reservoir quality and petrophysical model of the tarn deep-water … · 2017. 5. 18. · model of...

31
Reservoir Quality and Petrophysical Model of the Tarn Deep-Water Slope- Apron System, North Slope, Alaska Pacific Section AAPG May 8, 2006 Alaska Department of Natural Resources Kenneth P. Helmold, Alaska Division of Oil & Gas Wayne J. Campaign, ConocoPhillips Alaska, Inc. William R. Morris, ConocoPhillips Co. Douglas S. Hastings, Brooks Range Petro. Corp. Steven R. Moothart, ConocoPhillips Alaska, Inc.

Upload: others

Post on 04-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Reservoir Quality and Petrophysical Model of the Tarn Deep-Water Slope-Apron System, North Slope, Alaska

    Pacific Section AAPGMay 8, 2006

    Alaska Department ofNaturalResources

    Kenneth P. Helmold, Alaska Division of Oil & GasWayne J. Campaign, ConocoPhillips Alaska, Inc.William R. Morris, ConocoPhillips Co.Douglas S. Hastings, Brooks Range Petro. Corp.Steven R. Moothart, ConocoPhillips Alaska, Inc.

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Conclusions• Reservoir quality is initially controlled by

    textural parameters related to turbidite elements• Channels are the best reservoirs followed by

    lobes, crevasse splays and levees• Mechanical compaction exerts a strong regional

    control on reservoir quality• Reservoir quality of Brookian sandstones can

    be accurately predicted prior to drilling • Petrophysical model is complicated by

    abundance of structural clay and low-density zeolite

  • Location of Tarn Field

    N

  • Stratigraphic Column of North Alaska

  • Tarn Slope-Apron Deposits

    N

    • Located at toe-of-slope

    • Fed by slope gullies

    • Fairly small features

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Brookian Sandstone CompositionTotal Quartz

    Feldspar Lithic Grains

    (including chert)

    Sedimentary Grains

    Volcanic Grains Metamorphic Grains

    (including chert)

    Paleocene Cenomanian Albian

    Cenomanian sands are lithic rich with abundant volcanic rock fragments

  • Typical Brookian Sandstones

    Albian (Torok)Argillaceous rich RFGenerally lack cement

    Paleocene (Flaxman)Chert richMedium-grain sand

    Cenomanian (Tarn)Volcanic glass richAnalcime cement

    100 µm

  • Brookian Sandstone Phi-K Trends

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    0 5 10 15 20 25 30Porosity (%)

    Perm

    eabi

    lity

    (md)

    PaleoceneCenomanianAlbian

    1 md K cutoff = Phi of 12% Paleocene, 15% Albian, 17% Cenomanian

  • Analcime and Microcrystalline Rims

    100 μm

    100 μm

    Silica-rich glass = NaAlSi2O6 • H2O + SiO2Analcime Quartz

    0

    5

    10

    15

    20

    25

    30

    2.40 2.50 2.60 2.70 2.80 2.90Grain Density (g/cc)

    Ana

    lcim

    e (b

    ulk

    %)

    ChannelLobesCrev SplayLeveeAban ChanBasin Plain

    r = - 0.68

    10 μm100 μm

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Channel Facies

    Sedimentary Facies: Amalgamated Ta, some Tb, Tabc, Tc (climbing at margins)

    Bed Thickness: Thin to very thickGrain Size: Very fine to fine-grain sandAvg. Porosity: 20 %Avg. Permeability: 33 mdAvg. H2O saturation: 46 %Avg. Dispersed clay: 4 %

    Cha

    nnel

    Leve

    e

  • Lobe Facies

    Sedimentary Facies: Tace, Tabe, Tabce, Tbce, occasional Tae, Tbe

    Bed Thickness: Thin to very thick,rare very thin

    Grain Size: Very fine- to fine-grain sand, rare mud

    Avg. Porosity: 18 %Avg. Permeability: 7 mdAvg. H2O saturation: 61 %Avg. Dispersed clay: 8 %

    Lobe

  • Crevasse SplayFacies

    Sedimentary Facies: Tce (climbing), Tb, Tabe, Tace, rare Tbe, Tbce

    Bed Thickness: Very thin to thickGrain Size: Very fine- to lower fine-grain

    sand, mud and siltAvg. Porosity: 17 %Avg. Permeability: 3 mdAvg. H2O saturation: 64 %Avg. Dispersed clay: 13 %

    Spla

    yLe

    vee

    Leve

    e

  • Levee Facies

    Sedimentary Facies: Tce, TcBed Thickness: Very thin, rare thinGrain Size: Very fine-grain sand,

    mud and siltAvg. Porosity: 16 %Avg. Permeability: 2 mdAvg. H2O saturation: 68 %Avg. Dispersed clay: 22 %

