rnai%therapeu-c%targe-ng%% alpha21%an-trypsin%(aat

28
Targeting Innovation RNAi Therapeu-c Targe-ng Alpha1 An-trypsin (AAT) Deficiency Liver Disease Steven B. Kanner, Ph.D. 1

Upload: others

Post on 25-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Targeting Innovation

RNAi  Therapeu-c  Targe-ng    Alpha-­‐1  An-trypsin  (AAT)  Deficiency    

Liver  Disease    

Steven  B.  Kanner,  Ph.D.  1  

2  

Disclosures        

!  Employee  and  shareholder  of  Arrowhead  Research  Corpora-on  

3  

!  AAT  (SERPINA1)  is  an  abundant  serum  protein  synthesized  primarily  in  liver  

!  Inhibits  neutrophil  proteases  during  lung  inflamma-on  (par-cularly  smoking  injury)  

!  Z  mutant  (single  aa  subs-tu-on,  E342K)  common  disease  variant  with  low  secre-on  

         that  polymerizes  in  liver,  not  blood  

Alpha-­‐1-­‐an-trypsin  (AAT)  deficiency  disease        T

arget  

4  

!  AAT  (SERPINA1)  is  an  abundant  serum  protein  synthesized  primarily  in  liver  

!  Inhibits  neutrophil  proteases  during  lung  inflamma-on  (par-cularly  smoking  injury)  

!  Z  mutant  (single  aa  subs-tu-on,  E342K)  common  disease  variant  with  low  secre-on  

         that  polymerizes  in  liver,  not  blood  

!  Autosomal  co-­‐dominant  inheritance:    ~1/3000  births  in  US  and  EU  

!  Associated  with  liver  disease  in  children/adults,  and  lung  disease  (COPD)  in  adults  

Alpha-­‐1-­‐an-trypsin  (AAT)  deficiency  disease        

Incide

nce  

5  

!  AAT  (SERPINA1)  is  an  abundant  serum  protein  synthesized  primarily  in  liver  

!  Inhibits  neutrophil  proteases  during  lung  inflamma-on  (par-cularly  smoking  injury)  

!  Z  mutant  (single  aa  subs-tu-on,  E342K)  common  disease  variant  with  low  secre-on  

         that  polymerizes  in  liver,  not  blood  

!  Autosomal  co-­‐dominant  inheritance:    ~1/3000  births  in  US  and  EU  

!  Associated  with  liver  disease  in  children/adults,  and  lung  disease  (COPD)  in  adults  

!  Polymeriza-on  of  Z-­‐AAT  protein  in  liver  leads  to  globule  forma-on  

!  Proteolysis  and  autophagy  likely  mechanisms  of  globule  degrada-on  

!  Globules  induce  hepatocyte  apoptosis,  fibrosis,  cirrhosis  and  hepatocellular  carcinoma  

Alpha-­‐1-­‐an-trypsin  (AAT)  deficiency  disease        

Pathology  

6  

!  AAT  (SERPINA1)  is  an  abundant  serum  protein  synthesized  primarily  in  liver  

!  Inhibits  neutrophil  proteases  during  lung  inflamma-on  (par-cularly  smoking  injury)  

!  Z  mutant  (single  aa  subs-tu-on,  E342K)  common  disease  variant  with  low  secre-on  

         that  polymerizes  in  liver,  not  blood  

!  Autosomal  co-­‐dominant  inheritance:    ~1/3000  births  in  US  and  EU  

!  Associated  with  liver  disease  in  children/adults,  and  lung  disease  (COPD)  in  adults  

!  Polymeriza-on  of  Z-­‐AAT  protein  in  liver  leads  to  globule  forma-on  

!  Proteolysis  and  autophagy  likely  mechanisms  of  globule  degrada-on  

!  Globules  induce  hepatocyte  apoptosis,  fibrosis,  cirrhosis  and  hepatocellular  carcinoma  

!  No  specific  therapy  for  liver  disease  other  than  transplant  

!  Lung  disease  treated  with  M-­‐AAT  protein  replacement,  with  no  benefit  to  liver  

