathematics

where 119886 and 119887 are complex numbers and 119903119899 is a given complex

sequence Then the generating function 119880(119905) of the sequence119904119899 is

119880 (119905) =119866 (119905) + 119904

0minus 1199030+ (1199041minus 1199040119886 minus 1199031) 119905

1 minus 119886119905 minus 1198871199052 (44)

where 119866(119905) denotes the generating function of 119903119899

Theorem 17 The generating function of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is given by

119877119896119897(119909) =

infin

sum

119894=0

119865119897

119896119894119905119894

= 1199052119897+1

[1198651198962119897+1

+ (1198651198962119897+2

minus 1198961198651198962119897+1

) 119905 minus1199052

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(45)

Proof Let 119897 be a fixed positive integer From (8) and (12)119865119897

119896119899= 0 for 0 le 119899 lt 2119897 + 1 119865119897

1198962119897+1= 1198651198962119897+1

and 1198651198971198962119897+2

=

1198651198962119897+2

and

119865119897

119896119899= 119896119865119897

119896119899minus1+ 119865119897

119896119899minus2minus (119899 minus 3 minus 119897

119897) 119896119899minus3minus2119897

(46)

Now let

1199040= 119865119897

1198962119897+1 119904

1= 119865119897

1198962119897+2 119904

119899= 119865119897

119896119899+2119897+1 (47)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 119897 minus 2

119899 minus 2) 119896119899minus2

(48)

The generating function of the sequence 119903119899 is119866(119905) = 1199052(1minus

119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we get the

generating function 119877119896119897(119909) of sequence 119904

119899

Theorem 18 The generating function of the incomplete 119896-Lucas numbers 119871119897

119896119899is given by

119878119896119897(119909) =

infin

sum

119894=0

119871119897

119896119894119905119894

= 1199052119897

[1198711198962119897+ (1198711198962119897+1

minus 1198961198711198962119897) 119905 minus

1199052

(2 minus 119905)

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(49)

Proof The proof of this theorem is similar to the proof ofTheorem 17 Let 119897 be a fixed positive integer From (26) and(32)119871119897

119896119899= 0 for 0 le 119899 lt 2119897119871119897

1198962119897= 1198711198962119897

and1198711198971198962119897+1

= 1198711198962119897+1

and

119871119897

119896119899= 119896119871119897

119896119899minus1+ 119871119897

119896119899minus2minus119899 minus 2

119899 minus 2 minus 119897(119899 minus 2 minus 119897

119899 minus 2 minus 2119897) 119896119899minus2minus2119897

(50)

Now let

1199040= 119871119897

1198962119897 119904

1= 119871119897

1198962119897+1 119904

119899= 119871119897

119896119899+2119897 (51)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 2119897 minus 2

119899 + 119897 minus 2) 119896119899+2119897minus2

(52)

The generating function of the sequence 119903119899 is 119866(119905) = 1199052(2 minus

119905)(1 minus 119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we

get the generating function 119878119896119897(119909) of sequence 119904

119899

5 Conclusion

In this paper we introduce incomplete 119896-Fibonacci and119896-Lucas numbers and we obtain new identities In [17]the authors introduced the ℎ(119909)-Fibonacci polynomialsThat generalizes Catalanrsquos Fibonacci polynomials and the119896-Fibonacci numbers Let ℎ(119909) be a polynomial with realcoefficientsThe ℎ(119909)-Fibonacci polynomials 119865

ℎ119899(119909)119899isinN are

defined by the recurrence relation

119865ℎ0(119909) = 0 119865

ℎ1(119909) = 1

119865ℎ119899+1

(119909) = ℎ (119909) 119865ℎ119899(119909) + 119865

ℎ119899minus1(119909) 119899 ⩾ 1

(53)

It would be interesting to study a definition of incompleteℎ(119909)-Fibonacci polynomials and research their properties

Acknowledgments

The author would like to thank the anonymous referees fortheir helpful comments The author was partially supportedby Universidad Sergio Arboleda under Grant no USA-II-2011-0059

References

[1] T Koshy Fibonacci and Lucas Numbers with ApplicationsWiley-Interscience 2001

[2] P Filipponi ldquoIncomplete Fibonacci and Lucas numbersrdquoRendi-conti del CircoloMatematico di Palermo vol 45 no 1 pp 37ndash561996

[3] A Pinter and H M Srivastava ldquoGenerating functions ofthe incomplete Fibonacci and Lucas numbersrdquo Rendiconti delCircolo Matematico di Palermo vol 48 no 3 pp 591ndash596 1999

[4] G B Djordjevic ldquoGenerating functions of the incomplete gen-eralized Fibonacci and generalized Lucas numbersrdquo FibonacciQuarterly vol 42 no 2 pp 106ndash113 2004

[5] G B Djordjevic and H M Srivastava ldquoIncomplete generalizedJacobsthal and Jacobsthal-Lucas numbersrdquo Mathematical andComputer Modelling vol 42 no 9-10 pp 1049ndash1056 2005

[6] D Tasci and M Cetin Firengiz ldquoIncomplete Fibonacci andLucas p-numbersrdquoMathematical and Computer Modelling vol52 no 9-10 pp 1763ndash1770 2010

[7] D Tasci M Cetin Firengiz andN Tuglu ldquoIncomplete bivariateFibonaccu and Lucas p-polynomialsrdquo Discrete Dynamics inNature and Society vol 2012 Article ID 840345 11 pages 2012

[8] S Falcon and A Plaza ldquoOn the Fibonacci k-numbersrdquo ChaosSolitons and Fractals vol 32 no 5 pp 1615ndash1624 2007

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

Chinese Journal of Mathematics 3

Table 1 The numbers 119865119897119896119899 for 1 ⩽ 119899 ⩽ 10

nl 0 1 2 3 41 12 k3 k2 119896

2

+ 1

4 k3 1198963

+ 2119896

5 k4 1198964

+ 31198962

1198964

+ 31198962

+ 1

6 k5 1198965

+ 41198963

1198965

+ 41198963

+ 3119896

7 k6 1198966

+ 51198964

1198966

+ 51198964

+ 61198962

1198966

+ 51198964

+ 61198962

+ 1

8 k7 1198967

+ 61198965

1198967

+ 61198965

+ 101198963

1198967

+ 61198965

+ 101198963

+ 4119896

9 k8 1198968

+ 71198966

1198968

+ 71198966

+ 151198964

1198968

+ 71198966

+ 151198964

+ 101198962

1198968

+ 71198966

+ 151198964

+ 101198962

+ 1

10 k9 1198969

+ 81198967

1198969

+ 81198967

+ 211198965

1198969

+ 81198967

+ 211198965

+ 201198963

1198969

+ 81198967

+ 211198965

+ 201198963

+ 5119896

Proof (by induction on 119904) Sum (16) clearly holds for 119904 = 1(see (11)) Now suppose that the result is true for all 119895 lt 119904We prove it for 119904

