right-sizing energy efficient...

26
Lessons Learned from Harvard LISE and Other Peer Institutions Samir Srouji, Principal Wilson Architects Inc. Jacob Knowles, Director of Sustainable Design BR+A Consulting Engineers 2014 UGIM Symposium Memorial Hall, 1:45 - 2:15 pm 16 June 2014 Right-Sizing Energy Efficient Cleanrooms

Upload: tranminh

Post on 09-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Lessons Learned from Harvard LISE and Other Peer InstitutionsSamir Srouji, PrincipalWilson Architects Inc.

Jacob Knowles, Director of Sustainable DesignBR+A Consulting Engineers

2014 UGIM SymposiumMemorial Hall, 1:45 - 2:15 pm16 June 2014

Right-Sizing Energy Efficient Cleanrooms

Comparing EUI

LISE Building • Harvard University

±900EUI

Life Science Laboratories • UMass Amherst

±150EUI

PROJECT SIZE

143,000 GSF

COMPLETION DATE

2008

SPACE ALLOCATIONCleanroom (CL 1000, CL 100) 9,000 SFImaging Suites (VC-E) 6,400 SFMaterial Synthesis 6,350 SFHigh Bay Labs (VC-E) 2,400 SFLow Vibration Labs (VC-E) 2,400 SFCafe, Conference, Office

LISE BuildingHarvard University

LISE BuildingHarvard University

Penthouse

Imaging

Cleanroom

CleanroomTool Cost

Tool Hook-Up

Project Cost

Escalation & Alternates

ConstructionCost Estimate

MilestonesPreliminary Schedule

Diagram Draft Program

Nano Layouts Tool Manual Tool PlansDetailed Tool List

Chemical Usage

Emission Limits

Abatement Systems

Material Handling Report

Preliminary Code Check

Code Report

EvaluateSite Options

Site Selection

Site Concepts

Blocking & Stacking

Massing Options

Design Concepts

Dynamic Modeling

Isolation Systems

Vibration Report

Test ConceptsIsolation Systems

EMI / RF Report

Frame Concepts

Structure / Foundation

Concepts

Plant LayoutDistribute Concepts

OutlineScope

MEP Concepts

Day 1 vs. Full Build

Concept Level

Revisit Codes

Set FormatPROJECT COST

CONSTRUCTION COST

SCHEDULE

PROGRAM

VIBRATION

EMI / RFI

STRUCTURE

MEP

Check CompsInitial Cost

Model

Overall Workplan

Initial Workplan

Population Room List Room Sheets

TOOLS

CHEMICAL HANDLING

CODE / PERMITS

Tool List Utility Matrix

Codes Authorities

SITE

DESIGN

Survey & Borings

Geo Tech

Philosophy

Site Measurement

Site Measurement

Foundation Concept

Q-List LoadsBase Building

TY

PIC

AL

R&

D IS

SUES

NA

NO

ISSU

ES

Cleanroom Critical Path

CLEAN CLASS Set Criteria

Set Criteria

Set Criteria

Post Occupancy EvaluationLISE Building • Harvard University

2011

TECHNICAL ISSUES: Building Performance

• Humidity Control

• Energy Conservation - Lighting & HVAC Controls

• Construction Issues - Sprinkler Head Failure - Firelite Glass Delamination

ARCHITECTURAL DESIGN

• Size of Tower Floorplate

• Vertical Circulation

• Shortage of Meeting Space

2014

SUBMETERING

Purdue University

Georgia Institute of Technology

Duke University

Cornell University

Harvard University

Princeton University Carnegie Mellon University

Benchmarking

University of Michigan

University of Illinois Lawrence Berkeley National Lab

• Scaleability• Balancing efficiency and flexibility

Lessons Learned

Energy Drivers in Cleanroom FacilitiesWhy is Scaleability Important?

ENERGY DRIVERS IN CLEANROOM FACILITIES

LIGHTING

TOOLS

MAKE UP AIR (MAHU)

RECIRC AIR (RAHU)

WHY IS SCALABILITY IMPORTANT?

LIGHTING

TOOLSMAKE UP AIR (MAHU)

RECIRC AIR (RAHU)

Operation with NO Turn DownWhy is Scaleability Important?

OPERATION WITH NO TURN DOWN

LIGHTING

TOOLS

MAKE UP AIR (MAHU)

RECIRC AIR (RAHU)

WHY IS SCALABILITY IMPORTANT?

LIGHTING

TOOLSMAKE UP AIR (MAHU)

RECIRC AIR (RAHU)

Operation WITH Turn DownWhy is Scaleability Important?

