response of nitrogen and potassium sulphate fertilizers on yield … › ... › uploads › 2019...

13
International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 117 Zambrut Zambrut.com. Publication date: December, 2019. Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield and Yield Component of Onion ............ 105 Response of Nitrogen and Potassium Sulphate Fertilizers on Yield and Yield Component of Onion (Allium cepa var. cepa) (Studied at Sirinka, North-Eastern Ethiopia) Solomon Kassaye 1 & Nigussie Dechassa 2 1 Solomon Kassaye & 2 Prof. Nigussie Dechassa 1 Sirinka Agricultural Research Centre, P. O. Box 74, Woldia, Ethiopia 2 Haramaya University, P. O. Box 138, Dire Dawa, Ethiopia 1. INTRODUCTION Onion (Allium cepa var.cepa) is a member of the Amaryllidaceae family and it is one of the most important vegetables in the world, whose utility is ranked second to tomatoes (Mogren et al., 2007). Onion is believed to have originated in Afghanistan, the area of Tajikistan and Uzbekistan,Western Tien Shan and India while Western Asia and the areas around the Mediterranean Sea are considered secondary centres of development (Malik, 2000). Abstract: A field experiment was conducted at Sirinka Agricultural Research Center, Ethiopia, during the 2009/10 off-season to investigate effect of nitrogen and potassium sulphate on the growth and yield of Onion (Allium cepa var.cepa) bulbs. Treatments comprised five by three factorial combinations of N (0, 50, 100, 150 and 200 kg N ha- 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using a randomized complete block design with three replications. Results showed that application of N significantly increased number of leaves, leaf length, plant height, mean bulb weight, bulb diameter, days to maturity and total bulb yield. Application of K significantly increased all parameters that affect N except days to maturity, mean bulb weight, marketable, unmarketable and total bulb yield. Moreover, the interaction effects of N and K2SO4 significantly increased marketable, unmarketable and total bulb yield. The increments of marketable and total bulb yield recorded from the application of 150 kg N ha-1 and 346 K2SO4 ha-1 were about 155 and 124%, respectively, over the control. The result of this study has shown combined application of 150 kg N ha-1 and 346 kg K2SO4 ha-1 is a good compromise for yield of onion bulbs. Keywords: Bulb, fertilizer, onion and yield.

Upload: others

Post on 26-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

105

Response of Nitrogen and

Potassium Sulphate Fertilizers

on Yield and Yield Component

of Onion (Allium cepa var. cepa) (Studied at Sirinka, North-Eastern Ethiopia)

Solomon Kassaye1 & Nigussie Dechassa

2

1Solomon Kassaye &

2Prof. Nigussie Dechassa

1Sirinka Agricultural Research Centre, P. O. Box 74, Woldia, Ethiopia

2Haramaya University, P. O. Box 138, Dire Dawa, Ethiopia

1. INTRODUCTION

Onion (Allium cepa var.cepa) is a member of the Amaryllidaceae family and it is one of the most

important vegetables in the world, whose utility is ranked second to tomatoes (Mogren et al., 2007).

Onion is believed to have originated in Afghanistan, the area of Tajikistan and Uzbekistan,Western

Tien Shan and India while Western Asia and the areas around the Mediterranean Sea are considered

secondary centres of development (Malik, 2000).

Abstract: A field experiment was conducted at Sirinka Agricultural Research Center,

Ethiopia, during the 2009/10 off-season to investigate effect of nitrogen and potassium

sulphate on the growth and yield of Onion (Allium cepa var.cepa) bulbs. Treatments

comprised five by three factorial combinations of N (0, 50, 100, 150 and 200 kg N ha-

1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using a randomized complete block

design with three replications. Results showed that application of N significantly

increased number of leaves, leaf length, plant height, mean bulb weight, bulb diameter,

days to maturity and total bulb yield. Application of K significantly increased all

parameters that affect N except days to maturity, mean bulb weight, marketable,

unmarketable and total bulb yield. Moreover, the interaction effects of N and K2SO4

significantly increased marketable, unmarketable and total bulb yield. The increments

of marketable and total bulb yield recorded from the application of 150 kg N ha-1 and

346 K2SO4 ha-1 were about 155 and 124%, respectively, over the control. The result

of this study has shown combined application of 150 kg N ha-1 and 346 kg K2SO4 ha-1

is a good compromise for yield of onion bulbs.

Keywords: Bulb, fertilizer, onion and yield.

Page 2: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

106

Onions are popular vegetables among most of the world’s population. They are valued for their

distinct pungent or mild flavours and form essential ingredients of the cuisine of many regions. Since

onions are used by rich and poor alike, and are often called the ‘poor man’s food’ (Muhammad, 2004).

Onion has great economic importance due to its medical and dietetic values since ancient times. Onion

lowers the cholesterol content in blood serum and thus are of value against heart trouble (Griffiths et

al., 2002).

Ethiopia has a variety of vegetable crops adaptable to specific locations and altitudes due to great

variety of climate and soil types. Land acreage under onion production is estimated to be about 17588

hectares and the national average yield which is 9.63 t ha-1

(CSA, 2010) as compared to world average

of 17.30 t ha-1

(FA0, 2010). At present, the major producers of vegetable crops are small-scale farmers,

production being mainly rain fed and few under irrigation (CSA, 2010). Many diverse and complex

biotic, a biotic and human factors have contributed to the existing low productivity of onion. Like other

crops, low soil fertility is one of the critical factors limiting productivity of onion crop (Lemma and

Shimeles, 2003).

Traditionally, farmers maintain or improve farmland soil fertility using different management

practices such as fallowing, use of cattle manure, intercropping and crop rotation. The use of some of

these cultural practices as a means of maintaining or improving soil fertility is limited to a great extent

due to small land holding of farmers (Reijnties et al., 1992). Available statistical data indicate that the

average household land holdings in the country in general and in Amahara region in particular are

about 1.01 and 0.75 ha, respectively (CSA, 2010). Farmers with small plots of land are unable to

maintain the farmland soil fertility through cultural practices, as they are using their land exhaustively

(Reijnties et al., 1992). Under such situations, therefore, the use of inorganic fertilizers to optimize

productivity becomes indisputable in crop production and hence, onion cannot be an exception.

Nitrogen and potassium are the most important among the elements that are essential to plants.