    Leve

    e

  • Depositional Control on Reservoir Quality

    Best reservoirs in channels; poorest in levees and basin plain

    0.01

    0.1

    1

    10

    100

    1000

    10 15 20 25 30Porosity (%)

    Perm

    eabi

    lity

    (md)

    ChannelLobeCrev SplayLeveeBasin Plain

  • Effect of Grain Size on Phi-K

    0.01

    0.1

    1

    10

    100

    1000

    0.00 0.05 0.10 0.15 0.20 0.25 0.30Framework Grain Size (mm)

    Perm

    eabi

    lity

    (md)

    r = 0.63

    ChannelLobeCrev SplayLeveeBasin Plain

    5

    10

    15

    20

    25

    30

    0.05 0.10 0.15 0.20 0.25 0.30Framework Grain Size (mm)

    Poro

    sity

    (%)

    r = 0.61

    Facies control on grain size is largely responsible for reservoir quality variability

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Brookian Erosion Map80 Miles

    Tarn Field

    Erosion estimates derived from sonic compaction curves

    mapped by Matt Burns,from Rowan et. al., 2003;USGS Open-File Report 03-329

    Maximum Burial Depth (Dmax) = Present Depth (ft) + Brookian Erosion (ft)

  • 0.001

    0.01

    0.1

    1

    10

    100

    1000

    2000 4000 6000 8000 10000 12000 14000 16000

    Dmax (feet)

    Perm

    eabi

    lity

    (md)

    0

    5

    10

    15

    20

    25

    30

    35

    40

    2000 4000 6000 8000 10000 12000 14000 16000

    Dmax (feet)

    Poro

    sity

    (%)

    Brookian Phi-K vs. Dmax

    Cenomanian

    Albian

    Model regression

    Increasing Burial Depth

    Incr

    easi

    ng G

    rain

    Siz

    e

    Increasing Burial Depth

    • Locally, reservoir quality is controlled by grain texture related to turbidite elements

    • Regionally, reservoir quality is controlled by compaction

  • Albian Prospects Cenomanian Prospects

    Brookian Reservoir Quality Model

    0

    5

    10

    15

    20

    25

    0 5 10 15 20 25Predicted Porosity (%)

    Mea

    sure

    d Po

    rosi

    ty (%

    )

    0.01

    0.1

    1

    10

    100

    0.01 0.1 1 10 100Predicted Permeability (md)

    Mea

    sure

    d Pe

    rmea

    bilit

    y (m

    d)

    Incr

    easi

    ng B

    uria

    l Dep

    th

  • Compaction of Brookian Reservoirs

    > 9000’ Dmaxø = 11 %k = 0.1 md

    7000-9000’ Dmaxø = 15 %k = 3 md

    < 7000’ Dmaxø = 18 %k = 12 md

    100 µm

  • Outline

    • Regional setting• Petrology of sandstones• Facies and reservoir quality• Regional reservoir quality model• Petrophysical model• Conclusions

  • Petrophysics: Overview of the Problem

    • GR log does not distinguish sand

    • RT and RHOB logs do show sand character

    • Problem results from presence of analcime and structural clay

    • Standard shaly-sand log model is not appropriate

  • Effect of Clay on Log Model• Reservoir contains 30-50% argillaceous rock fragments• Lithics are older and more compacted than surrounding shales

    • Lithics are “pinpoints” of conductivity that are not connected• Structural clay has little impact on reservoir quality

  • Effect of Analcime on Log Model

    • Grain densities vary over a wide range from 2.52 – 2.78• A single lithology model would yield poor results• Solve for Φ and grain density allowing for mineralogical variation• Model must use more than one porosity tool

  • Resistivity – Mineral Effect Cross PlotEx

    cess

    Neut

    ron

    Mine

    ralE

    ffect

    1 10

    0.0

    3.0

    6.0

    9.0

    12.0

    15.0

    18.0

    21.0

    24.0

    27.0

    30.0

    RT (OHMM)0 1

    Color: XRD.CALCITE_XRD

    1

    1

    11

    1

    11

    1

    11

    111

    1

    1

    1

    1

    11 11

    11

    1

    11

    1

    11

    11

    11

    11

    11

    11

    1

    1

    1

    11

    1

    11

    1

    1

    1

    1

    1

    1

    1

    11

    3

    3

    33

    33

    3333

    3

    3

    33

    33

    3

    33

    3

    44

    4

    444

    444

    4

    444

    4

    4

    44

    4444

    44

    4

    4

    44444

    4

    44

    44

    4

    44

    4

    4

    4

    4

    4

    4

    44

    45

    5

    5

    55555

    5

    5555

    555

    5

    5

    55

    5

    5

    5

    5

    5 5

    55

    55

    5

    55

    555 56

    6

    6

    6

    6

    66

    66

    6

    66

    6

    6

    6

    66

    66

    666

    6

    6

    66

    6

    6

    6

    6

    6

    6

    6

    6

    194194

    0

    0 0

    0

    50

    RT / XRD.HI_MINRL Crossplot6 Wells

    • Neutron correction is developed from the resistivity log• Calculate phi and grain density from standard Neutron/Density cross plot