119904

sum

119894=0

119865119897

119896119899+119894119896119904minus119894

= 119896

119904minus1

sum

119894=0

119865119897

119896119899+119894119896119904minus119894minus1

+ 119865119897

119896119899+119904

= 119896 (119865119897+1

119896119899+119904+1minus 119896119904

119865119897+1

119896119899+1) + 119865119897

119896119899+119904

= (119896119865119897+1

119896119899+119904+1+ 119865119897

119896119899+119904) minus 119896119904+1

119865119897+1

119896119899+1

= 119865119897+1

119896119899+119904+2minus 119896119904+1

119865119897+1

119896119899+1

(17)

Note that if 119896 in (4) is a real variable then 119865119896119899= 119865119909119899

andthey correspond to the Fibonacci polynomials defined by

119865119899+1(119909) =

1 if 119899 = 0119909 if 119899 = 1119909119865119899(119909) + 119865

119899minus1(119909) if 119899 gt 1

(18)

Lemma 5 One has

1198651015840

119899(119909) =

119899119865119899+1(119909) minus 119909119865

119899(119909) + 119899119865

119899minus1(119909)

1199092 + 4

=119899119871119899(119909) minus 119909119865

119899(119909)

1199092 + 4

(19)

See Proposition 13 of [12]

Lemma 6 One haslfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

((1198962

+ 4) 119899 minus 4) 119865119896119899minus 119899119896119871

119896119899

2 (1198962 + 4)

(20)

Proof From (6) we have that

119896119865119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 1 minus 119894

119894) 119896119899minus2119894

(21)

By deriving into the previous equation (respect to 119896) it isobtained

119865119896119899+ 1198961198651015840

119896119899=

lfloor(119899minus1)2rfloor

sum

119894=0

(119899 minus 2119894) (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

= 119899119865119896119899minus 2

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

(22)

From Lemma 5

119865119896119899+ 119896(

119899119871119896119899minus 119896119865119896119899

1198962 + 4)

= 119899119865119896119899minus 2

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus2119894minus1

(23)

From where after some algebra (20) is obtained

Proposition 7 One has

lfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899=

4119865119896119899+ 119899119896119871

119896119899

2 (1198962 + 4)(119899 even)

(1198962

+ 8) 119865119896119899+ 119899119896119871

119896119899

2 (1198962 + 4)(119899 odd)

(24)

4 Chinese Journal of Mathematics

Table 2 The numbers 119871119897119896119899 for 1 ⩽ 119899 ⩽ 9

nl 0 1 2 3 41 k2 119896

2

1198962

+ 2

3 1198963

1198963

+ 3119896

4 1198964

1198964

+ 41198962

1198964

+ 41198962

+ 2

5 1198965

1198965

+ 51198963

1198965

+ 51198963

+ 5119896

6 1198966

1198966

+ 61198964

1198966

+ 61198964

+ 91198962

1198966

+ 61198964

+ 91198962

+ 2

7 1198967

1198967

+ 71198965

1198967

+ 71198965

+ 141198963

1198967

+ 71198965

+ 141198963

+ 7119896

8 1198968

1198968

+ 81198966

1198968

+ 81198966

+ 201198964

1198968

+ 81198966

+ 201198964

+ 161198962

1198968

+ 81198966

+ 201198964

+ 161198962

+ 2

9 1198969

1198969

+ 91198967

1198969

+ 91198967

+ 271198965

1198969

+ 91198967

+ 271198965

+ 301198963

1198969

+ 91198967

+ 271198965

+ 301198963

+ 9119896

Prooflfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899

= 1198650

119896119899+ 1198651

119896119899+ sdot sdot sdot + 119865

lfloor(119899minus1)2rfloor

119896119899

= (119899 minus 1 minus 0

0) 119896119899minus1

+ [(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

]

+ sdot sdot sdot +

[[[[

[

(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

]]]]

]

= (lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 0

0) 119896119899minus1

+ lfloor119899 minus 1

2rfloor(119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1 minus 119894) (

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

= (lfloor119899 minus 1

2rfloor + 1)119865

119896119899minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

(25)

From Lemma 6 (24) is obtained

3 The Incomplete 119896-Lucas Numbers

Definition 8 The incomplete 119896-Lucas numbers are defined by

119871119897

119896119899=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

0 le 119897 le lfloor119899

2rfloor (26)

InTable 2 somenumbers of incomplete 119896-Lucas numbersare provided

We note that

119871lfloor1198992rfloor

1119899= 119871119899 (27)

Some special cases of (26) are

1198710

119896119899= 119896119899

(119899 ge 1)

1198711

119896119899= 119896119899

+ 119899119896119899minus2

(119899 ge 2)

1198712

119896119899= 119896119899

+ 119899119896119899minus2

+119899 (119899 minus 3)

2119896119899minus4

(119899 ge 4)

119871lfloor1198992rfloor

119896119899= 119871119896119899 (119899 ge 1)

119871lfloor(119899minus2)2rfloor

119896119899=

119871119896119899minus 2 (119899 even)

119871119896119899minus 119899119896 (119899 odd)

(119899 ge 2)

(28)

Chinese Journal of Mathematics 5

31 Some Recurrence Properties of the Numbers 119871119897119896119899

Proposition 9 One has

119871119897

119896119899= 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1 0 le 119897 le lfloor

119899

2rfloor (29)

Proof By (8) rewrite the right-hand side of (29) as

119897minus1

sum

119894=0

(119899 minus 2 minus 119894

119894) 119896119899minus2minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=1

(119899 minus 1 minus 119894

119894 minus 1) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=0

[(119899 minus 1 minus 119894

119894 minus 1) + (

119899 minus 119894

119894)] 119896119899minus2119894

minus (119899 minus 1

minus1)

=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

+ 0

= 119871119897

119896119899

(30)

Proposition 10 The recurrence relation of the incomplete 119896-Lucas numbers 119871119897

119896119899is

119871119897+1

119896119899+2= 119896119871119897+1

119896119899+1+ 119871119897

119896119899 0 le 119897 le lfloor

119899

2rfloor (31)

The relation (31) can be transformed into the nonhomoge-neous recurrence relation

119871119897

119896119899+2= 119896119871119897

119896119899+1+ 119871119897

119896119899minus119899

119899 minus 119897(119899 minus 119897

119897) 119896119899minus2119897

(32)