Plants utilize these nutrients in large quantities. The deficiency of these elements is manifested in the

detrimental effects on the growth and development of the plants (Tisdale et al., 1995). Furthermore,

high mobility of N and high affinity of K for chemical reactions and fixation in the soils put these plant

nutrients on the priority list in soil fertility management studies.

Soil fertility studies conducted at different locations in Ethiopia for different crops have shown

that on a sandy loam soil in a semi-arid region of Ethiopia, irrigated onion plants benefited from

application of 90-120 kg N ha-1

compared to unfertilized crops (Aklilu, 1997). Although the total

potassium content of soils is usually many times greater than the amount taken up by crops in a

growing season, in most cases only a small fraction is available to plants (Tisdale et al., 1995). In

addition, potassium deficiency is more localized than that of the other two primary nutrients (Nitrogen

and Phosphorus), so that in some areas there is no response, whereas on other soils large potassium

responses are obtained (Anderson, 1973).

A lot is known about soil potassium in different parts of the world. However, little is known

about the status of this nutrient in Ethiopian soils (Tekalign Mamo and Haque, 1988). Early indications

of favorable potassium supply except in a few acutely deficient soils have led researchers and farmers

to ignore needs for potassium in many parts of East Africa (Anderson, 1973). Experiments in the past

few years have indicated potassium deficiency to be much more widespread than hitherto known and

the need for potassium application increases in proportion to the intensity of cropping even in semi-arid

areas where potassium applications traditionally have given least response (Anderson, 1973).

Systematic study on fertilization to improve the yield and yield component of onion is lacking.

This is one of the problems of farmers at Sirinka as well as many parts of Ethiopia. Hence, considering

that Ethiopian soils are deficient in N and K and realizing the importance of fertilizers in onion

production, the use of inorganic fertilizers is important for enhancing both yield and yield component

of the crop. However, available information regarding response of the crop to nutrient application is

limited in the study area. In addition, fertilizer practices in the study area have been mainly based on

blanket recommendations. Moreover, very little information is available in the country with regard to

the influence of nitrogen and potassium fertilizers on the growth and yield of onion. Thus, systematic

investigations in to the response of onion to applied N and K2SO4 fertilizers under specific agro-

ecologies is very important to come up with relevant recommendations in order to help farmers to

Page 3: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

107

increase the productivity and yield component of onion. Objective; To investigate the effects of

nitrogen and potassium sulphate on the yield and yield component of onion.

2. MATERIALS AND METHODS

The field study was conducted during the off-season from September 2009 to May 2010 for field

study from May 11 to August 10, 2010 at Sirinka, which is located at 437 km North East of Addis

Ababa. Sirinka is located at 11021' N latitude and 39

038' E longitude and at an altitude of 1680 masl.

The mean annual rainfall was 1204.60 mm and average annual minimum and maximum temperatures

were 11.20 0C and 25.60

0C, respectively (SARC, 2010) (Appendix Table 2). Onion cultivar 'Adama

Red' was used as a test crop. Urea (46% N)] and potassium sulphate (52% K2O and 18% S)] were used

as a sources of nitrogen and potassium, respectively. The treatments comprised a factorial combination

of five levels of nitrogen (0, 50, 100, 150 and 200 kg N ha-1

) and three levels of potassium sulphate (0,

346 and 692 kg ha-1

). The experiment was laid out as a randomized complete block design with three

replications. A 3 m x 2 m plot was used for each experimental unit. The blocks were separated by 2 m

space whereas the space between each plot within a block was 1 m. Seeds were sown in the nursery on

2 November 2009 and seedlings were transplanted from the nursery to the field on 4 January 2010 at

the spacing of 0.20 m between rows and 0.10 m between plants. In each plot, there were ten rows and

the total number of plants in each row was 30. Nitrogen was applied in three splits i.e., at transplanting,

15 and 30 days after transplanting. All plots received basal dressing of phosphorus at the rate of 92 kg

P which is recommended for onion (Lemma and Shimeles, 2003). DAP was used as a source of

phosphorous. All the required potassium was applied at the time of transplanting. Weeding, cultivation

and other recommended agronomic and plant protection practices were done at the appropriate time

following the practice of the research centre. Harvesting was done during first week of May 2010,

when the bulbs were fully matured and about 70% tops of the bulbs were dried. Bulbs were pulled out

by hand and weight was recorded separately in each plot. Data like plant height, number of leaves per

plant, leaf length, days to maturity, bulb diameter, mean marketable bulb weight, marketable bulb

yield, unmarketable bulb yield and total bulb yield were recorded from ten randomly sampled plants for

each plot from the middle eight rows.

2.1 Soil Sampling and Analysis

Soil sampling was done before planting and at harvesting. Soil samples were taken randomly in a

zigzag pattern from the experimental plots at the depth of 0-30 cm. Sixteen soil cores were taken by an

auger from the whole experimental field and combined to a composited sample in a bucket. The soil

was broken in to small crumbs and thoroughly mixed. From this mixture, a sample weighing one

kilogramme was filled in to a plastic bag for analysis. After harvest, soil samples were collected from

each experimental unit in a similar way (Warren, 2004). The soil samples were air dried and sieved

through a 2 mm sieve. Then, soil pH was determined by diluting the soil in a 0.01 M CaCl2 solution in

the ratio of 1 soil volume to 2.5 volume of the CaCl2 solution. Thus, twenty-five ml of the 0.01 M

CaCl2 solution was added into soil sub-samples each weighing 10 g. After equilibrating for 2-3 hours,

the suspensions was filtered and the pH measured by a glass electrode. Texture of the soil was

determined by sedimentation method. Total nitrogen of the soil was determined by the micro-Kjeldhal

procedure (Dewis and Freitas, 1970). Organic carbon was determined by the method of Nelsen and

Sommers (1982). Available phosphorus content of the soil was determined by extraction with 0.5 M

NaHCO3 (Olsen et al., 1954). Phosphorus in the extracts was determined with atomic absorption

spectrophotometer calorimetrically according to the molybdenum blue color method of Murphy and

Riley (1962). Exchangeable potassium was determined with a flame photometer after extracting K

from the soil with 0.5 N ammonium acetate (Pratt, 1965).

2.2 Statistical Analysis

The data were subjected to Analysis of Variance (ANOVA) and correlation coefficients were

calculated for selected parameters using SAS (Statistical Analysis Software) software version 9.0 (SAS

Institute, 2002). LSD (Least Significant Difference) test is used to separate means whose treatment

effect is significant.