Alpha-­‐1-­‐an-trypsin  (AAT)  deficiency  disease        

Therap

y  

Alpha-­‐1-­‐an-trypsin  deficiency  (AATD):  A  protein  folding,  gain-­‐of-­‐func-on  disease      !  95-­‐98%  of  the  clinical  disease  from  Z-­‐

mutant  homozygosity    !  ZZ  muta-on  leads  to  less  secreted  

protein  with  lower  ac-vity  !  Polymer  forma-on  and  reten-on  in  

hepatocyte  ER  

American Thoracic Society Documents 825

Figure 1. Mechanism of inhi-bition of neutrophil elastase bythe alpha-1 antitrypsin (AAT)inhibitor. Elastase attacks thereactive center loop (yellow) ofAAT with the active serine ofthe elastase (small red sidechain), forming a link to theamino acid at the base of thereactive center (small green sidechain) of AAT. The resultingcleavage of the reactive loopallows it to snap back into themain ! sheet (red ribbon witharrows) of the AAT. This spring-like movement flings the teth-ered elastase to the oppositeend of the AAT molecule, dis-torting its active site and alter-ing its structure so that it canbe destroyed. The center of theactive site of the AAT moleculeis Met358. When Met358 is oxi-dized to methionine sulfoxideor sulfone, the association rateconstant of the inhibition ofneutrophil elastase by AAT ismarkedly reduced. Oxidants inthe lower respiratory tract arisefrom cigarette smoke, environ-mental oxidants, as well as neu-trophils and macrophages.Modified by permission fromCarrell and Lomas (295).

fewer than 60% of individuals with severe AAT deficiency de-velop significant airflow limitation (6). This suggests that in manycases, AAT deficiency alone is not enough to induce emphysema(34). It has also been suggested that pulmonary emphysema devel-ops when elastin fiber repair mechanisms are overwhelmed by amassive attack of elastases from inflammatory reactions (35).

A major pathogenic factor is cigarette smoke, which containsoxidants capable of inactivating AAT by converting active siteMet358 to methionine sulfoxide, with the association constant forNE being reduced about 2,000-fold. In addition, it has beenshown that Z AAT inhibits NE at a slower rate than doesM AAT (4.5 versus 9 " 106 M–1 second–1) (36). Furthermore,AAT polymers can be detected in the bronchoalveolar lavagefluid, as demonstrated in two of five subjects with emphysemarelated to PI*ZZ AAT deficiency (37). Because polymerizationobscures the AAT reactive loop, the conformational transitionmay impair the inhibitory activity. Therefore, in AAT deficiency,oxidants contained in cigarette smoke may further impair a quan-titatively and qualitatively less functional AAT. In addition,cigarette smoke and proteinases may both work to impair lungelastin resynthesis in the animal model of elastase-induced em-physema (38).

Cigarette smoke also recruits inflammatory cells. In AATdeficiency, more neutrophils are found within air spaces than inemphysematous lungs of individuals with normal AAT plasmalevels. This contributes to a greater NE load (39). This phenome-non might be attributable to the presence of neutrophil chemo-tactic factors, mainly leukotriene B4 released from alveolar mac-rophages (40).

In addition, neutrophils and macrophages may release a vari-

ety of metalloproteinases with the potential to degrade extracel-lular matrix components (41). A role for a human collagenasein alveolar injury in experimental emphysema has also beendemonstrated (42). Metalloproteinases are not inhibited by AATand may even inactivate it by limited proteolysis near the activesite (41). The C-terminal fragments of AAT released duringproteolytic inactivation are potent neutrophil chemotactic fac-tors (43, 44).

LABORATORY TESTS

Observation of a reduced or absent #1-globulin band on routineplasma protein electrophoresis should arouse suspicion of AATdeficiency and should be confirmed quantitatively and qualita-tively (see Table 3).

TABLE 3. RANGE OF SERUM LEVELS* OF ALPHA-1ANTITRYPSIN ACCORDING TO PHENOTYPE

Phenotype

Units PI*MM PI*MZ PI*SS PI*SZ PI*ZZ

$M 20–48 17–33 15–33 8–16 2.5–7mg/dl 150–350 90–210 100–200 75–120 20–45

Data from references 14, 47, and 298.* Serum levels given are measured using a typical commercial standard (mg/dl)

and the purified standard ($M) used in the U.S. Registry. A level of less than11 $M is associated with an increased risk for emphysema.

