review of similarity transformation and singular value ...โ‚ฌยฆย ยท 2 1 similarity transformation a...

15
Review of similarity transformation and Singular Value Decomposition Nasser M. Abbasi Applied Mathematics Department, California State University, Fullerton. July 8 2007 Compiled on May 19, 2020 at 2:03am Contents 1 Similarity transformation 2 1.1 Derivation of similarity transformation based on algebraic method .......... 2 1.2 Derivation of similarity transformation based on geometric method ......... 3 1.2.1 Finding matrix representation of linear transformation ........... 5 1.2.2 Finding matrix representation of change of basis ................ 6 1.2.3 Examples of similarity transformation ...................... 8 1.2.4 How to ๏ฌnd the best basis to simplify the representation of ? ........ 11 1.3 Summary of similarity transformation ........................... 12 2 Singular value decomposition (SVD) 12 2.1 What is right and left eigenvectors? ............................ 12 2.2 SVD .............................................. 12 3 Conclusion 14 4 References 15 1

Upload: others

Post on 19-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

Review of similarity transformation and Singular ValueDecomposition

Nasser M. Abbasi

Applied Mathematics Department, California State University, Fullerton. July 8 2007 Compiled on May 19, 2020 at

2:03am

Contents

1 Similarity transformation 21.1 Derivation of similarity transformation based on algebraic method . . . . . . . . . . 21.2 Derivation of similarity transformation based on geometric method . . . . . . . . . 3

1.2.1 Finding matrix representation of linear transformation ๐‘‡ . . . . . . . . . . . 51.2.2 Finding matrix representation of change of basis . . . . . . . . . . . . . . . . 61.2.3 Examples of similarity transformation . . . . . . . . . . . . . . . . . . . . . . 81.2.4 How to find the best basis to simplify the representation of ๐‘‡? . . . . . . . . 11

1.3 Summary of similarity transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Singular value decomposition (SVD) 122.1 What is right and left eigenvectors? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.2 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Conclusion 14

4 References 15

1

Page 2: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

2

1 Similarity transformation

A similarity transformation is๐ต = ๐‘€โˆ’1๐ด๐‘€

Where ๐ต,๐ด,๐‘€ are square matrices. The goal of similarity transformation is to find a ๐ต matrix whichhas a simpler form than ๐ด so that we can use ๐ต in place of ๐ด to ease some computational work.Lets set our goal in having ๐ต be a diagonal matrix (a general diagonal form is called block diagonalor Jordan form, but here we are just looking at the case of ๐ต being a diagonal matrix).

The question becomes: Given ๐ด, can we find ๐‘€ such that ๐‘€โˆ’1๐ด๐‘€ is diagonal?

The standard method to show the above is via an algebraic method, which we show first. Next weshow a geometric method that explains similarity transformation geometrically.

1.1 Derivation of similarity transformation based on algebraic method

Starting with๐ต = ๐‘€โˆ’1๐ด๐‘€

Our goal is to find a real matrix ๐ต such that it is diagonal. From the above, by pre multiplyingeach side by ๐‘€ we obtain

๐ด๐‘€ = ๐‘€๐ต

Now, since our goal is to make ๐ต diagonal, let us select the eigenvalues of ๐ด to be the diagonal of๐ต. Now we write the above in expanded form as follows

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘Ž11 โ‹ฏ ๐‘Ž1๐‘›โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘›1 โ‹ฏ ๐‘Ž๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š11 โ‹ฏ ๐‘š1๐‘›

โ‹ฎ โ‹ฑ โ‹ฎ๐‘š๐‘›1 โ‹ฏ ๐‘š๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ=

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š11 โ‹ฏ ๐‘š1๐‘›

โ‹ฎ โ‹ฑ โ‹ฎ๐‘š๐‘›1 โ‹ฏ ๐‘š๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐œ†1 0 00 โ‹ฑ 00 0 ๐œ†๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

The above can be written as ๐‘› separate equations by looking at the column view of matrix multi-plication โŽก

โŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘Ž11 โ‹ฏ ๐‘Ž1๐‘›โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘›1 โ‹ฏ ๐‘Ž๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š11

โ‹ฎ๐‘š๐‘›1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ= ๐œ†1

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š11

โ‹ฎ๐‘š๐‘›1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

And โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘Ž11 โ‹ฏ ๐‘Ž1๐‘›โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘›1 โ‹ฏ ๐‘Ž๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š12

โ‹ฎ๐‘š๐‘›2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ= ๐œ†2

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š12

โ‹ฎ๐‘š๐‘›2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

All the way to the n๐‘กโ„Ž column of ๐‘€โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘Ž11 โ‹ฏ ๐‘Ž1๐‘›โ‹ฎ โ‹ฑ โ‹ฎ๐‘Ž๐‘›1 โ‹ฏ ๐‘Ž๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š1๐‘›

โ‹ฎ๐‘š๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ= ๐œ†๐‘›

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘š1๐‘›

โ‹ฎ๐‘š๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

Each of the above ๐‘› equations is in the form

๐ด๐’™ = ๐œ†๐’™

and this is the key idea.

The above shows that if we take the diagonal elements of ๐ต to be the eigenvalues of ๐ด then the ๐‘€matrix is the (right) eigenvectors of ๐ด.

Hence, if we want the ๐ต matrix to be diagonal and real, this means the ๐ด matrix itself must havesome conditions put on it. Specifically, ๐ด eigenvalues must be all distinct and real. This happenswhen ๐ด is real and symmetric. Therefore, we have the general result that given a matrix ๐ด whichhas distinct and real eigenvalues, only then can we find a similar matrix to it which is real anddiagonal, and these diagonal values are the eigenvalues of ๐ด.

Page 3: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

3

1.2 Derivation of similarity transformation based on geometric method

It turns out that this derivation is more complicated than the algebraic approach. It involves achange of basis matrix (which will be our๐‘€ matrix) and the representation of linear transformation๐‘‡ as a matrix under some basis (which will be our ๐ด matrix). Let us start from the beginning.

