robust fractional control · outline 1 fractional pid control tuning rules 2 h∞ optimal control a...

46
Università degli Studi di Brescia Dipartimento di Ingegneria dell’Informazione Robust Fractional Control An overview of the research activity carried on at the University of Brescia Fabrizio Padula and Antonio Visioli www.ing.unibs.it/fabrizio.padula www.ing.unibs.it/visioli {fabrizio.padula,anotnio.visioli}@unibs.it Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 1 / 46

Upload: others

Post on 26-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Università degli Studi di BresciaDipartimento di Ingegneria dell’Informazione

Robust Fractional ControlAn overview of the research activity carried on at the University of

Brescia

Fabrizio Padula and Antonio Visioli

www.ing.unibs.it/fabrizio.padula

www.ing.unibs.it/visioli

{fabrizio.padula,anotnio.visioli}@unibs.it

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 1 / 46

Page 2: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Fractional control for robust performance

Why Fractional Control?

extra degrees of freedom and capability of modeling a wider r ange of dynamics

PUSH AHEAD THE FUNDAMENTAL ROBUSTNESS/PERFORMANCE TRADE- OFF!

Warning!

The design is much more complex

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 2 / 46

Page 3: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Outline

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 3 / 46

Page 4: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Agenda

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 4 / 46

Page 5: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Fractional-order proportional-integral-derivative controller

Fractional-Order Proportional-Integral-Derivative (FOPID) controllers are the naturalgeneralization of standard PID controllers

FOPID controller

C(s) = KpTisλ + 1

Ti sλ(Tdsµ + 1)

λ and µ are the non integer orders of the integral and derivative terms

they have 5 parameters instead of three

they are more flexible: through the exponents a continuous regulations of theslope is possible...

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 5 / 46

Page 6: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

FOPID controller

10−5

100

105

0

50

100

mag

nitu

de [d

B]

frequency [Rad/s]

10−5

100

105

−100

0

100

200

phas

e [°

]

frequency [Rad/s]

λ

µ

µ

λ

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 6 / 46

Page 7: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Tuning rules: problem formulation

C r y e

P

d

Task

set-point step following

load disturbance step rejection

Dynamics

Integral Plus Dead Time (IPDT) process P(s) = Ks e−Ls

First-Order Plus Dead Time (FOPDT) process P(s) = KTs+1 e−Ls

Unstable First-Order Plus Dead Time (UFOPDT) process P(s) = K1−Ts e−Ls

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 7 / 46

Page 8: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Tuning rules: optimization function and constraints

In order to get optimal tuning rules the integrated absolute error (IAE) has beenminimized.

IAE =

0|e(t)|dt =

0|r(t)− y(t)|dt ,

Maximum Sensitivity Ms

Ms = maxω∈[0,+∞)

1|1 + C(s)P(s)|

Ms represents also the inverse of the minimum distance of the Nyquist plot from thecritical point

Ms = 1.4 robust tuning

Ms = 2.0 aggressive tuning

The optimization process has been numerically solved for different normalized deadtime L

TThe results have been interpolated to obtain general tuning rulesThe optimal IAE have been interpolated to obtain performance assessment rulesFor the sake of comparison tuning rules have been developed also for integer PIDcontrollers

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 8 / 46

Page 9: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Results for FOPDT

0 0.2 0.4 0.60

5

10

τ

IAE

incr

emen

t [%

]

0 0.2 0.4 0.60

5

10

15

20

25

τ

IAE

incr

emen

t [%

]

0 0.2 0.4 0.60

10

20

30

τ

IAE

incr

emen

t [%

]

0 0.2 0.4 0.60

20

40

60

τ

IAE

incr

emen

t [%

]

Top-left: set-point with Ms = 1.4. Top-right: set-point with Ms = 2.0. Bottom-left: loaddisturbance with Ms = 1.4. Bottom-right: load disturbance with Ms = 2.0.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 9 / 46

Page 10: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Results for IPDT and UFOPDT

IntegralMs 1.4 sp 2.0 sp 1.4 ld 2.0 ld∆IAE [%] 17.2 6.34 19.1 22.7

The optimization can be performed just once!

Unstable

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

45

L/T

∆ IA

E [

%]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

50

60

L/T

∆ IA

E [

%]

Left: set-point. Right: load disturbance

Fractional controllers always perform better than their in teger counterparts!Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 10 / 46

Page 11: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Selected publications

F. Padula and A. Visioli. Tuning rules for optimal PID and fractional-order PIDcontrollers. Journal of Process Control, 21(1):69-81, 2011.