Janciauskiene, S. et al. (2013) Acute Phase Proteins

Globule formation à fibrosis à cirrhosis à HCC

7  

Therapeu-c  ra-onale    

Inhibit  Z-­‐AAT  produc-on  by  silencing  AAT  gene:  !  Prevent  accumula-on  of  disease  causing  Z-­‐AAT  protein  !  Allow  clearance  of  accumulated  Z-­‐AAT  protein  !  Prevent  repeated  cycle  of  cellular  damage  and  -ssue  repair  !  Reverse  liver  fibrosis  

Feldmann, G., et al. (1975) Gut

PiZZ phenotype (diseased) Pi-null phenotype (normal)

8  

ARC-­‐AAT:    An  RNAi  therapeu-c  using  Dynamic  PolyConjugate  (DPC)  technology    

Unlocked  Nucleobase  Analog  (UNA)  

ARC-­‐EX1  

NAG  Targe-ng  Ligand  

MLP  

RNAi  Trigger    Targe-ng  AAT  mRNA  

CDM  Masking  

Cholesterol  

MLP:    melian-­‐like  pep-de  CDM:    carboxy-­‐dimethylmaleamide  NAG:    N-­‐acetyl-­‐galactosamine  

9  

10  

RNAi  therapeu-cs  using  Dynamic  PolyConjugate  (DPC)  technology    

1.   Rozema  et  al.  (2007)  Proc  Natl  Acad  Sci  USA  104:12982-­‐12987  2.   Wong  et  al.  (2012)  Nucleic  Acid  Ther  22:380-­‐390  3.   Wooddell  et  al.  (2013)  Mol  Ther  21:973-­‐985  

DPC  polymer  and  RNAi    trigger  aeach  to  their    respec-ve  cell  surface    targets  

DPC  polymer  and  RNAi    trigger  are  internalized  

DPC  polymer  and  RNAi    trigger  are  enclosed  in    endosomes.    Low  pH    results  in  polymer    unmasking  

DPC  polymer  induces    endosome  disrup-on    and  release  of  RNAi    trigger  into  cytoplasm  

RNAi  trigger  engages    RISC  resul-ng  in    target  knockdown  

Screening  for  RNAi  triggers    

!  2,648 19-mer sequences identified, 840 human/cyno monkey cross-reactive, 46 selected for in vitro screening after application of specificity criteria

!  EC50 values for highly potent UNA-containing sequences identified for ranking !  Screening of top Chol-RNAi triggers + ARC-EX1 in transgenic Z-AAT mice

Human liver cancer cell line

11  

D ay

No

rma

liz

ed

AA

T i

n s

eru

m

0 7 1 4 2 1 2 8 3 5 4 20 .0 1

0 .1

1

S a lin e

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 2 5 4

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 3 6 9

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 3 7 0

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 2 9 3

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 2 9 5

D ay

No

rma

liz

ed

AA

T i

n s

eru

m

0 7 1 4 2 1 2 8 3 5 4 20 .0 1

0 .1

1

S a lin e

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 2 5 4

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 3 6 9

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 3 7 0

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 2 9 3

8 m g /k g A R C -5 2 0 E x c + 8 m g /k g A D 0 0 2 9 5

Z-AAT transgenic mice (PiZ)

Top  leads  

UNA   Chol  

12  

RNAi  trigger  comparison  in  vitro    

!  UNA  modifica-on  confers  lower  mel-ng  temperature  

!  UNA  modifica-on  confers  measurable  changes  in  potency  in  vitro  

Lead  series  

RNAi  trigger Version Tm EC50    in  vitro  (pM)Family  A

254 Canonical 77.0 17.3369 UNA 59.9 17.9370 UNA 64.0 17.0

Family  B143 Canonical 88.7 153.8305 UNA 73.8 >1000306 UNA 73.7 >1000

Family  C145 Canonical 88.1 32.7307 UNA 79.9 32.0308 UNA 77.2 22.0

Family  D378 Canonical 71.1 44.9379 UNA 60.8 57.4380 UNA 60.9 22.0

Incorpora-on  of  UNA  results  in  improved  profile  Single dose activity in Z-AAT transgenic mice (PiZ)  

!  >90% knockdown using AAT-specific canonical (AD00254) or UNA trigger (AD00370) after a single dose

!  Improved duration of effect with UNA-AAT 13  

D a y

% h

AA

T i

n s

eru

m

(no

rma

liz

ed

to

pre

-do

se

)

0 1 0 2 0 3 0 4 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

S a l i n e

8 m g / k g c a n o n i c a l A A T - s i R N A

8 m g / k g A A T - U N A

D a y

% h

AA

T i

n s

eru

m

(no

rma

liz

ed

to

pre

-do

se

)

0 1 0 2 0 3 0 4 00

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

S a l i n e

8 m g / k g c a n o n i c a l A A T - s i R N A

8 m g / k g A A T - U N A

Saline  AD00254  (canonical)  AD00370  (UNA-­‐AAT)  