Page 4: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

108

3. RESULTS AND DISCUSSION

3.1 Selected Soil Chemical Properties of the Experimental Field

Results of the soil analysis of the study area showed that the soil to be sandy clay loam in texture

with neutral (pH 6.8 and 6.9) before planting and after harvest, respectively. According to the limit

suggested by Walkley and Black (1934), the OC (1.43%) or (2.46%) OM and OC (1.19%) or (2.07%)

OM content of the soil is rated as very low, before planting and after harvest, respectively. According

to the rating suggested by Landon (1992) the N content (0.15 and 0.09%), before planting and after

harvest, respectively, was as low. According to the rating suggested by Olsen et al. (1954), the P

content (15.50 and 18.50 ppm) before planting and after harvest, respectively, was rated as medium.

According to the rating suggested by Landon (1991), the CEC (39.13 and 32.97 cmol (+) kg-1

) and K

(1.01 and 1.21cmol (+) kg-1

) before planting and after harvest, respectively rated as high (Table 1).

Table 1. Soil physical and chemical properties of the experimental site before planting and after

harvest.

Soil property Quantity/Type

Before planting After harvest

Particle size distribution (%)

Sand 41.00 41.33

Silt 29.00 28.53

Clay 30.00 30.13

Textural Class Sandy clay loam Sandy clay loam

Soil depth 0-30 0-30

pH 6.80 6.90

Total N (%) 0.15 0.09

Available P (ppm) 15.50 18.50

Excha. K (cmol (+) kg-1) 1.01 1.21

OC (%) 1.43 1.19

CEC (cmol (+) kg-1) 39.13 32.97

OM (%) 2.46 2.07

3.2 Effect of Nitrogen and Potassium Sulphate on Phenological and Growth Parameters

Days to maturity

Nitrogen significantly (P<0.01) prolonged days to maturity. Increasing N level from 0 to 50 kg N

ha-1

did not prolong days to maturity. Moreover, plants supplied with the highest three levels of N were

in statistical parity in terms of days to maturity and prolonged days to maturity by 3, 5 and 6%,

respectively, as compared with the unfertilized control. However, application of potassium sulphate did

not influence days to maturity (Table 2).

Similar results were reported by Khan et al. (2002) who illustrated that high N levels above 100

kg N ha-1

delayed bulb maturity. In agreement with the result of this study, Kumar et al. (1998) also

observed that N at the rate of 150 kg ha-1

recorded the highest number of days with regard to the time to

reach bulb maturity. The result is also in line with the findings of Islam et al. (1999) who reported that

application of 180 kg N ha-1

prolonged the growing period of onions. The delay in maturity due to

nitrogen fertilizer application might be attributed to the prolonged canopy growth in response to higher

nitrogen doses to maintain physiological activity for an extended period and thereby continuing

photosynthesis (Brewster, 1994; Marschner, 1995).

Page 5: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

109

Table 2. Effect of applied N and K2SO4 rates on days to maturity, leaf length, leaf number and

plant height of Onion.

Treatments Days to maturity No. of leaves per plant Leaf length (cm) Plant height (cm)

N (kg ha-1

)

0 92.67c 7.33

d 41.76

d 46.64

d

50 94.00bc

8.42cd

45.75c 51.57

c

100 95.22abc

9.53bc

49.76b 58.11

b

150 97.22ab

10.57ab

53.76a 60.76

ab

200 98.56a 11.61

a 56.43

a 63.64

a

LSD (5%) 3.35 1.29 2.88 3.26

K2SO4 ( kg ha-1

)

0 94.53 8.43c 48.35 53.55

c

346 95.53 9.48b 49.08 56.15

b

692 96.53 10.58a 51.05 58.73

a

LSD (5%) NS 1.00 NS 2.52

CV (%) 3.63 14.10 6.03 6.01

Means within a column for a factor sharing common letter(s) are not significantly different at 5%; NS=

non- significant;*, **=significant at 5% and 1%, respectively.

Number of leaves per plant

Application of nitrogen highly significantly (P<0.01) increased the number of leaves per plant.

The highest numbers of leaves (12) were obtained from plants that received 200 kg N ha-1

. However,

the smallest numbers of leaves per plant (7) was observed from plants in the control treatment (0 level

of nitrogen). Plants supplied with 50, 100, 150 and 200 kg N ha-1

produced 15, 30, 44 and 58% more

number of leaves, respectively, than plants that were not supplied with nitrogen at all (Table 2). These

results are in accord with those of Ghaffoor et al. (2003), Yadav et al. (2003) and Mozumder et al.

(2007) who reported that application of 150 kg N ha-1

significantly increased number of leaves per

plant. Similar results were also reported by Syed et al. (2000), Abdulsalam and Hamaiel (2004) and

Nasreen et al. (2007) who observed that the maximum number of onion leaves per plant in plots

supplied with nitrogen fertilization in the range of 100-125 kg N ha-1

. The results are also corroborated

by those of Islam et al. (1999) who reported that maximum number of leaves was recorded for plants

grown with the supply of 160 kg N ha-1

. The increment in vegetative growth due to application of

nitrogen may be attributed to the pronounced role of nitrogen in plant metabolism as nitrogen is a

constituent of proteins, enzymes, hormones, vitamins, alkaloids and chlorophyll, which may have led to

an increment in plant metabolism and vegetative growth expressed as number of leaves per plant

(Kumar et al., 1998).

The leaf number per plant varied significantly (P<0.01) due to different doses of potassium

sulphate application. Increasing K2SO4 from 0 to 692 kg ha-1

showed consistent increment of number

of leaves per plant. Thus, compared to plants that were not supplied with potassium sulphate, plants

that were treated with potassium sulphate at the rates of 346 and 692 kg K2SO4 ha-1

produced 12 and

26% more number of leaves (Table 2). The results of the experiment agree with those of Yadav et al.

(2003), Abd El-Al et al. (2005), Mozumder et al. (2007) and Islam et al. (2008) who reported that

application of potassium sulphate in the range of 300-365 kg K2SO4 ha-1

significantly increased the

number of leaves per plant. The result is also in line with the findings of El-Bassiony (2006), EL-

Desuki et al.(2006b), Islam et al. (2007) and Aisha and Taalab (2008) who indicated that the highest

number of leaves was recorded at 533, 714, 667 and 714 kg K2SO4 ha-1

. Generally, the increase in plant

growth parameters caused by high rates of potassium might be due to its fundamental role as potassium

for enhanced metabolism and plant growth, which further stimulates uptake and utilization efficiency

of other nutrients from the soil (Yadav et. al., 2005; Aisha et al., 2007).