Given the vector ๐’™ in โ„๐‘›, it can have many di๏ฟฝerent representations (or coordinates) depending onwhich basis are used. There are an infinite number of basis that span โ„๐‘›, hence there are infiniterepresentations for the same vector. Consider for example โ„2. The standard basis vectors areโŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ, but another basis are

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ, and yet another are

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ0โˆ’1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ, and so on.

basis v

basis v

basis vChange of basis

In โ„๐‘› any ๐‘› linearly independent vectors can be used as basis. Let ๐’™๐‘ฃ be the vector representationin w.r.t. basis ๐‘ฃ, and let ๐’™๐‘ฃโ€ฒ be the vector representation w.r.t. basis ๐‘ฃโ€ฒ.

basis v

basisv

Change of basis

Same vector X has different representation depending on which basis are used

xv x,yxv x,y

Mv v

basis v

An important problem in linear algebra is to obtain ๐’™๐‘ฃ given ๐’™๐‘ฃโ€ฒ and the change of basis matrix[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ.

This requires finding a matrix representation for the change of basis. Once the [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ matrix isfound, we can write

๐’™๐‘ฃ = [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ ๐’™๐‘ฃโ€ฒ (1)

Where [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ is the change of basis matrix which when applied to ๐’™๐‘ฃโ€ฒ returns the coordinates ofthe vector w.r.t. basis ๐‘ฃ.

From (1) we see that given ๐’™๐‘ฃ, then to obtain ๐’™๐‘ฃโ€ฒ we write

๐’™๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ๐’™๐‘ฃ (1A)

Another important problem is that of linear transformation ๐‘‡, where now we apply some transfor-mation on the whole space and we want to find what happens to the space coordinates (all theposition vectors) due to this transformation.

Consider for example ๐‘‡ which is a rotation in โ„2 by some angle ๐œƒ. Here, every position vector in thespace is a๏ฟฝected by this rotation but the basis remain ๏ฟฝxed, and we want to find the new coordinatesof each point in space.

Let ๐’™๐‘ฃ be the position vector before applying the linear transformation, and let ๐’š๐‘ฃ be the newposition vector. Notice that both vectors are written with respect to the same basis ๐‘ฃ. Similar tochange basis, we want a way to find ๐’š๐‘ฃ from ๐’™๐‘ฃ, hence we need a way to represent this lineartransformation by a matrix, say [๐‘‡]๐‘ฃ with respect to the basis ๐‘ฃ and so we could write the following

๐’š๐‘ฃ = [๐‘‡]๐‘ฃ ๐’™๐‘ฃ (2)

Page 4: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

4

basis v

Linear Transformation T

Same basis v but T causes change in vector representation

basis vT

v

yv

xv xv

Assume the basis is changed to ๐‘ฃโ€ฒ. Let the representation of the same linear transformation ๐‘‡ w.r.t.basis ๐‘ฃโ€ฒ be called [๐‘‡]๐‘ฃโ€ฒ, so we write

๐’š๐‘ฃโ€ฒ = [๐‘‡]๐‘ฃโ€ฒ ๐’™๐‘ฃโ€ฒ (2A)

basis vChange basis v->vโ€™

Combining change of basis and linear transformation

xv

basis v

xv

basis v

xv

yv T

v xv

Linear Transformatio

n

Tv

Hence when the basis changes from ๐‘ฃ to ๐‘ฃโ€ฒ, ๐‘‡ representation changes from [๐‘‡]๐‘ฃ to [๐‘‡]๐‘ฃโ€ฒ .

Now assume we are given some linear transformation ๐‘‡ and its representation [๐‘‡]๐‘ฃ w.r.t. basis ๐‘ฃ,how could we find ๐‘‡ representation [๐‘‡]๐‘ฃโ€ฒ w.r.t. to new basis ๐‘ฃโ€ฒ?

From (2) we have๐’š๐‘ฃ = [๐‘‡]๐‘ฃ ๐’™๐‘ฃ

But from (1) ๐’™๐‘ฃ = [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ ๐’™๐‘ฃโ€ฒ, hence the above becomes

๐’š๐‘ฃ = [๐‘‡]๐‘ฃ ๏ฟฝ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ ๐’™๐‘ฃโ€ฒ๏ฟฝ

Pre-multiplying from left the above equation by [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ we obtain

[๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ๐’š๐‘ฃ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ๐’™๐‘ฃโ€ฒ

But since [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ๐’š๐‘ฃ = ๐’š๐‘ฃโ€ฒ, then above reduces to

๐’š๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ๐’™๐‘ฃโ€ฒ

But from (2A) ๐’š๐‘ฃโ€ฒ = [๐‘‡]๐‘ฃโ€ฒ ๐’™๐‘ฃโ€ฒ, hence the above becomes

[๐‘‡]๐‘ฃโ€ฒ๐’™๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ๐’™๐‘ฃโ€ฒ

Therefore

[๐‘‡]๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ (3)

Notice the di๏ฟฝerence between change of basis and linear transformation. In change of basis, thevector ๐’™ remained fixed in space, but the basis changed, and we want to find the coordinates of thevector w.r.t the new basis. With linear transformation, the vector itself is changed from ๐’™๐‘ฃ to ๐’š๐‘ฃ, butboth vectors are expressed w.r.t. the same basis.

Equation (3) allows us to obtain a new matrix representation of the linear transformation ๐‘‡ byexpressing the same ๐‘‡ w.r.t. to di๏ฟฝerent basis. Hence if we are given a representation of ๐‘‡ which isnot the most optimal representation, we can, by change of basis, obtain a di๏ฟฝerent representationof the same ๐‘‡ by using (3). The most optimal matrix representation for linear transformation is adiagonal matrix.

Page 5: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

5

Equation (3) is called a similarity transformation. To make it easier to compare (3) above withwhat we wrote in the previous section when we derived the above using an algebraic approach, welet [๐‘‡]๐‘ฃโ€ฒ = ๐ต, [๐‘‡]๐‘ฃ = ๐ด, hence (3) is

๐ต = ๐‘€โˆ’1๐ด๐‘€

The matrix [๐‘‡]๐‘ฃโ€ฒ is similar to [๐‘‡]๐‘ฃ. (i.e. ๐ต is similar to ๐ด). Both matrices represent the same lineartransformation applied on the space. We will show below some examples of how to find [๐‘‡]๐‘ฃโ€ฒ given[๐‘‡]๐‘ฃ and [๐‘€]. But first we show how to obtain matrix representation of ๐‘‡.

1.2.1 Finding matrix representation of linear transformation ๐‘‡

Given a vector ๐’™ โˆˆ โ„๐‘› and some linear transformation (or a linear operator) ๐‘‡ that acts on thevector ๐’™ transforming this vector into another vector ๐’š โˆˆ โ„๐‘› according to some prescribed manner๐‘‡ โˆถ ๐’™ โ†’ ๐’š. Examples of such linear transformation are rotation, elongation, compression, andreflection, and any combination of these operations, but it can not include the translation of thevector, since translation is not linear.