Proof Using (29) and (11) we write

119871119897+1

119896119899+2= 119865119897

119896119899+1+ 119865119897+1

119896119899+3

= 119896119865119897

119896119899+ 119865119897minus1

119896119899minus1+ 119896119865119897+1

119896119899+2+ 119865119897

119896119899+1

= 119896 (119865119897

119896119899+ 119865119897+1

119896119899+2) + 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1

= 119896119871119897+1

119896119899+1+ 119871119897

119896119899

(33)

Proposition 11 One has

119896119871119897

119896119899= 119865119897

119896119899+2minus 119865119897minus2

119896119899minus2 0 le 119897 le lfloor

119899 minus 1

2rfloor (34)

Proof By (29)

119865119897

119896119899+2= 119871119897

119896119899+1minus 119865119897minus1

119896119899 119865

119897minus2

119896119899minus2= 119871119897minus1

119896119899minus1minus 119865119897minus1

119896119899 (35)

whence from (31)

119865119897

119896119899+2minus 119865119897minus2

119896119899minus2= 119871119897

119896119899+1minus 119871119897minus1

119896119899minus1= 119896119871119897

119896119899 (36)

Proposition 12 One has

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

= 119871119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904

2 (37)

Proof Using (29) and (14) we write

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

=

119904

sum

119894=0

(119904

119894) [119865119897+119894minus1

119896119899+119894minus1+ 119865119897+119894

119896119899+119894+1] 119896119894

=

119904

sum

119894=0

(119904

119894) 119865119897+119894minus1

119896119899+119894minus1119896119894

+

119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894+1119896119894

= 119865119897minus1+119904

119896119899minus1+2119904+ 119865119897+119904

119896119899+1+2119904= 119871119897+119904

119896119899+2119904

(38)

Proposition 13 For 119899 ge 2119897 + 1

119904minus1

sum

119894=0

119871119897

119896119899+119894119896119904minus1minus119894

= 119871119897+1

119896119899+119904+1minus 119896119904

119871119897+1

119896119899+1 (39)

The proof can be done by using (31) and induction on 119904

Lemma 14 One has

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

=119899

2[119871119896119899minus 119896119865119896119899] (40)

The proof is similar to Lemma 6

Proposition 15 One has

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899=

119871119896119899+119899119896

2119865119896119899

(119899 even)1

2(119871119896119899+ 119899119896119865

119896119899) (119899 odd)

(41)

Proof An argument analogous to that of the proof ofProposition 7 yields

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899= (lfloor

119899

2rfloor + 1) 119871

119896119899minus

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

(42)

From Lemma 14 (41) is obtained

4 Generating Functions of the Incomplete119896-Fibonacci and 119896-Lucas Number

In this section we give the generating functions of incomplete119896-Fibonacci and 119896-Lucas numbers

Lemma 16 (see [3 page 592]) Let 119904119899infin

119899=0be a complex

sequence satisfying the following nonhomogeneous recurrencerelation

119904119899= 119886119904119899minus1+ 119887119904119899minus2+ 119903119899(119899 gt 1) (43)

6 Chinese Journal of Mathematics

where 119886 and 119887 are complex numbers and 119903119899 is a given complex

sequence Then the generating function 119880(119905) of the sequence119904119899 is

119880 (119905) =119866 (119905) + 119904

0minus 1199030+ (1199041minus 1199040119886 minus 1199031) 119905

1 minus 119886119905 minus 1198871199052 (44)

where 119866(119905) denotes the generating function of 119903119899

Theorem 17 The generating function of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is given by

119877119896119897(119909) =

infin

sum

119894=0

119865119897

119896119894119905119894

= 1199052119897+1

[1198651198962119897+1

+ (1198651198962119897+2

minus 1198961198651198962119897+1

) 119905 minus1199052

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(45)

Proof Let 119897 be a fixed positive integer From (8) and (12)119865119897

119896119899= 0 for 0 le 119899 lt 2119897 + 1 119865119897

1198962119897+1= 1198651198962119897+1

and 1198651198971198962119897+2

=

1198651198962119897+2

and

119865119897

119896119899= 119896119865119897

119896119899minus1+ 119865119897

119896119899minus2minus (119899 minus 3 minus 119897

119897) 119896119899minus3minus2119897

(46)

Now let

1199040= 119865119897

1198962119897+1 119904

1= 119865119897

1198962119897+2 119904

119899= 119865119897

119896119899+2119897+1 (47)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 119897 minus 2

119899 minus 2) 119896119899minus2

(48)

The generating function of the sequence 119903119899 is119866(119905) = 1199052(1minus

119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we get the

generating function 119877119896119897(119909) of sequence 119904

119899

Theorem 18 The generating function of the incomplete 119896-Lucas numbers 119871119897

119896119899is given by

119878119896119897(119909) =

infin

sum

119894=0

119871119897

119896119894119905119894

= 1199052119897

[1198711198962119897+ (1198711198962119897+1

minus 1198961198711198962119897) 119905 minus

1199052

(2 minus 119905)

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(49)

Proof The proof of this theorem is similar to the proof ofTheorem 17 Let 119897 be a fixed positive integer From (26) and(32)119871119897

119896119899= 0 for 0 le 119899 lt 2119897119871119897

1198962119897= 1198711198962119897

and1198711198971198962119897+1

= 1198711198962119897+1

and

119871119897

119896119899= 119896119871119897

119896119899minus1+ 119871119897

119896119899minus2minus119899 minus 2

119899 minus 2 minus 119897(119899 minus 2 minus 119897

119899 minus 2 minus 2119897) 119896119899minus2minus2119897

(50)

Now let

1199040= 119871119897

1198962119897 119904

1= 119871119897

1198962119897+1 119904

119899= 119871119897

119896119899+2119897 (51)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 2119897 minus 2

119899 + 119897 minus 2) 119896119899+2119897minus2

(52)

The generating function of the sequence 119903119899 is 119866(119905) = 1199052(2 minus

119905)(1 minus 119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we

get the generating function 119878119896119897(119909) of sequence 119904

119899

5 Conclusion

In this paper we introduce incomplete 119896-Fibonacci and119896-Lucas numbers and we obtain new identities In [17]the authors introduced the ℎ(119909)-Fibonacci polynomialsThat generalizes Catalanrsquos Fibonacci polynomials and the119896-Fibonacci numbers Let ℎ(119909) be a polynomial with realcoefficientsThe ℎ(119909)-Fibonacci polynomials 119865

ℎ119899(119909)119899isinN are

defined by the recurrence relation

119865ℎ0(119909) = 0 119865

ℎ1(119909) = 1

119865ℎ119899+1

(119909) = ℎ (119909) 119865ℎ119899(119909) + 119865

ℎ119899minus1(119909) 119899 ⩾ 1

(53)

It would be interesting to study a definition of incompleteℎ(119909)-Fibonacci polynomials and research their properties