LIGHTING

TOOLS

MAKE UP AIR (MAHU)

MAHU TURN DOWN

RAHU TURN DOWN

RECIRC AIR (RAHU)

WHY IS SCALABILITY IMPORTANT?

OPERATION WITH TURN DOWN

LIGHTING

TOOLS

MAKE UP AIR (MAHU)

RECIRC AIR (RAHU)

TURN DOWN:

RAHU

MAHU

Metrics

MAHU

MAKE UP AHU• Air Changes per Hour (ACH)• Supply Air Temp (°F)

RECIRC AHU• Air Changes per Hour (ACH)• Efficiency (CFM/KW)

TOOL LOAD• Watts per Square Foot (W/SF)

Facilities Surveyed

Cornell

2002

U. of Michigan

1988/2008

Duke

2007

Georgia Tech

2009

Princeton

2015

Purdue

2005

U. of Illinois

1989

Harvard

2007

FACILITES SURVEYED

25,000

20,000

15,000

10,000

5,000

0

5,000

10,000

15,000

Cor

nell*

20

02?

Duk

e 2

007

Geo

rgia

Tec

h* (n

o Bi

o)

2009

Prin

ceto

n 2

015

Purd

ue

2005

U. o

f Illi

nois

198

9

U. o

f Mic

higa

n 1

988/

2008

Har

vard

20

07

10,000

1,000

1,000 at 100

100

1

10

1,000 at 100

1,000

10,000

10

100

1

SF

Designed for 108 W/sf, Operating at 8 W/sf

• Harvard would have liked more tools on emergency power; would have been more feasible at 8 W/sf

Tool Load (W/sf)TOOL LOAD (W/SF)

Designed for 108 W/sf, Operating at 8 W/sf

0

1

2

3

4

5

6

7

8

9

10

MIN AVERAGE W/SF

MAX

CR - UPS

CR - 8

CR - 7

CR - 6

CR - 5

CR - 4

CR - 3

CR - 2

CR - 1

CR - 480V Furnace

CR - 480V Furnace

Tool Load (W/sf)TOOL LOAD (W/SF) INSERT DIAGRAM, BASED ON

SAMIR’S SKETCH, HIGHLIGHTING THE SUBECT OF EACH CHART

0 10 20 30 40 50 60 70 80 90 100 110 120

LBNL 3 (A CLASS 10)

LBNL 16 (D)

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 18 (E.1 2)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

LBNL 17 (E.1 1)

CORNELL*

PRINCETON

U. OF MICHIGAN

HARVARD

TOOL LOAD (W/SF)

OPERATION

DESIGN

DESIGN

OPERATION

TOOL LOAD (W/SF) INSERT DIAGRAM, BASED ON SAMIR’S SKETCH, HIGHLIGHTING

THE SUBECT OF EACH CHART

0 10 20 30 40 50 60 70 80 90 100 110 120

LBNL 3 (A CLASS 10)

LBNL 16 (D)

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 18 (E.1 2)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

LBNL 17 (E.1 1)

CORNELL*

PRINCETON

U. OF MICHIGAN

HARVARD

TOOL LOAD (W/SF)

OPERATION

DESIGN

RESULTS PENDING CLARIFICATION

Design Capacity

RECIRCULATION AIR (ACH)

Turned Down from 275 ACH (Design) to 155/125 ACH (Operation Day/Night) • Particle Counters (Quick Ramp-Up, Slow Decay) • Building Timeclock • Annual CR Class Validation

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RECIRCULATION AHU-18 SUPPLY AIR FLOW

(DAYS)

Recirculation Air (ACH)

Turned Down from 240 ACH (Design) to 155/125 ACH (Operation Day/Night)

• Particle Counters (Quick Ramp-Up, Slow Decay)• Building Timeclock• Annual CR Class Validation

Recirculation Air (ACH)INSERT DIAGRAM, BASED ON

SAMIR’S SKETCH, HIGHLIGHTING THE SUBECT OF EACH CHART

RECIRCULATION AIR (ACH)

75 100 125 150 175 200 225 250

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

CARNEGIE MELLON

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

HARVARD

(ACH / H)

OPERATION

DESIGN

75 100 125 150 175 200 225 250

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

CARNEGIE MELLON

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

HARVARD

RECIRCULATION AIR (ACH)

OPERATION

DESIGN

NIGHT OPERATION

*CLASS 1,000 OPERATING AT CLASS 100

DESIGN

OPERATION

NIGHT OPERATION

INSERT DIAGRAM, BASED ON SAMIR’S SKETCH, HIGHLIGHTING

THE SUBECT OF EACH CHART

RECIRCULATION AIR (ACH)