F. Padula and A. Visioli. Optimal tuning rules for proportional-integral-derivativeand fractional-order proportional-integral-derivative controllers for integral andunstable processes. IET Control Theory and Applications, 6(6):776-786, 2012.

F. Padula and A. Visioli. Set-point weight tuning rules for fractional-order PIDcontrollers. Asian Journal of Control, 15(4):1-13, 2013.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 11 / 46

Page 12: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Agenda

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 12 / 46

Page 13: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

The standard H∞ control problem

Let C be the set of stabilizing controllers

Problem 1

minK∈C

‖Tzw‖∞

whereTzw = G11 + G12K (1 − G22K )−1G21

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 13 / 46

Page 14: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

A Model-matching problem

Theorem: Youla parametrization

The set C of all stabilizing controllers K is:

C =

{

X + MQY − NQ

: Q ∈ H∞

}

where P = MN−1 and M,N,X ,Y satisfy the Bezout identity NX + MY = 1

using the previous resultz = (T1 − QT2)w

Problem 2

Find Q ∈ H∞ such that the model-matching error ‖T1 − QT2‖∞ is minimized, whereboth T1 and T2 are in FRH∞

using inner-outer factorization

‖T1 − T2Q‖∞ = ‖R − X‖∞

whereR =∈ FRL∞, X =∈ H∞

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 14 / 46

Page 15: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Nehari’s theorem

There exists a closest H∞-matrix X to a given L∞-matrix R, and ‖R − X‖ = ‖ΓR‖,where ΓR is the Hankel operator with symbol R

R can be factorized as R = R1 + R2 with R1 ∈ RL∞ (integer!) unstable and analytic inthe left half plane (antistable) and R2 ∈ H∞ and it holds that ΓR = ΓR1

R1 is integer, thus ΓR has finite rank and can be computed by means of knowntechniquesIt can be shown that the optimal model-matching error is integer and real-rational...

...this is a Nevanlinna-Pick optimal interpolation problem!

Each RHP zero of T2 plays the role of an interpolation constraint to avoid internalinstability: Q ∈ H∞, no zero/pole cancelations in the RHP

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 15 / 46

Page 16: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

An optimal interpolation problem

Theorem

Consider the model-matching problem, the optimal model matching error is an all-passin RH∞ whose coefficients are completely determined by the interpolation constraints

Eo(zi) = T1(zi) i = 1, . . . , ndk Eo(s)

dsk

s=zi

= dk T1(s)dsk

s=zi

k = 1, . . . ,mi − 1; i = 1, . . . , n

being mi the multiplicity of the i th RHP zero of T2 and Eo the optimal model-matchingerror

The optimal interpolation error is integer and real-ration al!

The optimal Youla parameter Q is FRH∞

The optimal controller is a fractional real-rational funct ionFabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 16 / 46

Page 17: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Selected publications

F. Padula, S. Alcantara, R. Vilanova, and A. Visioli. H∞ control of fractional linearsystems. Automatica 49(17):2276-2280, 2013.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 17 / 46

Page 18: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Agenda

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 18 / 46

Page 19: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Weighted model-matching problem

a) feedback configuration, b) IMC configuration

Using the IMC controllerC(s) the closed looptransfer function has a verysimple expression:

T (s) = Gn(s)C(s)

the equivalent feedbackcontroller can be easilyrecovered by means of:

K (s) =C(s)

1 − C(s)Gn(s)

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 19 / 46

Page 20: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Weighted model-matching problem

By means of the IMC controller we can set up a weighted model-matching problem:

Co(s) := minC(s)

‖W (s)(M(s) − C(s)Gn(s))‖∞

Find C(s) such as the ∞-norm of the weighted difference between the nominalclosed-loop transfer function and the desired closed-loop transfer function isminimized

The role of the weighting function is of main concern: it allows the user to give moreimportance to certain frequency ranges (typically low frequencies) and less importanceto other frequency ranges (typically high frequency).