Acknowledgments

The author would like to thank the anonymous referees fortheir helpful comments The author was partially supportedby Universidad Sergio Arboleda under Grant no USA-II-2011-0059

References

[1] T Koshy Fibonacci and Lucas Numbers with ApplicationsWiley-Interscience 2001

[2] P Filipponi ldquoIncomplete Fibonacci and Lucas numbersrdquoRendi-conti del CircoloMatematico di Palermo vol 45 no 1 pp 37ndash561996

[3] A Pinter and H M Srivastava ldquoGenerating functions ofthe incomplete Fibonacci and Lucas numbersrdquo Rendiconti delCircolo Matematico di Palermo vol 48 no 3 pp 591ndash596 1999

[4] G B Djordjevic ldquoGenerating functions of the incomplete gen-eralized Fibonacci and generalized Lucas numbersrdquo FibonacciQuarterly vol 42 no 2 pp 106ndash113 2004

[5] G B Djordjevic and H M Srivastava ldquoIncomplete generalizedJacobsthal and Jacobsthal-Lucas numbersrdquo Mathematical andComputer Modelling vol 42 no 9-10 pp 1049ndash1056 2005

[6] D Tasci and M Cetin Firengiz ldquoIncomplete Fibonacci andLucas p-numbersrdquoMathematical and Computer Modelling vol52 no 9-10 pp 1763ndash1770 2010

[7] D Tasci M Cetin Firengiz andN Tuglu ldquoIncomplete bivariateFibonaccu and Lucas p-polynomialsrdquo Discrete Dynamics inNature and Society vol 2012 Article ID 840345 11 pages 2012

[8] S Falcon and A Plaza ldquoOn the Fibonacci k-numbersrdquo ChaosSolitons and Fractals vol 32 no 5 pp 1615ndash1624 2007

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

4 Chinese Journal of Mathematics

Table 2 The numbers 119871119897119896119899 for 1 ⩽ 119899 ⩽ 9

nl 0 1 2 3 41 k2 119896

2

1198962

+ 2

3 1198963

1198963

+ 3119896

4 1198964

1198964

+ 41198962

1198964

+ 41198962

+ 2

5 1198965

1198965

+ 51198963

1198965

+ 51198963

+ 5119896

6 1198966

1198966

+ 61198964

1198966

+ 61198964

+ 91198962

1198966

+ 61198964

+ 91198962

+ 2

7 1198967

1198967

+ 71198965

1198967

+ 71198965

+ 141198963

1198967

+ 71198965

+ 141198963

+ 7119896

8 1198968

1198968

+ 81198966

1198968

+ 81198966

+ 201198964

1198968

+ 81198966

+ 201198964

+ 161198962

1198968

+ 81198966

+ 201198964

+ 161198962

+ 2

9 1198969

1198969

+ 91198967

1198969

+ 91198967

+ 271198965

1198969

+ 91198967

+ 271198965

+ 301198963

1198969

+ 91198967

+ 271198965

+ 301198963

+ 9119896

Prooflfloor(119899minus1)2rfloor

sum

119897=0

119865119897

119896119899

= 1198650

119896119899+ 1198651

119896119899+ sdot sdot sdot + 119865

lfloor(119899minus1)2rfloor

119896119899

= (119899 minus 1 minus 0

0) 119896119899minus1

+ [(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

]

+ sdot sdot sdot +

[[[[

[

(119899 minus 1 minus 0

0) 119896119899minus1

+ (119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

]]]]

]

= (lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 0

0) 119896119899minus1

+ lfloor119899 minus 1

2rfloor(119899 minus 1 minus 1

1) 119896119899minus3

+ sdot sdot sdot +(

119899 minus 1 minus lfloor119899 minus 1

2rfloor

lfloor119899 minus 1

2rfloor

)119896119899minus1minus2lfloor(119899minus1)2rfloor

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1 minus 119894) (

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

=

lfloor(119899minus1)2rfloor

sum

119894=0

(lfloor119899 minus 1

2rfloor + 1)(

119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

= (lfloor119899 minus 1

2rfloor + 1)119865

119896119899minus

lfloor(119899minus1)2rfloor

sum

119894=0

119894 (119899 minus 1 minus 119894

119894) 119896119899minus1minus2119894

(25)

From Lemma 6 (24) is obtained

3 The Incomplete 119896-Lucas Numbers

Definition 8 The incomplete 119896-Lucas numbers are defined by

119871119897

119896119899=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

0 le 119897 le lfloor119899

2rfloor (26)

InTable 2 somenumbers of incomplete 119896-Lucas numbersare provided

We note that

119871lfloor1198992rfloor

1119899= 119871119899 (27)

Some special cases of (26) are

1198710

119896119899= 119896119899

(119899 ge 1)

1198711

119896119899= 119896119899

+ 119899119896119899minus2

(119899 ge 2)

1198712

119896119899= 119896119899

+ 119899119896119899minus2

+119899 (119899 minus 3)

2119896119899minus4

(119899 ge 4)

119871lfloor1198992rfloor

119896119899= 119871119896119899 (119899 ge 1)

119871lfloor(119899minus2)2rfloor

119896119899=

119871119896119899minus 2 (119899 even)

119871119896119899minus 119899119896 (119899 odd)

(119899 ge 2)

(28)

Chinese Journal of Mathematics 5

31 Some Recurrence Properties of the Numbers 119871119897119896119899

Proposition 9 One has

119871119897

119896119899= 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1 0 le 119897 le lfloor

119899

2rfloor (29)

Proof By (8) rewrite the right-hand side of (29) as

119897minus1

sum

119894=0

(119899 minus 2 minus 119894

119894) 119896119899minus2minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=1

(119899 minus 1 minus 119894

119894 minus 1) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=0

[(119899 minus 1 minus 119894

119894 minus 1) + (

119899 minus 119894

119894)] 119896119899minus2119894

minus (119899 minus 1

minus1)

=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

+ 0

= 119871119897

119896119899

(30)

Proposition 10 The recurrence relation of the incomplete 119896-Lucas numbers 119871119897

119896119899is

119871119897+1

119896119899+2= 119896119871119897+1

119896119899+1+ 119871119897

119896119899 0 le 119897 le lfloor

119899

2rfloor (31)

The relation (31) can be transformed into the nonhomoge-neous recurrence relation

119871119897

119896119899+2= 119896119871119897

119896119899+1+ 119871119897

119896119899minus119899

119899 minus 119897(119899 minus 119897

119897) 119896119899minus2119897

(32)

Proof Using (29) and (11) we write

119871119897+1

119896119899+2= 119865119897

119896119899+1+ 119865119897+1

119896119899+3

= 119896119865119897

119896119899+ 119865119897minus1

119896119899minus1+ 119896119865119897+1

119896119899+2+ 119865119897

119896119899+1

= 119896 (119865119897

119896119899+ 119865119897+1

119896119899+2) + 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1

= 119896119871119897+1

119896119899+1+ 119871119897

119896119899

(33)