Leaf length

Highly significant (P<0.01) difference in leaf length were observed due to increase in the

application rates of N. Increasing N from 0 to 200 kg N ha-1

showed consistent increment of leaf

Page 6: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

110

length. The highest leaf length (56.43 cm) was observed at 200 kg N ha-1

, while the lowest (41.76 cm)

at control. It is also clear that leaf length were increased by 10, 19, 29 and 35% due to application of

50, 100, 150 and 200 kg N ha-1

compared to the control, respectively. On the contrary, there was no

significant difference (P>0.05) among the treatments in leaf length with application of potassium

sulphate (Table 2).

These results are in harmony with those obtained by Kumar et al. (1998), Singh and Chaure

(1999), Ghaffoor et al. (2003) and Jilani et al. (2004) who observed that the maximum leaf length was

recorded at application of nitrogen in the range of 150-160 kg N ha-1

, while the minimum was recorded

at control level of N. Similar observations were also obtained by Muhammad (2004) who reported that

application 200 kg N ha-1

enhanced leaf length. This increment of leaf length by applied N in part could

be due to major function of N contributing to increasing number and size of leaves and also gives dark

color to the leaves (Marschner,1995; Gupta and Sharma, 2000).

Plant height

Plant height significantly (P<0.01) increased in response to increasing N fertilizer application.

The tallest plants (63.64 cm) were recorded from those supplied with nitrogen at the rate of 200 kg N

ha-1

. Minimum plant height (46.64 cm) was observed in the control. There was also significant increase

in height of onion plants that received lower levels of N. The increase of plant height was 11, 25, 30

and 36% more in case using 50, 100, 150 and 200 kg N ha-1

, respectively (Table 2). The present finding

in accord with those of Kumar et al. (1998), Ghaffoor et al. (2003), Yadav et al. (2003) and Mozumder

et al. (2007) who reported that application of 150 kg N ha-1

significantly increased plant height. Similar

results were reported by Syed et al. (2000), Khan et al. (2001 ) and Nasreen et al. (2007) who observed

that application of nitrogen in the range of 90-120 kg N ha-1

increased plant height significantly over

the control. The increment in vegetative growth due to application of nitrogen might be attributed to the

role of nitrogen in plant growth through cell division and elongation (Brady, 1985; Marschner, 1995).

Application of potassium sulphate significantly (P<0.01) increased plant height of onion. Plants

that received potassium sulphate at the rates of 346 and 692 kg K2SO4 were taller than those that were

grown without potassium sulphate supply by 5 and 10%, respectively (Table 2). This result conforms to

the finding of Yadav et al. (2003) and Mozumder et al. (2007) who reported that application of

potassium sulphate in the range of 313-375 kg K2SO4 significantly increased plant height. These results

are similar also to those of El-Bassiony (2006), EL-Desuki et al. (2006b) and Islam et al. (2007) who

indicated that potassium sulphate application in the range of 533-1217 kg K2SO4 ha-1

had a significant

effect on plant height of onion. Generally, the increase in plant growth parameters caused by potassium

fertilization might be due to its beneficial effect of such level on plant growth and its fundamental role

in plant growth (EL-Desuki et al., 2006b).

3.3 Effect of Nitrogen and Potassium Sulphate on Bulb Yield of Onion

Total bulb yield

Nitrogen and potassium sulphate fertilization had highly significant (p<0.01) interaction effects

on bulb yield. Accordingly, the treatment combinations of N at 100, 150 and 200 kg N ha-1

with

potassium sulphate at 346 and 692 kg K2SO4 ha-1

resulted in increased bulb yield by 52, 53, 124, 112,

64 and 82%, respectively, over the control. Significantly higher total bulb yield (32.16 t ha-1

) was

recorded in the treatment combination of 150 kg N ha-1

and 346 kg K2SO4 ha-1

closely followed by 150

kg N ha-1

and 692 kg K2SO4 ha-1

with yield (30.48 t ha-1

), while the lowest bulb yield (14.37 t ha-1

) was

obtained at the combination of 0 level of nitrogen and potassium sulphate (Table 3).

Page 7: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

111

Table 3. Interaction effects of applied N and K2SO4 on marketable, unmarketable and total yield

of Onion.

Means within a column for a factor sharing common letter(s) are not significantly different at 5%;

NS=non- significant; *, **=significant at 5% and 1%, respectively.

The results of this experiment are consistent with the findings of Shanmugasundaram (2000)and

Yadav et al. (2003) who indicated that application of 150:375 kg N:K2SO4 ha-1

gave the highest bulb

yield. Similarly, FAO (2000) report indicated that application of 150:375 kg N:K2SO4 ha-1

on acid

acrisols in Nigeria gave best yield in onion. This result was supported well by the findings of Mitrache

and Burileanu (1984) and Akhtar et al. (2002) who reported that the highest yield was obtained at

150:417 kg N: K2SO4 ha-1

.These results are further supported by those of Islam et al. (2007) and Yadav

et al. (2007) who concluded that application of 150:396 kg N:K2SO4 ha-1

produced the maximum bulb

yield. In this study, total bulb yield showed positive and significant (p<0.01) correlations with plant

height (r=0.73**), number of leaves per plant (r=0.66**), leaf length (r=0.74**), bulb

diameter(r=0.59**), mean bulb weight (r=0.91**) and marketable bulb yield (r=0.99**). These

suggests that N fertilization rates improve the above ground plant growth, delay maturity, improve the

physiological capacity of the crop to mobilize and translocate photosyntate to the organs of economic

value and increasing both bulb number and individual bulb size, which in turn increase the bulb yield

(Table 5). The positive N x K interaction expressed in total bulb yield might probably be attributed to a

possible function of K in increasing nitrogen use efficiency. Research showed that, without K, N

efficiency declined, whereas when all nutrients were applied together K efficiency increased steadily

(FAO, 2000; Khan et al., 2002; Aisha et al., 2007).