Incorpora-on  of  UNA  results  in  improved  profile  Single dose activity in normal cynomolgus monkeys  

!  80% knockdown using AAT-specific canonical or 90% knockdown with UNA-AAT trigger after a single dose

!  Improved duration of effect with UNA-AAT 14  

W e e k s

No

rma

liz

ed

AA

T i

n s

eru

m

0 1 2 3 4 5 6 70

2 0

4 0

6 0

8 0

1 0 0

1 2 0

6 m g / k g A A T - A D 0 0 3 7 0 + 3 m g / k g A R C - E X 1 ( n = 2 )

6 m g / k g A A T - A D 0 0 2 5 4 + 3 m g / k g A R C - E X 1 ( n = 2 )

UNA-­‐AAT  (N  =  2)  AD00254  (canonical,  N  =  2)  

Reduc-on  in  serum  Z-­‐AAT  levels  correlates  with  reduced    Z-­‐AAT  mRNA  levels    

Reduc-on  in  Z-­‐AAT  mRNA  is  prolonged,  correla-ng  with  serum  Z-­‐AAT  levels  

!  PiZ  mouse  livers  evaluated  for  mRNA  on  indicated  days  aher  a  single  UNA-­‐AAT  dose  

15  

Phosphoryla-on  of  RNAi  trigger  guide  strand  and  RISC  loading  

16  

     

                                               Endosome  

RISC  

RISC  

5’-­‐Chol  OH-­‐5’  

5’-­‐Chol  OH-­‐5’  

5’-­‐Chol  P-­‐5’  

Release  

CLP-­‐1  kinase   P-­‐5’  

RISC  loading  

P-­‐5’  

AAAAAA  

mRNA  loading  and  cleavage  

Hepatocyte  

5’-­‐Chol  OH-­‐5’  

Guide  strand  

Internaliza-on  

P-­‐5’:    5’-­‐phosphoryla-on  

RNAi  trigger  in  RISC  exhibits  stability  

Total  lysate  

RISC-­‐Associated  

17  

!  Ago2  immunoprecipita-on  captures  5’-­‐phosphorylated  guide  strand  detected  in  PNA  assay  !  PiZ  mice  treated  with  single  dose  of  UNA-­‐AAT  

Homogenize  liver  (Total  lysate)

Ago2  immunoprecipitation  (IP)

Hybridize  PNA  probe  for  AD00370

Detect  RNAi  trigger  guide  strand  by  AEX/HPLC

Wash

Elute

3 8 1 5 2 2 2 91

1 0

1 0 0

1 0 0 0

D a y

ng

GS

siR

NA

/

g t

iss

ue

3 8 1 5 2 2 2 90 . 1

1

1 0

1 0 0

D a y

ng

GS

siR

NA

/

g t

iss

ue

UNA-AAT ng  P-­‐5’  G

S/g  -ssue  

ng  P-­‐5’  G

S/g  -ssue  

18  

Mul-ple  dosing  profile  in  PiZ  mice  

Mul-ple  dosing  once  every  2  or  3  weeks  induces  significant  reduc-on  in  Z-­‐AAT  

Control  RNAi  trigger  UNA-­‐AAT  (q2w)  UNA-­‐AAT  (q3w)  

q3w  Dosing:  

Mul-ple  dosing  profile  in  NHP  

19  

!  Cynomolgus  monkeys  (N  =  2)  were  dosed  q6w  with  6  mpk  UNA-­‐AAT  +  3  mpk  ARC-­‐EX1  

Mul-ple  dosing  once  every  6  weeks  induces  significant  reduc-on  in  monkey  AAT  

W e e k s

% A

AT

in

se

rum

(no

rma

liz

ed

to

pre

-do

se

)

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 40

2 0

4 0

6 0

8 0

1 0 0

1 2 0Dose  

AAT  deficiency  liver  disease  mouse  model    The  transgenic  PiZ  mouse  model  expressing  human  Z-­‐mutant  AAT    recapitulates  the  human  AATD  associated  liver  phenotype:    

!  Hepatocytes  produce  high  levels  of  human  Z-­‐AAT  !  Hepatocytes  are  not  able  to  efficiently  process  and  secrete  Z-­‐AAT  from  hepatocytes  !  Z-­‐AAT  forms  polymers  that  accumulate  in  large  “globules”  within  the  hepatocytes            by  1  –  2  months  of  age  !  Globules  are  visualized  with  Periodic  Acid  Schiff  (PAS)  staining  +  diastase  