The question to answer here is how to write down a representation of this linear transformation? Itturns out that ๐‘‡ can be represented by a matrix of size ๐‘› ร— ๐‘›, and the actual numbers that go intothe matrix, or the shape of the matrix, will depend on which basis in โ„๐‘› we choose to represent ๐’™.

We would like to pick some basis so that the final shape of the matrix is the most simple shape.

Let us pick a set of basis ๐‘ฃ = {๐’†1, ๐’†2,โ‹ฏ , ๐’†๐‘›} that span โ„๐‘› hence

๐’™๐‘ฃ = ๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘›

Now

๐‘‡๐’™๐‘ฃ = ๐‘‡ (๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘›)

And since ๐‘‡ is linear we can rewrite the above as

๐‘‡๐’™๐‘ฃ = ๐‘Ž1๐‘‡๐’†1 + ๐‘Ž2๐‘‡๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐‘‡๐’†๐‘› (1)

We see from above that the new transformed vector ๐‘‡๐’™๐‘ฃ has the same coordinates as ๐’™๐‘ฃ if we view๐‘‡๐’†๐‘– as the new basis.

Now ๐‘‡๐’†๐‘– itself is an application of the linear transformation but now it is being done on each basisvector ๐’†๐‘–. Hence it will cause each specific basis vector to transform in some manner to a new vector.Whatever this new vector is, we must be able to represent it in terms of the same basis vectors{๐’†1, ๐’†2,โ‹ฏ , ๐’†๐‘›} , therefore, we write

๐‘‡๐’†1 = ๐œ‰11๐’†1 + ๐œ‰21๐’†2 +โ‹ฏ+ ๐œ‰๐‘›1๐’†๐‘›

Where ๐œ‰๐‘–๐‘— is the ๐‘–๐‘กโ„Ž coordinate of the vector ๐‘‡๐’†๐‘—. And we do the same for ๐‘‡๐’†2

๐‘‡๐’†2 = ๐œ‰12๐’†1 + ๐œ‰22๐’†2 +โ‹ฏ+ ๐œ‰๐‘›2๐’†๐‘›

And so on until๐‘‡๐’†๐‘› = ๐œ‰1๐‘›๐’†1 + ๐œ‰2๐‘›๐’†2 +โ‹ฏ+ ๐œ‰๐‘›๐‘›๐’†๐‘›

Or๐‘‡๐’†๐‘— = ๐œ‰๐‘–๐‘—๐’†๐‘–

Now plug the above into (1) and obtain

๐‘‡๐’™๐‘ฃ = ๐‘Ž1 (๐œ‰11๐’†1 + ๐œ‰21๐’†2 +โ‹ฏ+ ๐œ‰๐‘›1๐’†๐‘›)+ ๐‘Ž2 (๐œ‰12๐’†1 + ๐œ‰22๐’†2 +โ‹ฏ+ ๐œ‰๐‘›2๐’†๐‘›)+โ‹ฏ+ ๐‘Ž๐‘› (๐œ‰1๐‘›๐’†1 + ๐œ‰2๐‘›๐’†2 +โ‹ฏ+ ๐œ‰๐‘›๐‘›๐’†๐‘›)

Hence, if we take the ๐’†๐‘– as common factors, we have

๐‘‡๐’™ = ๐’†1 (๐‘Ž1๐œ‰11 + ๐‘Ž2๐œ‰12 +โ‹ฏ+ ๐‘Ž๐‘›๐œ‰1๐‘›)+ ๐’†2 (๐‘Ž1๐œ‰21 + ๐‘Ž2๐œ‰22 +โ‹ฏ+ ๐‘Ž๐‘›๐œ‰2๐‘›)+โ‹ฏ+ ๐’†๐‘› (๐‘Ž1๐œ‰๐‘›1 + ๐‘Ž2๐œ‰๐‘›2 +โ‹ฏ+ ๐‘Ž๐‘›๐œ‰๐‘›๐‘›)

Page 6: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

6

Hence, since ๐‘‡๐’™๐‘ฃ = ๐‘Ž1๐‘‡๐’†1 +๐‘Ž2๐‘‡๐’†2 +โ‹ฏ+๐‘Ž๐‘›๐‘‡๐’†๐‘› from (1), then by comparing coe๏ฟฝcients of each basisvector ๐’†๐‘– we obtain

๐‘Ž1๐‘‡ = ๐‘Ž1๐œ‰11 + ๐‘Ž2๐œ‰12 +โ‹ฏ+ ๐‘Ž๐‘›๐œ‰1๐‘›๐‘Ž2๐‘‡ = ๐‘Ž1๐œ‰21 + ๐‘Ž2๐œ‰22 +โ‹ฏ+ ๐‘Ž๐‘›๐œ‰2๐‘›

โ‹ฏ๐‘Ž๐‘›๐‘‡ = ๐‘Ž1๐œ‰๐‘›1 + ๐‘Ž2๐œ‰๐‘›2 +โ‹ฏ+ ๐‘Ž๐‘›๐œ‰๐‘›๐‘›

Or in matrix form

๐‘‡

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œ‰11 ๐œ‰12 โ‹ฏ ๐œ‰1๐‘›๐œ‰21 ๐œ‰22 โ‹ฏ ๐œ‰2๐‘›โ‹ฎ โ‹ฎ โ‹ฏ โ‹ฎ

๐œ‰๐‘›1 ๐œ‰๐‘›2 โ‹ฏ ๐œ‰๐‘›๐‘›

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Hence we finally obtain that

๐‘‡ โ‡’ [๐‘‡]๐‘ฃ =

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œ‰11 ๐œ‰12 โ‹ฏ ๐œ‰1๐‘›๐œ‰21 ๐œ‰22 โ‹ฏ ๐œ‰2๐‘›โ‹ฎ โ‹ฎ โ‹ฏ โ‹ฎ

๐œ‰๐‘›1 ๐œ‰๐‘›2 โ‹ฏ ๐œ‰๐‘›๐‘›

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

Let us call the matrix that represents ๐‘‡ under basis ๐‘ฃ as [๐‘‡]๐‘ฃ .