Marketable bulb yield The interaction of applied N and K2SO4 resulted in a significant (p<0.01) difference on

marketable yield. Thus, the treatment combinations of N at 50,100, 150 and 200 kg N ha-1

with

potassium sulphate at 346 and 692 kg K2SO4 ha-1

resulted in increased marketable bulb yields by 23,

32, 74, 75, 170, 155, 99 and 123%, respectively, over the control. Significantly higher marketable yield

(29.69 t ha-1

) was recorded in the treatment combination of 150 kg N ha-1

and 346 kg K2SO4 ha-1

, while

Fertilizer rate (kg ha-1

)

Bulb yield

Marketable Unmarketable Total N K2O5

0 0 11.00h 3.37

a 14.37

h

0 346 12.10gh

2.43bc

14.53h

0 692 12.33gh

2.41bc

14.74h

50 0 14.99f 2.17

cd 17.16

g

50 346 13.50fg

2.38bc

15.88gh

50 692 14.55f 1.86

de 16.42

gh

100 0 18.69e 2.72

b 21.41

f

100 346 19.16e 2.68

b 21.84

ef

100 692 19.29e 2.71

b 22.00

ef

150 0 25.36b 2.05

cde 27.42

b

150 346 29.69a 2.48

bc 32.16

a

150 692 28.09a 2.39

bc 30.48

a

200 0 23.44cd

1.76de

25.20cd

200 346 21.92d 1.62

e 23.54

de

200 692 24.53bc

1.66e 26.19

bc

LSD (5%) 1.92 0.48 2.06

CV(%) 5.97 12.48 5.72

Page 8: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

112

the lowest bulb yield (11.00 t ha-1

) was obtained at the combined application of 0 nitrogen and 0

potassium sulphate (Table 3). These trends of results are very much similar with the findings of

Shanmugasundaram (2000) and Yadav et al. (2003) who concluded that application of 150: 375 kg

N:K produced maximum marketable yield. These results are in line with the findings of Muhammad

(2004) who reported that higher marketable yield was obtained at 200:375 kg N:K2SO4 ha-1

. These

results are also consistent with those of Mozumder et al. (2007) who showed that application of

150:208 kg N:K2SO4 ha-1

had significant effect on marketable yield. Moreover, marketable bulb yield

was positively and strongly associated with marketable bulb number and mean bulb weight (r=0.72**

and 0.92**, respectively) indicating that the treatments increased marketable bulb yield by increasing

both bulb number and individual bulb size (Table 5). The increment in marketable yield due to

application of nitrogen and potassium sulphate could be attributed to the increment in vegetative

growth and rising photosynthesis production, which is associated with increment in bulb size and single

bulb weight (Khan et al., 2002; Nasreen et al., 2007).

Unmarketable bulb yield

Interactive effects of nitrogen and potassium sulphate rates on unmarketable yield was of

significant differences. Accordingly, the treatment combinations of N at 50,100, 150 and 200 kg N ha-1

with potassium sulphate at 346 and 692 kg K2SO4 ha-1

resulted in a decreased unmarketable bulb yield

by 29, 45, 20, 20, 26, 29, 52 and 51%, respectively, over the control. Significantly, higher

unmarketable yield (3.37 t ha-1

) was recorded in the control while the minimum unmarketable bulb

yield (1.62 t ha-1

) was recorded in the treatment combination of 200 kg N ha-1

and 346 kg K2SO4 with

unmarketable yield of 1.66 t ha-1

closely followed by 200 kg N ha-1

(Table 3).

The result agrees with that of Muhammad (2004) who reported that application of 200:375 kg

N:K2SO4 ha-1

produced the minimum unmarketable yield. The same results were reported by AL-

Moshileh (2001) who observed that application of 150:357 kg N:K2SO4 reduced the unmarketable bulb

yield as compared with the control. Comparable results were obtained by Syed et al. (2000) and

Ghaffoor et al. (2003) who indicated that control gave significant maximum unmarketable yield, while

minimum unmarketable yields were associated with high rates of N and potassium sulphate. In

addition, unmarketable bulb yield was positively associated with strongly negatively associated with

mean bulb weight (r=-0.37) indicating that the treatments increased unmarketable bulb yield when

individual bulb size decreased (Table 5). Generally, maximum unmarketable yields were recorded in

unfertilized plots, which may be ascribed mainly to nitrogen and potassium deficiency and sub-optimal

growth of the onion plants. This may have also resulted in plants that were weaker and prone to disease

and other biotic and abiotic stresses, resulting in lower weight of bulbs (Khan et al.,2002).

3.4 Effect of Nitrogen and Potassium Sulphate on Yield Components of Onion

Bulb diameter

The analysis of variance for bulb diameter revealed highly significant (P<0.01) response to N fertilizer.

Therefore, in response to increasing the level of nitrogen from 0 to 50, 100, 150 and 200 kg N ha-1

,

bulb diameter increased by 8, 16, 33 and 24%, respectively. The highest bulb diameter (6.08 cm)

occurred at 150 kg N ha-1

, while the minimum (4.58 cm) was recorded at control treatment (Table 4).

These results agree with those of Jilani et al. (2004), Muhammad (2004), Islam et al. (2007) and

Mozumder et al. (2007) who reported that nitrogen application in the range of 120-200 kg N ha–1

was

best for the maximum bulb diameter of onion. In this study, bulb diameter showed positive and highly

significant correlation with plant height (r= 0.58), number of leaves (r= 0.65**) and leaf length (r=

0.58**) (Table 5). This study seems to indicate that application of nitrogen contributed towards the

bulb diameter increment probably as a consequence of interception of more photosynthetically active

radiation, efficient radiation use, more dry matter accumulation and partitioning to bulbs. Thereby

increased diameter of bulbs (Nasreen et al., 2007). Generally, the increase in bulb diameter in response

to increased nitrogen fertilization might be ascribed to the fundamental role of nitrogen plays in growth

and expansion of bulbs, which may have also stimulated uptake and efficient utilization of other

nutrients from soil (Jone and Mann, 1963; Bohloo et al., 1992).

Page 9: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

113

Table 4. Response of applied N and K2SO4 rates on bulb diameter and mean bulb weight of

Onion.

Means within a column for a factor sharing common letter(s) are not significantly

different at 5%; NS=non- significant; *, **=significant at 5% and 1%, respectively.