Rudnick, D.A. et al., (2004) Hepatology 20  

                     PiZZ                                                          Wild  Type  

Baseline 5 weeks old

UNA-AAT 13 weeks old

Saline 13 weeks old

UNA-Control 13 weeks old

0                            1                              2                              3                              4                                5                              6                                7                              8                              9                              10                          11                        12                      13  

end  

Week:  

Dose:  

21  

Preven-on  of  globule  forma-on  in  young  PiZ  mice  

p  <  0.0001  p  =  0.0015   p  <  0.0001  

22  

UNA-­‐AAT   UNA-­‐AAT   UNA-­‐AAT  

Pixel  ra-

o  

Preven-on  of  globule  forma-on  in  young  PiZ  mice  

0                            1                              2                              3                              4                                5                              6                                7                              8                              9                              10                          11                        12                      13  

end  

Week:  

Dose:  

23  

Preven-on  of  globule  forma-on  in  young  PiZ  mice  

0                            1                              2                              3                              4                                5                              6                                7                              8                              9                              10                          11                        12                      13  

end  

Week:  

Dose:  

Western  blot  

Saline                                                    UNA-­‐AAT  

Soluble

Insoluble

UNA-­‐AAT  

Z-AAT serum protein and mRNA reduction after a single ARC-AAT dose in older PiZ mice

24  

Single injection significantly reduces AAT mRNA and serum protein

S a line

C o n trol-U

N A

D a y 3

D a y 8

D a y 15

D a y 22

D a y 29

Re

lati

ve

hA

AT

mR

NA

Ex

pre

ss

ion

A A T -U N A

0%

25%

50%

75%

1 00 %

1 25 %

0 5 1 0 1 5 2 0 2 5 3 0D a y

Se

rum

Z-h

AA

T(n

orm

ali

zed

to

pre

-do

se

)

S a lin e

C o n tro l-U N A

A A T -U N A

0%

25%

50%

75%

100%

125%

150%

!  6  month  old  PiZ  mice  treated  with  a  single  dose  

UNA-­‐AAT  

UNA-­‐AAT  

Area covered by globules and globule size within the liver decreased after a single injection

Reduction of pre-existing globules after a single ARC-AAT dose in older PiZ mice

25  

!  6  month  old  PiZ  mice  treated  with  a  single  dose  

UNA-­‐AAT   UNA-­‐AAT  

ARC-­‐AAT:  Summary  

!  AATD is a large scale orphan disease affecting >100,000 individuals in the US and a larger number in Europe

!  Improved lung outcomes and resultant longer survival in adults is leading to a surge in recognized hepatic disease, including the emergence of HCC as an important issue

!  AATD-related liver disease has clinically severe manifestations in pediatric patients

!  AATD-related liver disease should be readily addressable by RNAi-based therapeutics

!  Injection of ARC-AAT in transgenic mice expressing human PiZ AAT demonstrates this approach clears Z-AAT globules that cause fibrosis and HCC

!  Injection of ARC-AAT in NHPs suggests once monthly dosing is sufficient to maintain 80 - 90% knockdown

26  

!  AATD is a large scale orphan disease affecting >100,000 individuals in the US and a larger number in Europe

!  Improved lung outcomes and resultant longer survival in adults is leading to a surge in recognized hepatic disease, including the emergence of HCC as an important issue

!  AATD-related liver disease has clinically severe manifestations in pediatric patients

!  AATD-related liver disease should be readily addressed by RNAi-based therapeutics

!  Injection of UNA-AAT in transgenic PiZ mice demonstrates this approach reduces the globules that lead to fibrosis and HCC

!  Injection of UNA-AAT in NHPs suggests once every six-week dosing is sufficient to maintain 80 - 90% knockdown

27  

ARC-­‐AAT:  Summary  

Acknowledgements

Christine Wooddell Qili Chu Holly Hamilton Darren Wakefield Lauren Almeida Julia Hegge Zhao Xu Jacob Griffin Anthony Perillo-Nicholas Jason Klein Vladimir Subbotin Guofeng Zhang Alex Sokoloff Ryan Peterson Aaron Anderson Christine Hazlett Edie Doss Timothy Choi

Saint Louis University Jeffrey Teckman, M.D. Keith Blomenkamp

David Rozema Dawn Christianson James Hamilton David Lewis

Arrowhead Research Corp.