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 20 / 46

Page 21: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Weighted model-matching problem

10−4

10−2

100

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

ω

target plantnominal closed−loop plantweighting function

nominal closed-loop frequency response(red), target frequency response (green),

weighting function (blue)

10−4

10−2

100

102

104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ω

model-matching error

The model mismatch is bigger at those frequencies where the weighting function issmaller

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 21 / 46

Page 22: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Weighted model-matching problem

The functions involved in the model-matching problem are chosen as follows:1 Process model:

Gnt (s) =K

1 + Tsαe−Ls

2 Nominal process transfer function

Gn(s) = K1 − Ls

1 + Tsα

3 Target closed-loop transfer function

M(s) =1

1 + Tmsλ

4 Weighting function

W (s) =1 + zsµ

where Tm, λ, z and µ are parameters to be selected

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 22 / 46

Page 23: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Suboptimal FOPID controller

the equivalent feedback controller is

K o(s) =1K

1 + Tsα

ρ

γsµ + Tmsλ + Tm(z + ρ

γ)sλ+µ

× (1 +ρTm

γLµsµ)

(

1 +−∑n−1

k=m Lkn s

kn +

∑m−1k=n L

kn s

kn

∑n−1k=0 L

kn s

kn

)

it has the same low-frequency behavior of a filtered FOPID controller, neglecting thelast term (that for low frequencies tends to one) a suboptimal controller is obtained:

K (s) =1

K ( ρ

γ+ Tm)

(1 + Tsα)(1 + TmLµ+z

Lµ+Tmsµ)

sµ(1 + Tm

ρ

γ+z

ρ

γ+Tm

sµ)

It is a filtered FOPID controller in series form

When µ = 1, K (s) = K o(s)

In any case the suboptimal controller stabilizes the nominal system!

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 23 / 46

Page 24: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Robust stability

Assume that the process belongs to a family F defined as:

F = {G(s) = Gnt (s)(1 +∆m(s)) : |∆m(jω)| < |Γ(jω)|}

∆m(s) = (G(s)− Gnt (s))/Gnt (s) is the uncertainty description

Γ(jω) is a frequency dependent function that upper bounds the system uncertainty.

Robust stability condition:‖Γ(s)Tn(s)‖∞ < 1

where Tn(s) is the nominal closed-loop transfer function.Sufficient condition:

|Tn(jω)| < |1/Γ(jω)|

The right hand side of this inequality is usually a low-pass transfer function. It definesa robust stability boundary.

Based on robustness and desired bandwidth tuning guidelines have been provided.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 24 / 46

Page 25: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Example

G(s) =1

s2 + 0.4s + 1e−0.6s

Gnt ,F (s) =1

1.05s1.702 + 1e−0.74s Gnt ,I(s) =

10.566s + 1

e−0.9s

10−1

100

101

−30

−20

−10

0

10

20

30

40

ω

mag

nitu

de [d

B]

Tm has been fixed to 1.5 (µ = 1)

In the fractional case z can be reduced to 0 preserving robust stability. The selection ofz can be done just to speed up or slow down the system response

In the integer case it is necessary to set z = 10 to achieve robust stabilityFabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 25 / 46

Page 26: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Example

Step responses

0 10 20 30 40 500

0.5

1

1.5

time

proc

ess

varia

ble

0 10 20 30 40 500

0.5

1

1.5

time

cont

rol v

aria

ble

Step-responses with Tm = 1.5L and µ = 1: integer model (dotted line z = 10) and thefractional model for different values of z (dash-dot line z = 10, dashed line z = 1 and

solid line z = 0.1)

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 26 / 46

Page 27: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Selected publications

F. Padula, R. Vilanova, and A. Visioli. H∞ optimization based fractional-order PIDcontrollers design. International journal of Robust and Nonlinear Control (in press,available online).

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 27 / 46

Page 28: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Agenda

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 28 / 46

Page 29: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Command signal design

where G(s) = G(s)e−Ls and T (s) = K (s)G(s)1+K (s)G(s)

Find a command signal such that a smooth transition of the output between 0 and 1 isobtained within in finite amount of time τ satisfying a set of constraints on the controlvariable and its derivatives

Given a sufficiently smooth desired output y(·; τ ) find the command signal r(·; τ ) suchthat, for the τ−parameterized couple r(·; τ ), y(·; τ ), it holds that

L[y(t − L; τ )] = T (s)L[r(t ; τ ))]

Moreover, satisfy|Di u(t ; τ )| < u i

M , ∀t > 0, i = 0, 1, . . . , l

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 29 / 46

Page 30: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Desired output

Desired output, τ -parameterized transition polynomial y(t ; τ ) ∈ C(n)

y(t ; τ ) :=

0 if t < 0(2n+1)!n!τ2n+1

∑nr=0

(−1)n−rτ r t2n−r+1

r !(n−r )!(2n−r+1) if 0 ≤ t ≤ τ

1 if t > τ

smooth, through the parameter n the regularity of the transition polynomial can bearbitrarily selected;

monotonic;

finite time transition.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 30 / 46

Page 31: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Dynamic inversion

Consider the transfer function H(s) of Σ:

H(s) =b(s)a(s)

=

∑mk=0 bkskν

spν +∑p−1

k=0 ak skν

where ν is the commensurate order.