Similarly, application of potassium sulphate fertilizer resulted in a significant (p<0.01) increase

in the bulb diameter compared to the control. Thus, plants treated with 346 and 692 kg K2SO4 ha-1

had

10 and 26% more bulb diameter, respectively, than plants treated with no potassium sulphate. The

highest bulb diameter (6.00 cm) occurred at the highest level of potassium sulphate, while the

minimum (4.75 cm) observed at 0 kg K2SO4 ha-1

(Table 4).

The result was in line with those of El-Bassiony (2006), EL-Desuki et al. (2006a), Aisha et al.

(2007), and Aisha and Taalab (2008) who reported that highest bulb diameter was observed at 535,

715, 596 and 715 kg K2SO4 ha-1

(cm), respectively. This stimulating effect of potassium on bulb

diameter may be due to the role of potassium on production of enzymes activity and enhancing the

translocation of assimilate and protein synthesis (Khan et al., 2002).

Mean bulb weight

Mean bulb weight also appeared to be highly significantly (p<0.01) affected due to the effect of

different rates of applied N fertilizer. Therefore, in response to increasing the level of nitrogen from 0

to 50, 100, 150 and 200 kg N ha-1

, mean bulb weight increased by 26, 58, 105 and 85%. The highest

mean bulb weight (53.96 g) occurred at 150 kg N ha-1

, while the minimum (26.26 g) was recorded at

control treatment. However, Potassium sulphate did not affect mean bulb weight (Table 4).

The result on mean bulb weight agrees with that of Vachhani and Patel (1993), Singh and Chaure

(1999) and Mozumder et al. (2007) who found that mean bulb weights of onion siginificantly increased

with the increase in N fertilizer up to 150 kg N ha-1

. The results are also comparable with the finding of

several workers including Kashi and Frodi (1998), Islamet al. (2007) and Nasreen et al. (2007) who

mentioned that application of 120 kg N ha-1

produced the highest mean bulb weight of onion. In this

study, mean bulb weight showed positive and highly significant correlation with plant height

(r=0.79**), number of leaves (r=0.70**) and leaf length (r=0.82**) (Table 5). This study seems to

indicate that nitrogen fertilization contributed towards the mean bulb weight increment probably due to

effect of nitrogen on increase leaf size and assimilate partition to the bulbs, Thereby increased weight

of bulbs (Marschner, 1995). The increase in mean bulb weight of bulbs with the supply of N could be

due to growth that is more luxuriant, more foliage and leaf area and higher supply of photosynthates,

which helped in producing bigger bulbs (Reddy and Reddi, 2002).

Treatments bulb diameter (cm) mean bulb weight (g)

N (kg ha-1

)

0 4.58d 26.26

e

50 4.95dc

33.02d

100 5.32bc

41.38c

150 6.08a 53.96

a

200 5.69ab

48.64b

LSD (5%) 0.53 3.70

K2SO4 (kg ha-1

)

0 4.75c 39.16

346 5.22b 40.73

692 6.00a 42.07

LSD (5%) 0.41 NS

CV (%) 10.40 9.42

Page 10: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

114

Table 5. Simple correlation coefficients among different agronomic parameters

Trait PH NPPP LL BD DM MBW MBY UMBY TBY

PH 1

NPPP 0.76** 1

LL 0.74** 0.73** 1

BD 0.58** 0.65** 0.58** 1

DM 0.42** 0.46** 0.48** 0.28 1

MBW 0.79** 0.70** 0.82** 0.65** 0.44** 1

MBY 0.76** 0.68** 0.76** 0.60** 0.50** 0.92** 1

UMBY -0.49** -0.42** -0.47** -0.22 -0.32* -0.37* -0.31* 1

TBY 0.73** 0.66** 0.74** 0.59** 0.48** 0.91** 1.00** -0.23 1

* and ** correlation significant at p<0.05 and p<0.01, respectively. PH=plant height, NLPP=number

of leaves per plant, LL= leaf length, BD= bulb diameter, DM=days to maturity, MBW=mean bulb

weight, MBY = marketable bulb yield, UMBY = unmarketable bulb yield, TBY= total bulb yield

4. SUMMARY AND CONCLUSION Crop growth, development and their subsequent yield are governed by the availability of optimum

levels of water and nutrients and favorable environmental conditions. The maximum yield achievement

by crop relies on the application of the correct level of fertilizers. In addition to increment of yield has

to be achieved during the production stage, coupled with appropriate post-harvest handling practices.

Therefore, the present study was conducted to investigate the effects of nitrogen and potassium

sulphate on the yield and yield component of onion (Allium cepa var.cepa) bulbs using five levels of N

(0, 50, 100, 150 and 200 kg N ha-1

) and three levels of K2SO4 (0, 346 and 692 kg K2SO4 ha-1

) using a

randomized complete block design with three replications. The study was conducted during the off-

season, from September 2009 to May 2010 at Sirinka, Wello North-East Ethiopia on a sandy clay loam

soil. Results of the experiment showed that N fertilization significantly affects number of leaves per

plant, leaf length, plant height, bulb diameter, days to maturity, mean bulb weight, unmarketable yield,

marketable yield and total bulb yield. Similarly, K2SO4 fertilization significantly affected all the above

parameters that were influenced by N except, days to maturity, mean bulb weight, marketable,

unmarketable and total bulb yield. In all parameters, significantly highest mean value was recorded at

150 kg N ha-1

except unmarketable bulb yield that was recorded at 200 kg N ha-1

while minimum value

were recorded at control. Similarly, significantly highest mean value was recorded at 692 kg K2SO4 ha-

1. Moreover, application of N and K on the other hand significantly affected marketable bulb yield,

unmarketable bulb yield and total bulb yield. Significantly higher total bulb yield (32.16 t ha-1

) and

marketable yield (29.69 t ha-1

) was recorded in the treatment combination of 150 kg N ha and 346 kg

K2SO4 ha-1

, while the lowest bulb yield (14.37 t ha-1

) and marketable yield (11.00 t ha-1

) was recorded

in the control. Similarly, significant higher unmarketable yield (3.37 t ha-1

) was recorded in the control,

while the minimum unmarketable bulb yield (1.62 t ha-1) was recorded in the treatment combination of

200 kg N ha-1

and 346 kg K2SO4 ha-1

closely followed by 200 kg N ha-1

and 692 kg K2SO4 ha-1

with

unmarketable yield (1.66 t ha-1

). In conclusion, the result of this study has shown combined application

of 150 kg N ha-1

and 346 kg K2SO4 ha-1

is a good compromise for yield of onion bulbs. Moreover, the

limited response of yield and yield components to applied K in this study should not preclude further

research especially dealing with plant tissue K analysis on major soil types. However, as the study was

done using only one location for one season, it would be worthwhile to repeat it in order to arrive at a

sound conclusion.