Proposition 11 One has

119896119871119897

119896119899= 119865119897

119896119899+2minus 119865119897minus2

119896119899minus2 0 le 119897 le lfloor

119899 minus 1

2rfloor (34)

Proof By (29)

119865119897

119896119899+2= 119871119897

119896119899+1minus 119865119897minus1

119896119899 119865

119897minus2

119896119899minus2= 119871119897minus1

119896119899minus1minus 119865119897minus1

119896119899 (35)

whence from (31)

119865119897

119896119899+2minus 119865119897minus2

119896119899minus2= 119871119897

119896119899+1minus 119871119897minus1

119896119899minus1= 119896119871119897

119896119899 (36)

Proposition 12 One has

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

= 119871119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904

2 (37)

Proof Using (29) and (14) we write

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

=

119904

sum

119894=0

(119904

119894) [119865119897+119894minus1

119896119899+119894minus1+ 119865119897+119894

119896119899+119894+1] 119896119894

=

119904

sum

119894=0

(119904

119894) 119865119897+119894minus1

119896119899+119894minus1119896119894

+

119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894+1119896119894

= 119865119897minus1+119904

119896119899minus1+2119904+ 119865119897+119904

119896119899+1+2119904= 119871119897+119904

119896119899+2119904

(38)

Proposition 13 For 119899 ge 2119897 + 1

119904minus1

sum

119894=0

119871119897

119896119899+119894119896119904minus1minus119894

= 119871119897+1

119896119899+119904+1minus 119896119904

119871119897+1

119896119899+1 (39)

The proof can be done by using (31) and induction on 119904

Lemma 14 One has

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

=119899

2[119871119896119899minus 119896119865119896119899] (40)

The proof is similar to Lemma 6

Proposition 15 One has

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899=

119871119896119899+119899119896

2119865119896119899

(119899 even)1

2(119871119896119899+ 119899119896119865

119896119899) (119899 odd)

(41)

Proof An argument analogous to that of the proof ofProposition 7 yields

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899= (lfloor

119899

2rfloor + 1) 119871

119896119899minus

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

(42)

From Lemma 14 (41) is obtained

4 Generating Functions of the Incomplete119896-Fibonacci and 119896-Lucas Number

In this section we give the generating functions of incomplete119896-Fibonacci and 119896-Lucas numbers

Lemma 16 (see [3 page 592]) Let 119904119899infin

119899=0be a complex

sequence satisfying the following nonhomogeneous recurrencerelation

119904119899= 119886119904119899minus1+ 119887119904119899minus2+ 119903119899(119899 gt 1) (43)

6 Chinese Journal of Mathematics

where 119886 and 119887 are complex numbers and 119903119899 is a given complex

sequence Then the generating function 119880(119905) of the sequence119904119899 is

119880 (119905) =119866 (119905) + 119904

0minus 1199030+ (1199041minus 1199040119886 minus 1199031) 119905

1 minus 119886119905 minus 1198871199052 (44)

where 119866(119905) denotes the generating function of 119903119899

Theorem 17 The generating function of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is given by

119877119896119897(119909) =

infin

sum

119894=0

119865119897

119896119894119905119894

= 1199052119897+1

[1198651198962119897+1

+ (1198651198962119897+2

minus 1198961198651198962119897+1

) 119905 minus1199052

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(45)

Proof Let 119897 be a fixed positive integer From (8) and (12)119865119897

119896119899= 0 for 0 le 119899 lt 2119897 + 1 119865119897

1198962119897+1= 1198651198962119897+1

and 1198651198971198962119897+2

=

1198651198962119897+2

and

119865119897

119896119899= 119896119865119897

119896119899minus1+ 119865119897

119896119899minus2minus (119899 minus 3 minus 119897

119897) 119896119899minus3minus2119897

(46)

Now let

1199040= 119865119897

1198962119897+1 119904

1= 119865119897

1198962119897+2 119904

119899= 119865119897

119896119899+2119897+1 (47)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 119897 minus 2

119899 minus 2) 119896119899minus2

(48)

The generating function of the sequence 119903119899 is119866(119905) = 1199052(1minus

119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we get the

generating function 119877119896119897(119909) of sequence 119904

119899

Theorem 18 The generating function of the incomplete 119896-Lucas numbers 119871119897

119896119899is given by

119878119896119897(119909) =

infin

sum

119894=0

119871119897

119896119894119905119894

= 1199052119897

[1198711198962119897+ (1198711198962119897+1

minus 1198961198711198962119897) 119905 minus

1199052

(2 minus 119905)

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(49)

Proof The proof of this theorem is similar to the proof ofTheorem 17 Let 119897 be a fixed positive integer From (26) and(32)119871119897

119896119899= 0 for 0 le 119899 lt 2119897119871119897

1198962119897= 1198711198962119897

and1198711198971198962119897+1

= 1198711198962119897+1

and

119871119897

119896119899= 119896119871119897

119896119899minus1+ 119871119897

119896119899minus2minus119899 minus 2

119899 minus 2 minus 119897(119899 minus 2 minus 119897

119899 minus 2 minus 2119897) 119896119899minus2minus2119897

(50)

Now let

1199040= 119871119897

1198962119897 119904

1= 119871119897

1198962119897+1 119904

119899= 119871119897

119896119899+2119897 (51)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 2119897 minus 2

119899 + 119897 minus 2) 119896119899+2119897minus2

(52)

The generating function of the sequence 119903119899 is 119866(119905) = 1199052(2 minus

119905)(1 minus 119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we

get the generating function 119878119896119897(119909) of sequence 119904

119899

5 Conclusion

In this paper we introduce incomplete 119896-Fibonacci and119896-Lucas numbers and we obtain new identities In [17]the authors introduced the ℎ(119909)-Fibonacci polynomialsThat generalizes Catalanrsquos Fibonacci polynomials and the119896-Fibonacci numbers Let ℎ(119909) be a polynomial with realcoefficientsThe ℎ(119909)-Fibonacci polynomials 119865

ℎ119899(119909)119899isinN are

defined by the recurrence relation

119865ℎ0(119909) = 0 119865

ℎ1(119909) = 1

119865ℎ119899+1

(119909) = ℎ (119909) 119865ℎ119899(119909) + 119865

ℎ119899minus1(119909) 119899 ⩾ 1

(53)

It would be interesting to study a definition of incompleteℎ(119909)-Fibonacci polynomials and research their properties

Acknowledgments

The author would like to thank the anonymous referees fortheir helpful comments The author was partially supportedby Universidad Sergio Arboleda under Grant no USA-II-2011-0059