ρ = (p − m)ν the relative order of Σ.

Define the set of all the cause/effect pairs associated with Σ:

B :={

(u(·), y(·)) ∈ Pc × Pc :∑m

k=0 bk Dkνu = Dpνy +∑p−1

k=0 akDkνy}

Consider the system H(s), given the desired transition polynomial (i.e, C(k) for somek ∈ N) y(t ; τ ), find the input u(t ; τ ) such as the τ−parameterized couple(u(·; τ ), y(·; τ )) ∈ B, y(0; τ ) = 0 and y(t ; τ ) = 1 ∀t ≥ τ ,moreover satisfy

|Diu(t ; τ∗)| < u iM , ∀t > 0 i = 0, 1, . . . , l

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 31 / 46

Page 32: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Dynamic inversion

Using Laplace transform, the inversion is algebraic in the frequency domain:

U(s; τ ) = H−1(s)Y (s; τ )

Σ is assumed to be commensurate here thus the following techniques apply:Polynomial divisionPartial fraction expansion

and the inverse system can be decomposed as follows

H−1(s) = γn−msρ + γn−m−1sρ−ν + · · ·+ γ1sν + γ0 + H0(s)

H0(s), zero dynamics of Σ, strictly proper

H0(s) =m∑

i=1

gi

(sν − λi)ki+1

Inverse transforming...

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 32 / 46

Page 33: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Dynamic inversion

...the zero dynamics is the summation of Mittag-Leffler functions

η0(t) =m∑

i=1

gi

ki !εki (t , λi ; ν, ν) =

m∑

i=1

gi

ki !tkiν+ν−1 dk

i

d(λi tν)kiEν,ν(λtν)

Proposition

If n > [ρ] + 1 + l , for τ sufficiently large then

u(t ; τ ) = γn−mDρy(t ; τ ) + γn−m−1Dρ−ν y(t ; τ ) + · · ·

+γ1Dν y(t ; τ ) + γ0y(t ; τ ) +∫ t

0 η0(t − ξ)y(ξ; τ )dξ

The convolution integral becomes∫ t

0 η0(t − ξ)y(ξ; τ )dξ =∑m

i=1giki !

[

(2n+1)!n!τ2n+1

∑nr=0

(−1)n−rτ r

r !(n−r )!(2n−r+1)(2n − r + 1)!

× [εki (t , λi ; ν, 2n − r + 2 + ν)

0 if 0 ≤ t ≤ τ∑2n−r+1

j=0

(

2n − r + 1j

)

(2n − r + 1 − j)!τ j

×εki (t − τ, λi ; ν,2n − r + 2 − j + ν) if t > τ

+

{

0 if 0 ≤ t ≤ τεki (t − τ, λi ; ν, 1 + ν) if t > τ

]

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 33 / 46

Page 34: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Command signal synthesis, again

The open loop system is first inverted obtaining rol(t ; τ ) via dynamic inversion of thedelay-free open loop transfer function

K (s)G(s)

a delayed correction term is then added to avoid the delayed feedback effect

rc(t ; τ ) = y(t − L; τ )

finally, the command signal is computed

r(t ; τ ) = rol(t ; τ ) + rc(t ; τ )

under the existence conditionn ≥ [ρG] + 1 + l

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 34 / 46

Page 35: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Selected publications

F. Padula and A. Visioli. Inversion-based feedforward and reference signal design forfractional constrained control systems. Automatica. 50(8):2169-2178, 2014.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 35 / 46