75 100 125 150 175 200 225 250

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

CARNEGIE MELLON

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

HARVARD

(ACH / H)

OPERATION

DESIGN

75 100 125 150 175 200 225 250

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

CARNEGIE MELLON

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

HARVARD

RECIRCULATION AIR (ACH)

OPERATION

DESIGN

NIGHT OPERATION

*CLASS 1,000 OPERATING AT CLASS 100

INSERT DIAGRAM, BASED ON SAMIR’S SKETCH, HIGHLIGHTING

THE SUBECT OF EACH CHART

RECIRCULATION AIR (ACH)

75 100 125 150 175 200 225 250

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

CARNEGIE MELLON

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

HARVARD

(ACH / H)

OPERATION

DESIGN

75 100 125 150 175 200 225 250

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

CARNEGIE MELLON

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

HARVARD

RECIRCULATION AIR (ACH)

OPERATION

DESIGN

NIGHT OPERATION

*CLASS 1,000 OPERATING AT CLASS 100

Recirculation AHU Efficiency (CFM/KW)RECIRCULATION AHU EFFICIENCY (CFM/KW) INSERT DIAGRAM, BASED ON

SAMIR’S SKETCH, HIGHLIGHTING THE SUBECT OF EACH CHART

0 2000 4000 6000 8000 10000 12000

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 15 (C)

LBNL 18 (E.1 2)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

LBNL 17 (E.1 1)

CARNEGIE MELLON

CORNELL*

DUKE

PRINCETON

HARVARD

CFM / KW

DESIGN

OPERATION

0 2000 4000 6000 8000 10000 12000

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 15 (C)

LBNL 18 (E.1 2)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

LBNL 17 (E.1 1)

CARNEGIE MELLON

CORNELL*

DUKE

PRINCETON

HARVARD

RECIRCULATION AHU EFFICIENCY (CALCULATED CFM/KW)

DESIGN

OPERATION

NIGHT OPERATION

DESIGN

OPERATION

NIGHT OPERATION

RECIRCULATION AHU EFFICIENCY (CFM/KW) INSERT DIAGRAM, BASED ON SAMIR’S SKETCH, HIGHLIGHTING

THE SUBECT OF EACH CHART

0 2000 4000 6000 8000 10000 12000

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 15 (C)

LBNL 18 (E.1 2)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

LBNL 17 (E.1 1)

CARNEGIE MELLON

CORNELL*

DUKE

PRINCETON

HARVARD

CFM / KW

DESIGN

OPERATION

0 2000 4000 6000 8000 10000 12000

LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4)

LBNL 10 (A CLASS 100)

LBNL 15 (C)

LBNL 18 (E.1 2)

LBNL 11 (B.1 AIT)

LBNL 14 (B.2 ZONE 5)

LBNL 17 (E.1 1)

CARNEGIE MELLON

CORNELL*

DUKE

PRINCETON

HARVARD

RECIRCULATION AHU EFFICIENCY (CALCULATED CFM/KW)

DESIGN

OPERATION

NIGHT OPERATION

MAKE UP AIR (ACH)

Turned Down from 42 ACH (Design) to 17 ACH (Operation) • Used Balancing Dampers and VFDs on Exhaust Fans to turn down exhaust • Pressure-Differential Sensors added to allow supply air to track exhaust

Design Capacity

0

10000

20000

30000

0 1 2 3 4 5 6 7

MAKE UP AHU-01 SUPPLY AIR FLOW

(DAYS)

Make Up Air (ACH)

Turned Down from 42 ACH (Design) to 17 ACH (Operation)

• Used Balancing Dampers and VFDs on Exhaust Fans to turn down exhaust• Pressure-Differential Sensors added to allow supply air to track exhaust

Make Up Air (ACH)MAKE UP AIR (ACH) INSERT DIAGRAM, BASED ON

SAMIR’S SKETCH, HIGHLIGHTING THE SUBECT OF EACH CHART

0 10 20 30 40 50 60

LBNL 18 (E.1 2)

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

PRINCETON

U. OF ILLINOIS

U. OF MICHIGAN

HARVARD

MAKE UP AIR (ACH)

OPERATION

DESIGN

OPERATION & DESIGN OVERLAP

MAKE UP AIR (ACH) INSERT DIAGRAM, BASED ON SAMIR’S SKETCH, HIGHLIGHTING

THE SUBECT OF EACH CHART

0 10 20 30 40 50 60

LBNL 18 (E.1 2)

CORNELL*

DUKE

GEORGIA TECH* (NO BIO)