    • Calculate mineral effect on Neutron log from mineral abundances (TS & XRD) and Log Parameter Table• Plot mineral effect against raw logs to determine “best fit”• Deep resistivity has best correlation

  • CoreG/C32.4 2.9

    Log ModelG/C32.4 2.9

    5200

    5250

    5300

    SSTVD

    FEETCore Porosity

    PCT50 0

    Log PorosityV/V0.5 0

    Log Sw1 0

    Core SwPCT100 0

    Grain Density

    Model ResultsWell Legend: Well A Well B Well C Well D Well E Well F

    0.0

    3.0

    6.0

    9.0

    12.0

    15.0

    18.0

    21.0

    24.0

    27.0

    30.0

    0.000

    0.030

    0.060

    0.090

    0.120

    0.150

    0.180

    0.210

    0.240

    0.270

    0.300

    TARN

    .PHI

    TX

    CORE.PHI (PCT)

    1 111

    1 11 1

    1

    1111

    1111

    11

    1

    1

    11 1

    1111

    111 1

    11

    11

    111

    11 111 1

    1

    1 111

    11

    111

    1 11111 1

    11 1

    1 1

    1

    1

    111

    1

    1

    1

    1

    111

    111 11111

    11111 1

    1

    11 1

    11 1

    1

    1 11 11

    1

    11

    111

    1 11111

    11

    1111 111 11

    111

    1111 1111

    11

    1111

    1

    11

    11 1

    11

    1

    1111

    11 1

    11

    11

    1 11 1

    1

    1

    1

    1

    1111

    1

    11

    1 11

    1 11

    1111

    1

    11

    1

    1

    1

    11

    1

    1

    1

    11

    1

    1 11

    11

    12

    222

    2 222

    2

    2

    22

    223

    3 3 33 3333 33

    344 444

    44

    444

    4

    444 44

    4

    44

    4

    44 4

    44

    44 4

    4444

    444

    4

    4

    44

    4

    44

    44

    44

    4

    44

    44

    4

    444 444 4

    4444

    444 4

    44

    4

    44

    4 4

    444 444

    4

    444

    4

    44

    4

    444

    44

    4444

    4

    44

    4

    44

    444

    4

    44

    44 4

    444

    4

    4

    4

    4 4

    44

    4

    4444

    5 55

    55

    55

    55 55 5555555

    5 55

    5 555 555

    5 55555

    55

    5555555 55 5 55555

    5555 55

    55

    555 55

    55

    5

    5 5

    5

    5

    55 5

    5

    5 55 5

    55

    5

    5

    555

    55

    5

    5

    56

    66 66

    6

    66

    6

    66

    666

    66 66 66

    66

    6

    66

    66

    6

    6

    6

    6666

    666

    666 6

    6

    6

    6

    6666

    66

    6

    6

    6

    66

    6

    6

    6

    666 6

    666666 666666

    66 666666666

    540540

    0

    0

    0 0

    • Results are for multiple wells• No log normalization or individual customization

  • Conclusions• Reservoir quality is initially controlled by

    textural parameters related to turbidite elements• Channels are the best reservoirs followed by

    lobes, crevasse splays and levees• Mechanical compaction exerts a strong regional

    control on reservoir quality• Reservoir quality of Brookian sandstones can

    be accurately predicted prior to drilling • Petrophysical model is complicated by

    abundance of structural clay and low-density zeolite

  • The End

    Reservoir Quality and Petrophysical Model of the Tarn Deep-Water Slope-Apron System, North Slope, AlaskaOutlineConclusionsSlide Number 4Slide Number 5Slide Number 6OutlineBrookian Sandstone CompositionTypical Brookian SandstonesBrookian Sandstone Phi-K TrendsSlide Number 11OutlineSlide Number 13Slide Number 14Slide Number 15Slide Number 16Depositional Control on Reservoir QualitySlide Number 18OutlineBrookian Erosion MapBrookian Phi-K vs. DmaxSlide Number 22Compaction of Brookian ReservoirsOutlineSlide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29ConclusionsSlide Number 31