We see from the above that the ๐‘—๐‘กโ„Ž column of [๐‘‡]๐‘ฃ contain the coordinates of the vector ๐‘‡๐’†๐‘—. Thisgives us a quick way to construct [๐‘‡]๐‘ฃ: Apply ๐‘‡ to each basis vector ๐’†๐‘—, and take the resulting vectorand place it in the ๐‘—๐‘กโ„Ž column of [๐‘‡]๐‘ฃ.

We now see that [๐‘‡]๐‘ฃ will have a di๏ฟฝerent numerical values if the basis used to span โ„๐‘› are di๏ฟฝerentfrom the ones used to obtain the above [๐‘‡]๐‘ฃ .

Let use pick some new basis, say ๐‘ฃโ€ฒ = ๏ฟฝ๐’†โ€ฒ1, ๐’†โ€ฒ2,โ‹ฏ , ๐’†โ€ฒ๐‘›๏ฟฝ. Let the new representation of ๐‘‡ now be thematrix [๐‘‡]๐‘ฃโ€ฒ, then the ๐‘—๐‘กโ„Ž column of [๐‘‡]๐‘ฃโ€ฒ is found from applying ๐‘‡ on the new basis ๐’†โ€ฒ๐‘—

๐‘‡๐’†โ€ฒ๐‘— = ๐œ๐‘–๐‘—๐’†โ€ฒ๐‘–

Where now ๐œ๐‘–๐‘— is the ๐‘–๐‘กโ„Ž coordinates of the the vector ๐‘‡๐’†โ€ฒ๐‘— which will be di๏ฟฝerent from ๐œ‰๐‘–๐‘— since in

one case we used the basis set ๐‘ฃโ€ฒ = ๏ฟฝ๐’†โ€ฒ๐‘–๏ฟฝ and in the other case we used the basis set ๐‘ฃ = {๐’†๐‘–}. Hencewe see that [๐‘‡]๐‘ฃโ€ฒ will numerically be di๏ฟฝerent depending on the basis used to span the space eventhough the linear transformation ๐‘‡ itself did not change.

1.2.2 Finding matrix representation of change of basis

Now we show how to determine [๐‘€]๐‘ฃโ†’๐‘ฃโ€ฒ, the matrix which when applied to a vector ๐’™๐‘ฃ will resultin the vector ๐’™๐‘ฃโ€ฒ.

Given a vector ๐’™, it is represented w.r.t. basis ๐‘ฃ = {๐’†1, ๐’†2,โ‹ฏ , ๐’†๐‘›} as

๐’™๐‘ฃ = ๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘›

and w.r.t. basis ๐‘ฃโ€ฒ = ๏ฟฝ๐’†โ€ฒ1, ๐’†โ€ฒ2,โ‹ฏ , ๐’†โ€ฒ๐‘›๏ฟฝ as

๐’™๐‘ฃโ€ฒ = ๐‘1๐’†โ€ฒ1 + ๐‘2๐’†โ€ฒ2 +โ‹ฏ+ ๐‘๐‘›๐’†โ€ฒ๐‘›

basis v basis v

e1

e2

xv a1e1 a2e2

a1

a2

e1

e2

xv b1e1 b2e2

b1

b2

The same vector having different representation depending on basis used

Page 7: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

7

But the vector itself is invariant under any change of basis, hence ๐’™๐‘ฃ = ๐’™๐‘ฃโ€ฒ

๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘› = ๐‘1๐’†โ€ฒ1 + ๐‘2๐’†โ€ฒ2 +โ‹ฏ+ ๐‘๐‘›๐’†โ€ฒ๐‘› (1)

Now write each basis ๐’†โ€ฒ๐‘– in terms of the basis ๐’†๐‘—, hence we have

๐’†โ€ฒ1 = ๐‘11๐’†1 + ๐‘12๐’†2 +โ‹ฏ+ ๐‘1๐‘›๐’†๐‘›๐’†โ€ฒ2 = ๐‘21๐’†1 + ๐‘22๐’†2 +โ‹ฏ+ ๐‘2๐‘›๐’†๐‘›

โ‹ฎ๐’†โ€ฒ๐‘› = ๐‘๐‘›1๐’†1 + ๐‘๐‘›2๐’†2 +โ‹ฏ+ ๐‘๐‘›๐‘›๐’†๐‘› (2)

Substitute (2) into RHS of (1) we obtain

๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘› = ๐‘1 (๐‘11๐’†1 + ๐‘12๐’†2 +โ‹ฏ+ ๐‘1๐‘›๐’†๐‘›) +๐‘2 (๐‘21๐’†1 + ๐‘22๐’†2 +โ‹ฏ+ ๐‘2๐‘›๐’†๐‘›) +โ‹ฏ+ ๐‘๐‘› (๐‘๐‘›1๐’†1 + ๐‘๐‘›2๐’†2 +โ‹ฏ+ ๐‘๐‘›๐‘›๐’†๐‘›)

Factor out the basis ๐’†๐‘– from the RHS, we obtain

๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘› = (๐‘1๐‘11๐’†1 + ๐‘1๐‘12๐’†2 +โ‹ฏ+ ๐‘1๐‘1๐‘›๐’†๐‘›) +(๐‘2๐‘21๐’†1 + ๐‘2๐‘22๐’†2 +โ‹ฏ+ ๐‘2๐‘2๐‘›๐’†๐‘›) +โ‹ฏ+ (๐‘๐‘›๐‘๐‘›1๐’†1 + ๐‘๐‘›๐‘๐‘›2๐’†2 +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›๐‘›๐’†๐‘›)

Hence

๐‘Ž1๐’†1 + ๐‘Ž2๐’†2 +โ‹ฏ+ ๐‘Ž๐‘›๐’†๐‘› = ๐’†1 (๐‘1๐‘11 + ๐‘2๐‘21 +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›1) +๐’†2 (๐‘1๐‘12 + ๐‘2๐‘22 +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›2) +โ‹ฏ+ ๐’†๐‘› (๐‘1๐‘1๐‘› + ๐‘2๐‘2๐‘› +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›๐‘›)

Now comparing coe๏ฟฝcients of each of the basis ๐’†๐‘– we obtain the following result

๐‘Ž1 = ๐‘1๐‘11 + ๐‘2๐‘21 +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›1๐‘Ž2 = ๐‘1๐‘12 + ๐‘2๐‘22 +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›2โ‹ฏ