5. REFERENCES

Abd El-Al, F.S., M. R. Shafeek, A.A. Ahmed and A.M. Shaheen, 2005. Response of Growth and Yield

of Onion Plants to Potassium Fertilizer and Humic acid. Journal of Agriculture Science,

Mansoura University, 30 (1): 315-326.

Page 11: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

115

Abdulsalam, M.A., and A. F. Hamaiel, 2004. Effect of Planting Dates and Compound Fertilizers on

Growth, Yield and Quality of Hassawi Onion under Al-Hassa Oasis Conditions. Scientific

Journal of King Faisal University (Basic and Applied Sciences), 5:65-79.

Aisha, H. A., and A.S. Taalab, 2008. Effect of Natural and/or Chemical Potassium Fertilizers on

Growth, Bulb Yield and Some Physical and Chemical Constituents of Onion (Allium cepa L.).

Research Journal of Agriculture and Biological Sciences, 4(3): 228-237.

Aisha, H. A., A. F. Rizk, A.M. Shaheen and M. M. Abdel-Mouty, 2007. Onion Plant Growth, Bulb

Yield and its Physical and Chemical Properties as Affected by Organic and Natural Fertilization.

Res. J. Agric. and Biol. Sci., 3(5):380-388.

Akhtar, M. E., K. Bashir, M. Z. Khan and K. M. Khokhar, 2002. Effect of Potash Application on Yield

of Different Varieties of Onion (Allium cepa L.). Asian Journal of Plant sciences, 1 (40):324-325.

Aklilu, S., 1997. Onion research and production in Ethiopia. Acta Horticulturae, 433:95-97.

Al-Moshileh, A.M., 2001. Effect of Nitrogen, Phosphorus and Potassium Fertilizers on Onion

Productivity in Central Region of Saudi Arabia. Assiut Journal of Agricultural Science, 32 (1):

291-305.

Anderson, G.D., 1973. Potassium response of various crops in East Africa. In: Potassium in Tropical

Crops and Soils. pp. 413-435.

Bohlool, B.B., J.k. Lindha, D.P. Garrity and T. George, 1992. Biological N fixation for sustainable

agriculture. A perspective Plant and Soil, 141:1-11.

Brady, N. C., 1985. The Nature and Properties of Soils. 9th Edition, New Delhi.

Brewster, J.L., 1994. Onions and other vegetable Alliums. CAB publishing. UK. 321p.

CSA (Central Statistical Authority), 2010. Report on Area and Production of Private Peasant

Holdings. Statistical Bulletin, Vol. 4. Addis Ababa, Ethiopia. 58p.

Dewis, J., and P. Freitas, 1970. Physical and Chemical Methods of Soil and Water Analysis. FAO

Bulletin, 10, Rome. 271p.

El-Bassiony, A. M., 2006. Effect of Potassium Fertilization on Growth, Yield and Quality of Onion

Plants. Journal of Applied Sciences Research, 2:780-785.

EL-Desuki, M., A. R. Mahmoud and M. M. Hafiz, 2006a. Response of Onion Plants to Minerals and

Bio-fertilizers Application. Research Journal of Agriculture and Biological Sciences, 2(6): 292-

298.

EL-Desuki, M., M.M. Abdel-Mouty and A.H. Ali, 2006b. Response of Onion Plants to Additional

Dose of Potassium Application. Journal of Applied Science Research, 2:592-597.

FAO (Food and Agriculture Organization of the United Nations), 2000. Fertilizers and their use. A

pocket guide for extension officers, 4th edition. International fertilizer industry association, FAO,

Rome, Italy. 38p.

Ghaffoor, A., M.S. Jilani, G. Khaliq and K. Waseem, 2003. The Effect of Different NPK levels on the

Growth and Yield of three Onions (Allium cepa L.) Varieties. Asian Journal of plant sciences,

2:342-346.

Griffiths, G., L. Trueman, T. Crowther, B. Thomas and B. Smith, 2002. Onions A global benefit to

health. Phytotherapy Research, 16: 603-615.

Gupta, R.P., and V.P. Sharma, 2000. Effect of different spacing and levels of nitrogen for production of

export quality onion bulbs planted on raised bed. Newsletter National Horticultural Research and

Development Foundation, 20:1-4, 13-16.

Islam, M.K., M.A.Awal, S.U. Ahmed and M.A. Baten, 1999. Effects of Different Set Sizes, Spacings

and Nitrogen Levels on the Growth and Bulb Yield of Onion. Pakistan Journal of Biological

Sciences, 2(4): 1143-1146.

Islam, M.K., M.F. Alam and A.K.M.R. Islam, 2007. Growth and Yield response of Onion (Allium cepa

L.) Genotypes to Different levels of Fertilizers. Bangladesh J. Bot., 36: 33-38.

Jilani, M. S., A. Ghaffor, K.Waseem and J. I. Farooq, 2004. Effect of Different Levels of Nitrogen on

Growth and Yield of Three Onion Varieties. Int. J. Agri. Biol., 3(6):507-510.

Jones, H.A., and L.K. Mann, 1963. Onions and Their Allies: Botany, Cultivation and Utilization.

London, Leonard Hill. 320p.

Page 12: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

116

Kashi, A., and B.R.Frodi, 1998. Effect of Nitrogen on the Yield, Quality and Storability of edible

Onion Cultivars (Allium cepa L.). Iranian J. Agril. Sci., 29 (3):589-597.

Khan, H., M. Iqbal, A. Ghaffoor and K. Waseem, 2002. Effect of Various Plant Spacing and Different

Nitrogen levels on the Growth and Yield of Onion. Online J. Biol. Sci., 2: 545–547.

Khan, N.R., A.H.Ansari, L.S. Rajput, U.U.Khail, F.C.Oad and G.N. Sohu, 2001. Onion Response to

Applied N, P and K Fertilizers. Pakistan Journal of Applied Sciences, 1(3):369-370.

Kumar,H.,J.V. Singh, K. Ajay, S. Mahak, A. Kumar and M. Singh, 1998. Studies on the Influence of

Nitrogen on Growth and Yield of Onion cv. ‘Patna Red’. Indian J. Agric. Res.,32: 88–92.