References

[1] T Koshy Fibonacci and Lucas Numbers with ApplicationsWiley-Interscience 2001

[2] P Filipponi ldquoIncomplete Fibonacci and Lucas numbersrdquoRendi-conti del CircoloMatematico di Palermo vol 45 no 1 pp 37ndash561996

[3] A Pinter and H M Srivastava ldquoGenerating functions ofthe incomplete Fibonacci and Lucas numbersrdquo Rendiconti delCircolo Matematico di Palermo vol 48 no 3 pp 591ndash596 1999

[4] G B Djordjevic ldquoGenerating functions of the incomplete gen-eralized Fibonacci and generalized Lucas numbersrdquo FibonacciQuarterly vol 42 no 2 pp 106ndash113 2004

[5] G B Djordjevic and H M Srivastava ldquoIncomplete generalizedJacobsthal and Jacobsthal-Lucas numbersrdquo Mathematical andComputer Modelling vol 42 no 9-10 pp 1049ndash1056 2005

[6] D Tasci and M Cetin Firengiz ldquoIncomplete Fibonacci andLucas p-numbersrdquoMathematical and Computer Modelling vol52 no 9-10 pp 1763ndash1770 2010

[7] D Tasci M Cetin Firengiz andN Tuglu ldquoIncomplete bivariateFibonaccu and Lucas p-polynomialsrdquo Discrete Dynamics inNature and Society vol 2012 Article ID 840345 11 pages 2012

[8] S Falcon and A Plaza ldquoOn the Fibonacci k-numbersrdquo ChaosSolitons and Fractals vol 32 no 5 pp 1615ndash1624 2007

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

Chinese Journal of Mathematics 5

31 Some Recurrence Properties of the Numbers 119871119897119896119899

Proposition 9 One has

119871119897

119896119899= 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1 0 le 119897 le lfloor

119899

2rfloor (29)

Proof By (8) rewrite the right-hand side of (29) as

119897minus1

sum

119894=0

(119899 minus 2 minus 119894

119894) 119896119899minus2minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=1

(119899 minus 1 minus 119894

119894 minus 1) 119896119899minus2119894

+

119897

sum

119894=0

(119899 minus 119894

119894) 119896119899minus2119894

=

119897

sum

119894=0

[(119899 minus 1 minus 119894

119894 minus 1) + (

119899 minus 119894

119894)] 119896119899minus2119894

minus (119899 minus 1

minus1)

=

119897

sum

119894=0

119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

+ 0

= 119871119897

119896119899

(30)

Proposition 10 The recurrence relation of the incomplete 119896-Lucas numbers 119871119897

119896119899is

119871119897+1

119896119899+2= 119896119871119897+1

119896119899+1+ 119871119897

119896119899 0 le 119897 le lfloor

119899

2rfloor (31)

The relation (31) can be transformed into the nonhomoge-neous recurrence relation

119871119897

119896119899+2= 119896119871119897

119896119899+1+ 119871119897

119896119899minus119899

119899 minus 119897(119899 minus 119897

119897) 119896119899minus2119897

(32)

Proof Using (29) and (11) we write

119871119897+1

119896119899+2= 119865119897

119896119899+1+ 119865119897+1

119896119899+3

= 119896119865119897

119896119899+ 119865119897minus1

119896119899minus1+ 119896119865119897+1

119896119899+2+ 119865119897

119896119899+1

= 119896 (119865119897

119896119899+ 119865119897+1

119896119899+2) + 119865119897minus1

119896119899minus1+ 119865119897

119896119899+1

= 119896119871119897+1

119896119899+1+ 119871119897

119896119899

(33)

Proposition 11 One has

119896119871119897

119896119899= 119865119897

119896119899+2minus 119865119897minus2

119896119899minus2 0 le 119897 le lfloor

119899 minus 1

2rfloor (34)

Proof By (29)

119865119897

119896119899+2= 119871119897

119896119899+1minus 119865119897minus1

119896119899 119865

119897minus2

119896119899minus2= 119871119897minus1

119896119899minus1minus 119865119897minus1

119896119899 (35)

whence from (31)

119865119897

119896119899+2minus 119865119897minus2

119896119899minus2= 119871119897

119896119899+1minus 119871119897minus1

119896119899minus1= 119896119871119897

119896119899 (36)

Proposition 12 One has

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

= 119871119897+119904

119896119899+2119904 0 le 119897 le

119899 minus 119904

2 (37)

Proof Using (29) and (14) we write

119904

sum

119894=0

(119904

119894) 119871119897+119894

119896119899+119894119896119894

=

119904

sum

119894=0

(119904

119894) [119865119897+119894minus1

119896119899+119894minus1+ 119865119897+119894

119896119899+119894+1] 119896119894

=

119904

sum

119894=0

(119904

119894) 119865119897+119894minus1

119896119899+119894minus1119896119894

+

119904

sum

119894=0

(119904

119894) 119865119897+119894

119896119899+119894+1119896119894

= 119865119897minus1+119904

119896119899minus1+2119904+ 119865119897+119904

119896119899+1+2119904= 119871119897+119904

119896119899+2119904

(38)

Proposition 13 For 119899 ge 2119897 + 1

119904minus1

sum

119894=0

119871119897

119896119899+119894119896119904minus1minus119894

= 119871119897+1

119896119899+119904+1minus 119896119904

119871119897+1

119896119899+1 (39)

The proof can be done by using (31) and induction on 119904

Lemma 14 One has

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

=119899

2[119871119896119899minus 119896119865119896119899] (40)

The proof is similar to Lemma 6

Proposition 15 One has

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899=

119871119896119899+119899119896

2119865119896119899

(119899 even)1

2(119871119896119899+ 119899119896119865

119896119899) (119899 odd)

(41)

Proof An argument analogous to that of the proof ofProposition 7 yields

lfloor1198992rfloor

sum

119897=0

119871119897

119896119899= (lfloor

119899

2rfloor + 1) 119871

119896119899minus

lfloor1198992rfloor

sum

119894=0

119894119899

119899 minus 119894(119899 minus 119894

119894) 119896119899minus2119894

(42)

From Lemma 14 (41) is obtained

4 Generating Functions of the Incomplete119896-Fibonacci and 119896-Lucas Number

In this section we give the generating functions of incomplete119896-Fibonacci and 119896-Lucas numbers

Lemma 16 (see [3 page 592]) Let 119904119899infin

119899=0be a complex

sequence satisfying the following nonhomogeneous recurrencerelation

119904119899= 119886119904119899minus1+ 119887119904119899minus2+ 119903119899(119899 gt 1) (43)