๐‘Ž๐‘› = ๐‘1๐‘1๐‘› + ๐‘2๐‘2๐‘› +โ‹ฏ+ ๐‘๐‘›๐‘๐‘›๐‘›

Or in Matrix form, we writeโŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘Ž1๐‘Ž2โ‹ฎ๐‘Ž๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

=

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘11 ๐‘21 ๐‘31 โ‹ฏ ๐‘๐‘›1๐‘12 ๐‘22 ๐‘32 โ‹ฏ ๐‘๐‘›2โ‹ฎ โ‹ฏ โ‹ฏ โ‹ฑ โ‹ฎ๐‘1๐‘› ๐‘2๐‘› ๐‘3๐‘› โ‹ฏ ๐‘๐‘›๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐‘1๐‘2โ‹ฎ๐‘๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

(3)

The above gives a relation between the coordinates of the vector ๐’™ w.r.t. basis ๐‘ฃ (these are the ๐‘Ž๐‘–coordinates) to the coordinates of the same vector w.r.t. to basis ๐‘ฃโ€ฒ (these are the coordinates ๐‘๐‘—).The mapping between these coordinates is the matrix shown above which we call the [๐‘€] matrix.Since the above matrix returns the coordinates of the vector w.r.t. ๐‘ฃ when it is multiplied by thecoordinates of the vector w.r.t. basis ๐‘ฃโ€ฒ, we write it as [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ to make it clear from which basis towhich basis is the conversion taking place.

Looking at (2) and (3) above, we see that column ๐‘— in [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ is the coordinates of the ๐’†โ€ฒ๐‘— w.r.t. basis

๐‘ฃ.

Hence the above gives a method to generate the change of basis matrix [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ. Simply representeach basis in ๐‘ฃโ€ฒ w.r.t. to basis ๐‘ฃ. Take the result of each such representation and write it as a columnin [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ. We now show few examples to illustrate this.

Example showing how to ๏ฟฝnd change of basis matrix

Given the โ„2 basis ๐‘ฃ = {๐’†1, ๐’†2} =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ, and new basis ๐‘ฃโ€ฒ = ๏ฟฝ๐’†โ€ฒ1, ๐’†โ€ฒ2๏ฟฝ =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ, find the change

of basis matrix [๐‘€]๐‘ฃโ†’๐‘ฃโ€ฒ

Page 8: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

8

Column 1 of [๐‘€]๐‘ฃโ†’๐‘ฃโ€ฒ is the coordinates of ๐’†1 w.r.t. basis ๐‘ฃโ€ฒ. i.e.

๐’†1 = ๐‘11๐’†โ€ฒ1 + ๐‘21๐’†โ€ฒ2 (4)

and column 2 of [๐‘€]๐‘ฃโ†’๐‘ฃโ€ฒ is the coordinates of ๐’†2 w.r.t. basis ๐‘ฃโ€ฒ. i.e.

๐’†2 = ๐‘12๐’†โ€ฒ1 + ๐‘22๐’†โ€ฒ2 (5)

But (4) is โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ = ๐‘11

โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ + ๐‘21

โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence 1 = ๐‘11 โˆ’ ๐‘21 and 0 = ๐‘11 + ๐‘21, solving, we obtain ๐‘11 =12 , ๐‘21 =

โˆ’12 and (5) is

โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ = ๐‘12

โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ + ๐‘22

โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence 0 = ๐‘12 โˆ’ ๐‘22 and 1 = ๐‘12 + ๐‘22, solving we obtain ๐‘12 =12 , ๐‘22 =

12 , hence

[๐‘€]๐‘ฃโ†’๐‘ฃโ€ฒ =โŽกโŽขโŽขโŽขโŽขโŽฃ12

12

โˆ’12

12

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Now we can use the above change of basis matrix to find coordinates of the vector under ๐‘ฃโ€ฒ given

its coordinates under ๐‘ฃ. For example, given ๐’™๐‘ฃ =โŽกโŽขโŽขโŽขโŽขโŽฃ105

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ, then

๐’™๐‘ฃโ€ฒ =โŽกโŽขโŽขโŽขโŽขโŽฃ12

12

โˆ’12

12

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽฃ105

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ =

โŽกโŽขโŽขโŽขโŽขโŽฃ7.5โˆ’2.5

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

1.2.3 Examples of similarity transformation

Example 1 This example from Strang book (Linear Algebra and its applications, 4th edition),but shown here with little more details.

Consider โ„2, and let ๐‘‡ be the projection onto a line at angle ๐œƒ = 1350. Let the first basis ๐‘ฃ =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ

and let the second basis ๐‘ฃโ€ฒ =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ1โˆ’1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ.

basis v basis v

e1

e2

e1

e2

1

0

0

1

Te1 0.5

0.5

1350

Te2 0.5

0.5

Tv

0.5 0.5

0.5 0.5

Tv

1 0

0 0

Change of basis

The first step is to find [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ. The first column of [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ is found by writing ๐‘’โ€ฒ1w.r.t. basis ๐‘ฃ, andthe second column of [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ is found by writing ๐‘’โ€ฒ2w.r.t. basis ๐‘ฃ, Hence

๐‘’โ€ฒ1 = ๐‘11๐‘’1 + ๐‘21๐‘’2โŽกโŽขโŽขโŽขโŽขโŽฃ1โˆ’1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ = ๐‘11

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ + ๐‘21

โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Page 9: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

9

Or 1 = ๐‘11 and ๐‘21 = โˆ’1. And

๐‘’โ€ฒ2 = ๐‘12๐‘’1 + ๐‘22๐‘’2โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ = ๐‘12

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ + ๐‘22

โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence ๐‘12 = 1 and ๐‘22 = 1. Hence

[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ =โŽกโŽขโŽขโŽขโŽขโŽฃ1 1โˆ’1 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Now we need to find [๐‘‡]๐‘ฃ the representation of ๐‘‡ w.r.t. basis ๐‘ฃ. The first column of [๐‘‡]๐‘ฃ is the newcoordinates of the basis ๐‘ฃ1 after applying ๐‘‡ onto it. but

๐‘‡๐‘’1 = ๐‘‡โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

=โŽกโŽขโŽขโŽขโŽขโŽฃ0.5โˆ’0.5

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

and the second column of [๐‘‡]๐‘ฃ is the new coordinates of the basis ๐‘ฃ2 after applying ๐‘‡ onto it. but