Landon, J.R., 1991. Booker tropical soil manual: A handbook for soil survey and agricultural land

evaluation in the tropics and sub-tropics. Longman Scientific and Technical, Essex, New York.

474p.

Landon, J.R., 1992. Booker tropical soil manual: A handbook for soil survey and agriculturall and

evaluation in the tropics and sub-tropics. Longman Scientific and Technical, Essex, NewYork.

pp.138-141.

Lemma, D., and A. Shemelis, 2003. Research Experiences in Onion production. EARO.123p.

Malik, M. N., 2000. Horticulture. Biotech Books. Delhi. 586p.

Marschner, H., 1995. Mineral Nutrition of Higher Plants. 267 nd ed. Academic press. London.196 p.

Mitrache, D., and D. Burileanu, 1984. Effect of Chemical Fertilizers on the Onion crop. floricultura

Vidora, 2: 405-415.

Mogren, L.M., M.E. Olsson and U.E. Geertson, 2007. Effects of cultivar, lifting time and nitrogen

fertilizer level on quercetin content in onion (Allium cepa L.). J. Sci. Food Agric., 87: 1595-1602.

Mozumder, S.N., M.M. Zaman and G. M. A. Halim, 2007. Effect of N, K and S on the Yield and

Storability of Transplanted Onion (Allium cepa L.) in the Hilly Region. J. Agric. Rural Dev.,

5(1/2):58-63.

Muhammad, S. J., 2004. Studies on the Management Strategies for Bulb and Seed Production of

Different Cultivars of Onion (Allium Cepa L.). A dissertation submitted to Gomal University,

Dera Ismail Khan and Pakistan.449p.

Murphy, J., and J.P.Riley, 1962. A modified single solution method for the determination of phosphate

in natural waters. Anal.chim. Acta, 23: 31-36.

Nasreen, S.N., M.M. Haque, M.A. Hossain and A.T.M. Farid, 2007. Nutrient Uptake and Yield of

Onion as Influenced by Nitrogen and Sulphur Fertilization. Bangladish J. Agril. Res., 32(3):413-

420.

Nelsan, D.W., and I.E. Sommers, 1982. Total Carbon, Organic Carbon and Organic Matter. Chemical

and Microbiological Properties. Am. Soc. Agron., 9: 639-679.

Olsen, S.R., C.V.Cole, F.S.Watanable and L.A. Dean, 1954. Estimation of Phosphorus in soils by

extraction with sodium bicarbonate. USDA, circular, 939:1-19.

Pratt, P.F., 1965. Potassium In: Methods of soil analysis. No. 9. Agronomy (C.A. Black, Ed.). Part II,

Madison. American Society of Agronomy.

Reddy, T.Y., and G.H.S. Reddi, 2002. Principles of Agronomy. Kalyani Publishers, 3Ed.,526p.

Reijntjs, C., B. Havrkort and A. Waters-Bayer, 1992. Farming for Future: An Introduction to Low-

External-Input and Sustainable Agriculture. The MacMillan Press Ltd. London.

SAS (Statistical Analysis System) Institute, 2002. Statistical Analysis System User’s Guide. Version

9.00. SAS Institute Int., Cary, NC, USA.

Shanmugasundaram, S., 2000. The influence of cultural practices on growth and yield of onion: Effect

of planting method and fertilization. Shanhua, Tainan, Taiwan: AVRDC. pp.23-33.

Singh, J., and N.K. Chaure, 1999. Effect of Age of Seedling and Nitrogen levels on Growth and Yield

of Onion (Allium cepa L.). Adv. Hort.For., 6: 73–77.

SARC (Sirinka Agricultural Research Center), 2010. Annual Progress report. Sirinka, Ethiopia.

Syed, N., M.Munir, A.A.Alizai and A.Ghaffoor, 2000. Onion Yield and Yield Components as Function

of the Levels of Nitrogen and Potassium Application. Pakistan Journal of Biological Sciences,

3(12):2069-2070.

Tekalign, M., and I. Haque, 1988. Potassium status of some Ethiopian soils. East African Agriculture

and Forestry, 53: 123-130.

Page 13: Response of Nitrogen and Potassium Sulphate Fertilizers on Yield … › ... › uploads › 2019 › 12 › Yield-Onion.pdf · 1) and K (0, 346 and 692 kg K2SO4 ha-1) laid out using

International Journal of Agriculture & Agribusiness ISSN: 2391-3991, Volume 6 Issue 2, page 105 – 117

Zambrut

Zambrut.com. Publication date: December, 2019.

Kassaye, S. & Dechassa, N. 2019. Response of Nitrogen and Potassium Sulphate Fertilizers on Yield

and Yield Component of Onion ............

117

Tisdale, S.L., W.L. Nelson, J. D. Beaton and J.L. Halvin, 1995. Soil Fertility and Fertilizers.5th Ed,

Macmillan Publishing Co., Inc. New York. pp. 109-229.

Vachhani, M. U. and Z. G. Patel, 1993. Effect of Nitrogen, Phosphorus and Potash on Bulb Yield and

Quality of Onion (Allium cepa). Indian Journal of Agronomy, 38:333-334.

Walkley, A., and I.A. Black, 1934. An Examination of the Degtjareff Method for Determining Soil

Organic Matter and a proposed chromic acid titration method. Soil Sci., 37: 29-38.

Warren, C.S., 2004. Soil Analysis and Interpretation. New York State Horticultural Society,12(1): 5-8.

Yadav, B.D., R.B. Khandelwal and T.K. Sharma, 2005. Use of Bio-fertilizer (Azospirillum) in Onion.

Indian J. Hortic. Soc., 62:168-170.

Yadav, R.L., N.L. Sen and B.L. Yadav, 2003. Response of Onion to Nitrogen and Potassium

Fertilization under Semi-arid condition of Rajasthan. Indian J. Hort., 60(2): 176-178.

Yadav, R.L., N.L. Sen and B.L. Yadav, 2007. Response of Onion to Nitrogen and Potassium

Fertilization under Semi-arid condition of Rajasthan. Indian Journal of Horticulture, 1:519-524.

Zambrut Journal, Link Access;

https://zambrut.com

https://zambrut.com/yield-onion/

© Copyright International Journal of Zambrut | Zambrut, Inc.