6 Chinese Journal of Mathematics

where 119886 and 119887 are complex numbers and 119903119899 is a given complex

sequence Then the generating function 119880(119905) of the sequence119904119899 is

119880 (119905) =119866 (119905) + 119904

0minus 1199030+ (1199041minus 1199040119886 minus 1199031) 119905

1 minus 119886119905 minus 1198871199052 (44)

where 119866(119905) denotes the generating function of 119903119899

Theorem 17 The generating function of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is given by

119877119896119897(119909) =

infin

sum

119894=0

119865119897

119896119894119905119894

= 1199052119897+1

[1198651198962119897+1

+ (1198651198962119897+2

minus 1198961198651198962119897+1

) 119905 minus1199052

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(45)

Proof Let 119897 be a fixed positive integer From (8) and (12)119865119897

119896119899= 0 for 0 le 119899 lt 2119897 + 1 119865119897

1198962119897+1= 1198651198962119897+1

and 1198651198971198962119897+2

=

1198651198962119897+2

and

119865119897

119896119899= 119896119865119897

119896119899minus1+ 119865119897

119896119899minus2minus (119899 minus 3 minus 119897

119897) 119896119899minus3minus2119897

(46)

Now let

1199040= 119865119897

1198962119897+1 119904

1= 119865119897

1198962119897+2 119904

119899= 119865119897

119896119899+2119897+1 (47)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 119897 minus 2

119899 minus 2) 119896119899minus2

(48)

The generating function of the sequence 119903119899 is119866(119905) = 1199052(1minus

119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we get the

generating function 119877119896119897(119909) of sequence 119904

119899

Theorem 18 The generating function of the incomplete 119896-Lucas numbers 119871119897

119896119899is given by

119878119896119897(119909) =

infin

sum

119894=0

119871119897

119896119894119905119894

= 1199052119897

[1198711198962119897+ (1198711198962119897+1

minus 1198961198711198962119897) 119905 minus

1199052

(2 minus 119905)

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(49)

Proof The proof of this theorem is similar to the proof ofTheorem 17 Let 119897 be a fixed positive integer From (26) and(32)119871119897

119896119899= 0 for 0 le 119899 lt 2119897119871119897

1198962119897= 1198711198962119897

and1198711198971198962119897+1

= 1198711198962119897+1

and

119871119897

119896119899= 119896119871119897

119896119899minus1+ 119871119897

119896119899minus2minus119899 minus 2

119899 minus 2 minus 119897(119899 minus 2 minus 119897

119899 minus 2 minus 2119897) 119896119899minus2minus2119897

(50)

Now let

1199040= 119871119897

1198962119897 119904

1= 119871119897

1198962119897+1 119904

119899= 119871119897

119896119899+2119897 (51)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 2119897 minus 2

119899 + 119897 minus 2) 119896119899+2119897minus2

(52)

The generating function of the sequence 119903119899 is 119866(119905) = 1199052(2 minus

119905)(1 minus 119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we

get the generating function 119878119896119897(119909) of sequence 119904

119899

5 Conclusion

In this paper we introduce incomplete 119896-Fibonacci and119896-Lucas numbers and we obtain new identities In [17]the authors introduced the ℎ(119909)-Fibonacci polynomialsThat generalizes Catalanrsquos Fibonacci polynomials and the119896-Fibonacci numbers Let ℎ(119909) be a polynomial with realcoefficientsThe ℎ(119909)-Fibonacci polynomials 119865

ℎ119899(119909)119899isinN are

defined by the recurrence relation

119865ℎ0(119909) = 0 119865

ℎ1(119909) = 1

119865ℎ119899+1

(119909) = ℎ (119909) 119865ℎ119899(119909) + 119865

ℎ119899minus1(119909) 119899 ⩾ 1

(53)

It would be interesting to study a definition of incompleteℎ(119909)-Fibonacci polynomials and research their properties

Acknowledgments

The author would like to thank the anonymous referees fortheir helpful comments The author was partially supportedby Universidad Sergio Arboleda under Grant no USA-II-2011-0059

References

[1] T Koshy Fibonacci and Lucas Numbers with ApplicationsWiley-Interscience 2001

[2] P Filipponi ldquoIncomplete Fibonacci and Lucas numbersrdquoRendi-conti del CircoloMatematico di Palermo vol 45 no 1 pp 37ndash561996

[3] A Pinter and H M Srivastava ldquoGenerating functions ofthe incomplete Fibonacci and Lucas numbersrdquo Rendiconti delCircolo Matematico di Palermo vol 48 no 3 pp 591ndash596 1999

[4] G B Djordjevic ldquoGenerating functions of the incomplete gen-eralized Fibonacci and generalized Lucas numbersrdquo FibonacciQuarterly vol 42 no 2 pp 106ndash113 2004

[5] G B Djordjevic and H M Srivastava ldquoIncomplete generalizedJacobsthal and Jacobsthal-Lucas numbersrdquo Mathematical andComputer Modelling vol 42 no 9-10 pp 1049ndash1056 2005

[6] D Tasci and M Cetin Firengiz ldquoIncomplete Fibonacci andLucas p-numbersrdquoMathematical and Computer Modelling vol52 no 9-10 pp 1763ndash1770 2010

[7] D Tasci M Cetin Firengiz andN Tuglu ldquoIncomplete bivariateFibonaccu and Lucas p-polynomialsrdquo Discrete Dynamics inNature and Society vol 2012 Article ID 840345 11 pages 2012

[8] S Falcon and A Plaza ldquoOn the Fibonacci k-numbersrdquo ChaosSolitons and Fractals vol 32 no 5 pp 1615ndash1624 2007

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

6 Chinese Journal of Mathematics

where 119886 and 119887 are complex numbers and 119903119899 is a given complex

sequence Then the generating function 119880(119905) of the sequence119904119899 is

119880 (119905) =119866 (119905) + 119904

0minus 1199030+ (1199041minus 1199040119886 minus 1199031) 119905

1 minus 119886119905 minus 1198871199052 (44)

where 119866(119905) denotes the generating function of 119903119899

Theorem 17 The generating function of the incomplete 119896-Fibonacci numbers 119865119897

119896119899is given by

119877119896119897(119909) =

infin

sum

119894=0

119865119897

119896119894119905119894

= 1199052119897+1

[1198651198962119897+1

+ (1198651198962119897+2

minus 1198961198651198962119897+1

) 119905 minus1199052

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(45)

Proof Let 119897 be a fixed positive integer From (8) and (12)119865119897

119896119899= 0 for 0 le 119899 lt 2119897 + 1 119865119897

1198962119897+1= 1198651198962119897+1

and 1198651198971198962119897+2

=

1198651198962119897+2

and

119865119897

119896119899= 119896119865119897

119896119899minus1+ 119865119897

119896119899minus2minus (119899 minus 3 minus 119897

119897) 119896119899minus3minus2119897

(46)