๐‘‡๐‘’2 = ๐‘‡โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

=โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’0.50.5

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence

[๐‘‡]๐‘ฃ =โŽกโŽขโŽขโŽขโŽขโŽฃ0.5 โˆ’0.5โˆ’0.5 0.5

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Therefore

[๐‘‡]๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ

=โŽกโŽขโŽขโŽขโŽขโŽฃ1 1โˆ’1 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โˆ’1 โŽกโŽขโŽขโŽขโŽขโŽฃ0.5 โˆ’0.5โˆ’0.5 0.5

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽฃ1 1โˆ’1 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

[๐‘‡]๐‘ฃโ€ฒ =โŽกโŽขโŽขโŽขโŽขโŽฃ1 00 0

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence we see that the linear transformation ๐‘‡ is represented as

โŽกโŽขโŽขโŽขโŽขโŽฃ1 00 0

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ w.r.t. basis ๐‘ฃโ€ฒ, while it is

represented as

โŽกโŽขโŽขโŽขโŽขโŽฃ0.5 โˆ’0.5โˆ’0.5 0.5

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆw.r.t. basis ๐‘ฃโ€ฒ. Therefore, it will be better to perform all calculations

involving this linear transformation under basis ๐‘ฃโ€ฒ instead of basis ๐‘ฃ

Example 2

Page 10: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

10

basis v

basis v

e1

e2

e1

e2

1

0

0

1

Change of basis

4

Te1 cos

sinTe2

sin

cos

Tv

cos sin

sin cos

Tv

1

2 1

2

1

2

1

2

1

1

1

1

Tv

1

2 1

2

1

2

1

2

Change of basis selected did not result in simplification of representation of T

Consider โ„2, and let ๐‘‡ be a rotation of space by ๐œƒ = ๐œ‹4 . Let the first basis ๐‘ฃ =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญand let the

second basis be ๐‘ฃโ€ฒ =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญ.

The first step is to find [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ. The first column of [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ is found by writing ๐‘’โ€ฒ1w.r.t. basis ๐‘ฃ, andthe second column of [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ is found by writing ๐‘’โ€ฒ2w.r.t. basis ๐‘ฃ, Hence

๐‘’โ€ฒ1 = ๐‘11๐‘’1 + ๐‘21๐‘’2โŽกโŽขโŽขโŽขโŽขโŽฃ11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ = ๐‘11

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ + ๐‘21

โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Or 1 = ๐‘11 and ๐‘21 = 1 and

๐‘’โ€ฒ2 = ๐‘12๐‘’1 + ๐‘22๐‘’2โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’11

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ = ๐‘12

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ + ๐‘22

โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence ๐‘12 = โˆ’1 and ๐‘22 = 1. Hence

[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ =โŽกโŽขโŽขโŽขโŽขโŽฃ1 โˆ’11 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Now we need to find [๐‘‡]๐‘ฃ the representation of ๐‘‡ w.r.t. basis ๐‘ฃ. The first column of [๐‘‡]๐‘ฃ is the newcoordinates of the basis ๐‘ฃ1 after applying ๐‘‡ onto it. but

๐‘‡๐‘’1 = ๐‘‡โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

=โŽกโŽขโŽขโŽขโŽขโŽฃcos๐œƒsin๐œƒ

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

and the second column of [๐‘‡]๐‘ฃ is the new coordinates of the basis ๐‘ฃ2 after applying ๐‘‡ onto it. but

๐‘‡๐‘’2 = ๐‘‡โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

๐‘‡๐‘’2 =โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’ sin๐œƒcos๐œƒ

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

Page 11: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

11

Hence

[๐‘‡]๐‘ฃ =โŽกโŽขโŽขโŽขโŽขโŽฃcos๐œƒ โˆ’ sin๐œƒsin๐œƒ cos๐œƒ

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

=โŽกโŽขโŽขโŽขโŽขโŽฃcos ๐œ‹

4 โˆ’ sin ๐œ‹4

sin ๐œ‹4 cos ๐œ‹

4

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

[๐‘‡]๐‘ฃ =

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

Therefore

[๐‘‡]๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ

=โŽกโŽขโŽขโŽขโŽขโŽฃ1 โˆ’11 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โˆ’1 โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽฃ1 โˆ’11 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

=โŽกโŽขโŽขโŽขโŽขโŽฃ

12

12

โˆ’ 12

12

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽฃ0 โˆ’โˆš2โˆš2 0

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

=

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

Hence we see that the linear transformation ๐‘‡ is represented as

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ w.r.t. basis ๐‘ฃ

โ€ฒ, while it is

represented as

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆw.r.t. basis ๐‘ฃ

โ€ฒ. Therefore the change of basis selected above did not result

in making the representation of ๐‘‡ any simpler (in fact there was no change in the representation).This means we need to find a more direct method of finding the basis under which ๐‘‡ has thesimplest representation. Clearly we canโ€™t just keep trying di๏ฟฝerent basis to find if ๐‘‡ has simplerrepresentation under the new basis.

1.2.4 How to ๏ฟฝnd the best basis to simplify the representation of ๐‘‡?

Our goal of simpler representation of ๐‘‡ is that of a diagonal matrix or as close as possible to beingdiagonal matrix (i.e. Jordan form). Given [๐‘‡]๐‘ฃ and an infinite number of basis ๐‘ฃโ€ฒ that we couldselect to represent ๐‘‡ under in the hope we can find a new representation [๐‘‡]๐‘ฃโ€ฒ such that it is simplerthan [๐‘‡]๐‘ฃ, we now ask, how does one go about finding such basis?

It turns out the if we select the eigenvectors of [๐‘‡]๐‘ฃ as the columns of [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ, this will result in[๐‘‡]๐‘ฃโ€ฒ being diagonal or as close to being diagonal as possible (block diagonal or Jordan form).