PRINCETON

U. OF ILLINOIS

U. OF MICHIGAN

HARVARD

MAKE UP AIR (ACH)

OPERATION

DESIGN

OPERATION & DESIGN OVERLAP

DESIGN

OPERATION

RESULTS PENDING CLARIFICATION

SUPPLY AIR TEMPERATURE (°F)

35

40

45

50

55

60

65

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DRY

BU

LB o F

(DAYS)

Supply Air Temp

SEPT 7-13, 2013 FEB 6-12, 2014

Designed for 46˚F Dewpoint, Operating at or below 43˚F Dewpoint

• Up to 6˚F Dewpoint Fluctuation• Supply Air Temp Reset, based on Dewpoint

OPERATION: DRY BULB

DESIGN

Supply Air Temperature (°F)

Design Capacity

RECIRCULATION AIR (ACH)

Turned Down from 275 ACH (Design) to 155/125 ACH (Operation Day/Night) • Particle Counters (Quick Ramp-Up, Slow Decay) • Building Timeclock • Annual CR Class Validation

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RECIRCULATION AHU-18 SUPPLY AIR FLOW

(DAYS)

Supply Air Temperature (°F)INSERT DIAGRAM, BASED ON

SAMIR’S SKETCH, HIGHLIGHTING THE SUBECT OF EACH CHART

SUPPLY AIR TEMPERATURE (°F)

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

CORNELL*

GEORGIA TECH* (NO BIO)

PRINCETON

PURDUE

U. OF ILLINOIS

U. OF MICHIGAN

HARVARD

SUPPLY AIR TEMPERATURE (°F)

DESIGN

OPERATION

OPERATION & DESIGN OVERLAP

DESIGN

OPERATION

INSERT DIAGRAM, BASED ON SAMIR’S SKETCH, HIGHLIGHTING

THE SUBECT OF EACH CHART

DEWPOINT (°F)

37 39 41 43 45 47 49 51 53 55

LBNL 3 (A CLASS 10) LBNL 12 (B.1 APS)

LBNL 13 (B.2 ZONE 4) LBNL 10 (A CLASS 100)

LBNL 11 (B.1 AIT) BERKELEY

CORNELL* DUKE

PRINCETON PURDUE

U. OF MICHIGAN HARVARD

DEWPOINT (°F)

OPERATION

DESIGN

OPERATION & DESIGN OVERLAP

OPERATION & DESIGN OVERLAP

Tool Load (W/sf)

1. Extra capacity provides flexibility, but rarely above 30 W/sf average2. Above 30 W/sf only in specific areas, based on anticipated tools (i.e. furnace)

Design for Scaleability

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

Tool Load (W/sf)

Recirculation Air

1. Don’t design too far above 200 ACH (may impact turn-down)2. Occupancy Sensors (unoccupied setback)3. Particle Counters (quick ramp-up, slow decay)4. CR Class Validation (how low can you go?)

Design for Scaleability

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

Recirculation AHU Efficiency (CFM/KW)

Recirculation AHU Efficiency (CFM/KW)

Make Up Air

1. Extra cfm capacity provides flexibility, but rarely above 30 ACH (5 cfm/sf)2. Supply cold (reheat locally) and reset higher3. Consider higher dewpoint

Design for Scaleability

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

Make Up Air (ACH)

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

Dewpoint (°F)

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

SUMMARY OF RECOMMENDATIONS

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

SUPPLY AIR TEMPERATURE (°F)

d: Best In Class Design O: Demand Reset+Dewpnt Control

37 39 41 43 45 47 49 51 53 55

DEWPOINT (°F)

O: Savings (Winter) d: Standard Practice d: First Cost Savings O: Savings (Summer)

0 10 20 30 40 50 60 70 80 90 100 110 120

TOOL LOAD (W/SF)

O: Potential Operation d: Tools with Diversity d: Flexible Design d: Only Specific Areas

0 10 20 30 40 50 60

MAKE UP AIR (ACH)

O: Potential Operation d: Tools+Benches+Diversity d: Flexible Design d: Only Specific Cases

0 2000 4000 6000 8000 10000 12000

RECIRCULATION AHU EFFICIENCY (CFM/KW)

d: High Perform Design d: Best In Class Design O: High Perform Operation O: Best In Class Operation

75 100 125 150 175 200 225 250 275 300

RECIRCULATION AIR (ACH)

O: Potential Unoccupied O: Best In Class Operation O: High Perform Operation d: First Cost Savings d: Flexible Design d: Risk Limiting Turn Down

Supply Air Temperature (°F)

1. Future Flexibility

2. Operational Savings

3. Sustainability

Benefits