Now let

1199040= 119865119897

1198962119897+1 119904

1= 119865119897

1198962119897+2 119904

119899= 119865119897

119896119899+2119897+1 (47)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 119897 minus 2

119899 minus 2) 119896119899minus2

(48)

The generating function of the sequence 119903119899 is119866(119905) = 1199052(1minus

119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we get the

generating function 119877119896119897(119909) of sequence 119904

119899

Theorem 18 The generating function of the incomplete 119896-Lucas numbers 119871119897

119896119899is given by

119878119896119897(119909) =

infin

sum

119894=0

119871119897

119896119894119905119894

= 1199052119897

[1198711198962119897+ (1198711198962119897+1

minus 1198961198711198962119897) 119905 minus

1199052

(2 minus 119905)

(1 minus 119896119905)119897+1

]

times [1 minus 119896119905 minus 1199052

]minus1

(49)

Proof The proof of this theorem is similar to the proof ofTheorem 17 Let 119897 be a fixed positive integer From (26) and(32)119871119897

119896119899= 0 for 0 le 119899 lt 2119897119871119897

1198962119897= 1198711198962119897

and1198711198971198962119897+1

= 1198711198962119897+1

and

119871119897

119896119899= 119896119871119897

119896119899minus1+ 119871119897

119896119899minus2minus119899 minus 2

119899 minus 2 minus 119897(119899 minus 2 minus 119897

119899 minus 2 minus 2119897) 119896119899minus2minus2119897

(50)

Now let

1199040= 119871119897

1198962119897 119904

1= 119871119897

1198962119897+1 119904

119899= 119871119897

119896119899+2119897 (51)

Also let

1199030= 1199031= 0 119903

119899= (119899 + 2119897 minus 2

119899 + 119897 minus 2) 119896119899+2119897minus2

(52)

The generating function of the sequence 119903119899 is 119866(119905) = 1199052(2 minus

119905)(1 minus 119896119905)119897+1 (see [16 page 355]) Thus from Lemma 16 we

get the generating function 119878119896119897(119909) of sequence 119904

119899

5 Conclusion

In this paper we introduce incomplete 119896-Fibonacci and119896-Lucas numbers and we obtain new identities In [17]the authors introduced the ℎ(119909)-Fibonacci polynomialsThat generalizes Catalanrsquos Fibonacci polynomials and the119896-Fibonacci numbers Let ℎ(119909) be a polynomial with realcoefficientsThe ℎ(119909)-Fibonacci polynomials 119865

ℎ119899(119909)119899isinN are

defined by the recurrence relation

119865ℎ0(119909) = 0 119865

ℎ1(119909) = 1

119865ℎ119899+1

(119909) = ℎ (119909) 119865ℎ119899(119909) + 119865

ℎ119899minus1(119909) 119899 ⩾ 1

(53)

It would be interesting to study a definition of incompleteℎ(119909)-Fibonacci polynomials and research their properties

Acknowledgments

The author would like to thank the anonymous referees fortheir helpful comments The author was partially supportedby Universidad Sergio Arboleda under Grant no USA-II-2011-0059

References

[1] T Koshy Fibonacci and Lucas Numbers with ApplicationsWiley-Interscience 2001

[2] P Filipponi ldquoIncomplete Fibonacci and Lucas numbersrdquoRendi-conti del CircoloMatematico di Palermo vol 45 no 1 pp 37ndash561996

[3] A Pinter and H M Srivastava ldquoGenerating functions ofthe incomplete Fibonacci and Lucas numbersrdquo Rendiconti delCircolo Matematico di Palermo vol 48 no 3 pp 591ndash596 1999

[4] G B Djordjevic ldquoGenerating functions of the incomplete gen-eralized Fibonacci and generalized Lucas numbersrdquo FibonacciQuarterly vol 42 no 2 pp 106ndash113 2004

[5] G B Djordjevic and H M Srivastava ldquoIncomplete generalizedJacobsthal and Jacobsthal-Lucas numbersrdquo Mathematical andComputer Modelling vol 42 no 9-10 pp 1049ndash1056 2005

[6] D Tasci and M Cetin Firengiz ldquoIncomplete Fibonacci andLucas p-numbersrdquoMathematical and Computer Modelling vol52 no 9-10 pp 1763ndash1770 2010

[7] D Tasci M Cetin Firengiz andN Tuglu ldquoIncomplete bivariateFibonaccu and Lucas p-polynomialsrdquo Discrete Dynamics inNature and Society vol 2012 Article ID 840345 11 pages 2012

[8] S Falcon and A Plaza ldquoOn the Fibonacci k-numbersrdquo ChaosSolitons and Fractals vol 32 no 5 pp 1615ndash1624 2007

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

Chinese Journal of Mathematics 7

[9] C Bolat and H Kose ldquoOn the properties of k-Fibonaccinumbersrdquo International Journal of Contemporary MathematicalSciences vol 22 no 5 pp 1097ndash1105 2010

[10] S Falcon ldquoThe k-Fibonacci matrix and the Pascal matrixrdquoCentral European Journal ofMathematics vol 9 no 6 pp 1403ndash1410 2011

[11] S Falcon and A Plaza ldquoThe k-Fibonacci sequence and thePascal 2-trianglerdquo Chaos Solitons and Fractals vol 33 no 1 pp38ndash49 2007

[12] S Falcon and A Plaza ldquoOn k-Fibonacci sequences and polyno-mials and their derivativesrdquoChaos Solitons and Fractals vol 39no 3 pp 1005ndash1019 2009

[13] J Ramırez ldquoSome properties of convolved k-Fibonacci num-bersrdquo ISRN Combinatorics vol 2013 Article ID 759641 5 pages2013

[14] A Salas ldquoAbout k-Fibonacci numbers and their associatednumbersrdquo International Mathematical Forum vol 50 no 6 pp2473ndash2479 2011

[15] S Falcon ldquoOn the k-Lucas numbersrdquo International Journal ofContemporary Mathematical Sciences vol 21 no 6 pp 1039ndash1050 2011

[16] H M Srivastava and H L Manocha A Treatise on GeneratingFunctions Halsted Press Ellis Horwood Limited ChichesterUK John Wiley amp Sons New York NY USA 1984

[17] A Nalli and P Haukkanen ldquoOn generalized Fibonacci andLucas polynomialsrdquo Chaos Solitons and Fractals vol 42 no 5pp 3179ndash3186 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Incomplete -Fibonacci and -Lucas Numbersdownloads.hindawi.com/journals/cjm/2013/107145.pdf · In this paper, we introduce incomplete -Fibonacci and -Lucas numbers,

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of