Let us apply this to the second example in the previous section. In that example, we had

[๐‘‡]๐‘ฃ =

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

The eigenvectors of [๐‘‡]๐‘ฃ areโŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘–1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ and

โŽกโŽขโŽขโŽขโŽขโŽฃ๐‘–1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ, [๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ =

โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘– ๐‘–1 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ. Therefore

[๐‘‡]๐‘ฃโ€ฒ = [๐‘€]โˆ’1๐‘ฃโ€ฒโ†’๐‘ฃ[๐‘‡]๐‘ฃ[๐‘€]๐‘ฃโ€ฒโ†’๐‘ฃ

=โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘– ๐‘–1 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โˆ’1 โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽกโŽขโŽขโŽขโŽขโŽฃโˆ’๐‘– ๐‘–1 1

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

[๐‘‡]๐‘ฃโ€ฒ =

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๏ฟฝ 12 โˆ’

12 ๐‘–๏ฟฝโˆš2 0

0 ๏ฟฝ 12 +

12 ๐‘–๏ฟฝโˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

Which is diagonal representation. Hence we see that the linear transformation ๐‘‡ is represented asโŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๏ฟฝ 12 โˆ’

12 ๐‘–๏ฟฝโˆš2 0

0 ๏ฟฝ 12 +

12 ๐‘–๏ฟฝโˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆw.r.t. basis ๐‘ฃโ€ฒ

Page 12: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

12

1.3 Summary of similarity transformation

To obtain ๐ต = ๐‘€โˆ’1๐ด๐‘€ such that ๐ต is real and diagonal requires that ๐ด be real and symmetric. Theeigenvalues of ๐ด goes into the diagonal of ๐ต and the eigenvectors of ๐ด go into the columns of ๐‘€.This is an algebraic view.

Geometrically,๐ด is viewed as the matrix representation under some basis ๐‘ฃ of a linear transformation๐‘‡. And ๐ต is the matrix representation of the same linear transformation ๐‘‡ but now under a newbasis ๐‘ฃโ€ฒ and ๐‘€ is the matrix that represents the change of basis from ๐‘ฃโ€ฒ to ๐‘ฃ.

The question then immediately arise: If ๐ดmust be real and symmetric (for ๐ต to be real and diagonal),what does this mean in terms of the linear transformation ๐‘‡ and change of basis matrix ๐‘€? Thisclearly mean that, under some basis ๐‘ฃ, not every linear transformation represented by ๐ด can have asimilar matrix ๐ต which is real and diagonal. Only those linear transformations which result in realand symmetric representation can have a similar matrix which is real and diagonal. This is shownin the previous examples, where we saw that ๐‘‡ defined as rotation by 450 under the standard basis

๐‘ฃ =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

โŽกโŽขโŽขโŽขโŽขโŽฃ10

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ ,โŽกโŽขโŽขโŽขโŽขโŽฃ01

โŽคโŽฅโŽฅโŽฅโŽฅโŽฆ

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญresulted in ๐ด =

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

1

โˆš2โˆ’ 1

โˆš21

โˆš21

โˆš2

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ and since this is not symmetric, hence we will not be able

to factor this matrix using similarity transformation to a diagonal matrix, no matter which changeof basis we try to represent ๐‘‡ under. The question then, under a given basis ๐‘ฃ what is the class oflinear transformation which leads to a matrix representation that is symmetric? One such examplewas shown above which is the projection into the line at 1350. This question needs more time tolook into.

We now write ฮ› to represent a diagonal matrix, hence the similarity transformation above can bewritten as

ฮ› = ๐‘€โˆ’1๐ด๐‘€

Or๐ด = ๐‘€ฮ›๐‘€โˆ’1

A M M1

Eigenvalues of A go into the diagonal

Eigenvectors of A go into the columns

A is real and symmetric

2 Singular value decomposition (SVD)

Using similarity transformation, we found that for a real and symmetric matrix ๐ด we are able todecompose it as ๐ด = ๐‘€ฮ›๐‘€โˆ’1 where ฮ› is diagonal and contains the eigenvalues of ๐ด on the diagonal,and ๐‘€ contains the right eigenvectors of ๐ด in its columns.

2.1 What is right and left eigenvectors?

Right eigenvectors are the standard eigenvectors we have been talking about all the time. When ๐œ†is an eigenvalues of ๐ด then ๐’™ is a right eigenvector when we write

๐ด๐’™ = ๐œ†๐’™

However, ๐’™ is a left eigenvector of ๐ด when we have

๐’™๐ป๐ด = ๐œ†๐’™๐ป

where ๐’™๐ป is the Hermitian of ๐’™

2.2 SVD

Given any arbitrary matrix ๐ด๐‘šร—๐‘› it can be factored into 3 matrices as follows ๐ด๐‘šร—๐‘› = ๐‘ƒ๐‘šร—๐‘š๐ท๐‘šร—๐‘›๐‘„๐‘›ร—๐‘›where ๐‘ƒ is a unitary matrix (๐‘ƒ๐ป = ๐‘ƒโˆ’1 or ๐‘ƒ๐ป๐‘ƒ = ๐ผ), and ๐‘„ is also unitary matrix.

These are the steps to do SVD

1. Find the rank of ๐ด, say ๐‘Ÿ

Page 13: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

13

2. Let ๐ต = ๐ด๐ป๐‘›ร—๐‘š๐ด๐‘šร—๐‘›, hence ๐ต๐‘›ร—๐‘› is a square matrix, and it is semi positive definite, hence its

eigenvalues will all be โ‰ฅ 0. Find the eigenvalues of ๐ต, call these ๐œŽ2๐‘– . There will be ๐‘› sucheigenvalues since ๐ต is of order ๐‘›ร—๐‘›. But only ๐‘Ÿ of these will be positive, and ๐‘›โˆ’ ๐‘Ÿ will be zero.Arrange these eigenvalues such that the first ๐‘Ÿ non-zero eigenvalues come first, followed by

the zero eigenvalues:

๐‘› ๐‘’๐‘–๐‘”๐‘’๐‘›๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘ 

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐œŽ21, ๐œŽ22,โ‹ฏ , ๐œŽ2๐‘Ÿ , 0, 0,โ‹ฏ , 0

3. Initialize matrix ๐ท๐‘šร—๐‘› to be all zeros. Take the the first ๐‘Ÿ eigenvalues from above (non-zero

ones), and take the square root of each, hence we get๐‘Ÿ singular values

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐œŽ1, ๐œŽ2,โ‹ฏ , ๐œŽ๐‘Ÿ ,and write these down thediagonal of ๐ท starting at ๐ท (1, 1), i.e. ๐ท (1, 1) = ๐œŽ1, ๐ท (2, 2) = ๐œŽ2,โ‹ฏ ,๐ท (๐‘Ÿ, ๐‘Ÿ) = ๐œŽ๐‘Ÿ. Notice that thematrix ๐ท need not square matrix. Hence we can obtain an arrangement such as the followingfor ๐‘Ÿ = 2

๐ท =

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œŽ1 0 0 00 ๐œŽ2 0 00 0 0 0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

where the matrix ๐ด was 3 ร— 4 for example.

4. Now find each eigenvalue of ๐ด๐ป๐ด. For each eigenvalue, find the corresponding eigenvector.Call these eigenvectors ๐’–1, ๐’–2,โ‹ฏ , ๐’–๐‘›.

5. Normalize the eigenvectors found in the above step. Now ๐’–1, ๐’–2,โ‹ฏ , ๐’–๐‘› eigenvector will bean orthonormal set of vectors. Take the Hermitian of each eigenvector ๐’–๐ป1 , ๐’–๐ป2 ,โ‹ฏ , ๐’–๐ป๐‘› andmake one of these vectors (now in row format instead of column format) go into a rowin the matrix ๐‘„.i.e. the first row of ๐‘„ will be ๐’–๐ป1 , the second row of ๐‘„ will be ๐’–๐ป2 , etc...

๏ฟฝ๐ด๐ป๐ด๏ฟฝ๐‘›ร—๐‘›

find eigenvectors and normalizeโ†’

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐’–1, ๐’–2,โ‹ฏ , ๐’–๐‘Ÿ,

ortho basis (n-r) for N(A)

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐’–๐‘Ÿ+1,โ‹ฏ , ๐’–๐‘›

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญโ†’ ๐‘„๐‘›ร—๐‘› =

โŽกโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽขโŽฃ

๐’–๐‘‡1๐’–๐‘‡2โ‹ฎ๐’–๐‘‡๐‘Ÿ๐’–๐‘‡๐‘Ÿ+1โ‹ฎ๐’–๐‘‡๐‘›

โŽคโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฅโŽฆ

6. Now we need to find a set of ๐‘š orthonormal vectors, these will be the columns of the matrix๐‘ƒ: find a set of ๐‘Ÿ orthonormal eigenvector ๐’—๐‘– =

1๐œŽ๐‘–๐ด๐’–๐‘–, for ๐‘– = 1โ‹ฏ๐‘Ÿ. Notice that here we only

use the first ๐‘Ÿ vectors found in step 5. Take each one of these ๐’—๐‘– vectors and make them intocolumns of ๐‘ƒ. But since we need ๐‘š columns in ๐‘ƒ not just ๐‘Ÿ, we need to come up with ๐‘š โˆ’ ๐‘Ÿmore basis vectors such that all the ๐‘š vectors form an orthonormal set of basis vectors forthe row space of ๐ด, i.e. โ„‚๐‘š. If doing this by hand, it is easy to find the this ๐‘šโˆ’ ๐‘Ÿ by inspection.In a program, we could use the same process we used with Gram-Schmidt, where we learnedhow find a new vector which is orthonormal to a an existing set of other vectors. Anotherway to find the matrix ๐‘ƒ is to construct the matrix ๐ด๐ด๐ป and find its eigenvectors, those gointo the columns of the matrix ๐‘ƒ as follows

๏ฟฝ๐ด๐ด๐ป๏ฟฝ๐‘šร—๐‘š

find eigenvectors and normalizeโ†’

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ

orthonormal basis for range A

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐’—1, ๐’—2,โ‹ฏ , ๐’—๐‘Ÿ , ๐’—๐‘Ÿ+1,โ‹ฏ , ๐’—๐‘š

โŽซโŽชโŽชโŽฌโŽชโŽชโŽญโ†’ ๐‘ƒ๐‘šร—๐‘š = ๏ฟฝ๐’—1 ๐’—2 โ‹ฏ ๐’—๐‘Ÿ ๐’—๐‘Ÿ+1 โ‹ฏ ๐’—๐‘š๏ฟฝ

7. This completes the factorization, now we have ๐ด = ๐‘ƒ ๐ท ๐‘„

The following diagram help illustrate the SVD process described above.

Page 14: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

14

For these n r vectors

Aui 0

Hence basis for NA

Row space(A)

Null space(A)

A(MxN) matrix, Rank=r

Rn

Dimension=r

Dimension= n-r

Column space(A)

(or range of A)

Left Null space(A)

Dimension=r

Dimension= m-r

Rm

A

a11 a12 a1n

am1 am2 amn

A PDQ

SVD factorization

Orthonormal Basis for Null Space of A

AHAnn

f ind eigenvectors

u1,u2,,ur,

ortho basis for N(A)

ur1,,un Qnn

u1T

u2T

urT

ur1T

unT

AAH mm

f ind eigenvectors

r ortho basis for range A

v1,v2,,vr ,vr1,,vm Pmm v1 v2 vr vr1 vm

Amn PmmDmnQnn

D1.vsd

By Nasser M. Abbasi

July 3,2007

From these r vectors we obtain

vi Aui

i

Hence r basis for Range A

And normalize

And normalize

n eigenvalues

12,2

2,,r

2, 0,0,, 0

3 Conclusion

As a conclusion, the following diagram shows the di๏ฟฝerence between similarity transformationfactorization of a matrix and SVD.

Page 15: Review of similarity transformation and Singular Value ...โ‚ฌยฆย ยท 2 1 Similarity transformation A similarity transformation is ๐ต=๐‘€โˆ’1๐ด๐‘€ Where ๐ต,๐ด,๐‘€are square

15

A M M1

Eigenvalues of A go into the diagonal

Eigenvectors of A go into the columns

A is real, sqaure and symmetric

Similarity Transformation

nxn nxn nxn nxn

Diagonal matrix

A P D QA is arbitrary mxn matrix

AAH

Normalized Eigenvectors of AAโ€™ go into the columns of P

AHANormalized Eigenvectors of Aโ€™A go into the rows of Q

The square root of the nonzero eigenvalues of AAโ€™ (or Aโ€™A) go into the diagonal of matrix D. These are called the singular values of A

mxnmxm mxn nxn

Nasser M. Abbasi

diag10.vsdx

Trying to understand SVD from geometrical point view requires more time, and this is left forfuture research into this subject.

4 References

1. Linear Algebra and its applications 4th edition by Gilbert Strang

2. Course notes, Linear Algebra, Math 307, CSUF mathematics department, spring 2007 by DrAngel Pineda.

3. Principles and techniques of applied Mathematics by Bernard Friedman, Spectral theory ofoperators chapter.

4. Matrix computation, 3rd edition by Gene Golub and Charles Van Loan.

5. Numerical analysis: Mathematics of scientific computing, by David Kincaid and Ward Cheney.