Page 36: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Agenda

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 36 / 46

Page 37: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Problem formulation

So far we have introduced two results:

robust controller design

command signal synthesis

now we want to put the previous results together.Consider the family of plants

F =

{

G(s) =K

T sλ + 1e−Ls : K ∈ [Kmin,Kmax ],

T ∈ [Tmin,Tmax ], λ ∈ [λmin, λmax ], L ∈ [Lmin, Lmax ]}

and the nominal system

G(s) =K

Tsλ + 1e−Ls

whose parameters are the mean values of the corresponding uncertainty intervals

Define extremal system Gi(s) i = 1, . . . , 16 for the family F each system obtained withany possible combination of the extremal values of the uncertainty intervals.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 37 / 46

Page 38: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Problem formulation

Given a unity feedback loop

We want to design a controller K (s) and a command signal r(t) to satisfy:

robustness

control variable limitation

overshoot limitation

settling time minimization

for the whole family of plants F

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 38 / 46

Page 39: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Optimal feedback/feedforward control

define the worst-case settling time (at a given percentage)

ts,wc(τ,Tm, z) := maxi=1,...,16

ts,i(τ,Tm, z),

{τ,Tm, z} is a set of tuning parameter

Min-max problem

minτ,Tm,z

ts,wc(τ,Tm, z)

subject to1 (Robust stability) ‖Γ(s)Tn(s)‖∞ < 1;2 (Maximum overshoot) max yi(t ; τ,Tm, z) < yf (1 + Omax ), i = 1, . . . , 16;3 (Maximum control variable) max |ui(t ; τ,Tm, z)| < Umax , i = i , . . . , 16;

where (ui(·), yi(·)) is the input-output couple for the i th extremal system, yf is theset-point value, Omax > is the maximum allowable overshoot and Umax > 0 themaximum acceptable control variable.

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 39 / 46

Page 40: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Optimal feedback/feedforward control

only a constraints on the control variable is imposed (l = 0)the existence condition for both control signal and command signal reduces to

n ≥ [ρKG] + 1

moreover it can be shown

Lemma

There always exists a couple of parameters Tm, z such that the optimal controller K o(s)stabilizes the family F provided that the parametric uncertainty over the processdc-gain K is lower than 1, i.e.,

Kmax − KK

< 1

TheoremThe min-max problem is solvable provided that

Kmax − KK

< 1

andUmax >

yf

Gi(0), i = 1, . . . , 16

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 40 / 46

Page 41: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Simulation results

G(s) =1

s1.5 + 1e−s

1 uncertainty of ±10% over the plant’s parameters2 settling time at 2%3 unitary set-point value yf = 14 maximum control variable of Umax = 1.55 maximum overshoot of Omax = 0.2

Solving procedure

Numerically compute the robust stability boundary by gridding the processuncertainty

Obtain Γ(jω) by upper bounding the computed uncertainties for each frequency

Select β = max[1, λ] = 1.5 and a transition polynomial with regularity n = 3 tosatisfy the existence condition

Numerically (genetic algorithm) solve the min-max problem

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 41 / 46

Page 42: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Example

10−2

10−1

100

101

102

−40

−30

−20

−10

0

10

20

mag

nitu

de [d

B]

frequency

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

time

0 2 4 6 8 10 12 14 160

0.5

1

time

proc

ess

varia

ble

0 2 4 6 8 10 12 14 160

0.5

1

time

cont

rol v

aria

ble

The obtained optimalparameters areTm = 3.5469, z = 3.4155and τ = 6.3122

the optimal worst-casesettling time is ts,wc = 13.42

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 42 / 46

Page 43: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Simulation results

Results optimizing the settling time but using a step comman d signal...

10−2

10−1

100

101

102

−20

−15

−10

−5

0

5

10

15

20

frequency

mag

nitu

de [d

B]

0 2 4 6 8 10 12 14 160

0.5

1

time

proc

ess

varia

ble

0 2 4 6 8 10 12 14 160.4

0.6

0.8

1

time

proc

ess

varia

ble

The obtained optimal parameters are Tm = 4.8747, z = 5.6705 and τ = 9.7502

the optimal worst-case settling time is ts,wc = 18.11

...the combined feedback/feedforward optimization perfo rmance improvementsis 26 % !

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 43 / 46

Page 44: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Agenda

1 Fractional PID controlTuning rules

2 H∞ Optimal ControlA model-matching problem

3 H∞ Model-matching controller designOptimal ControllerRobust stability

4 Dynamic inversion of fractional systemsCommand signal design

5 Optimal feedback/feedforward controlCombined feedback/feedforward design

6 Conclusions

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 44 / 46

Page 45: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Conclusions: ROBUST PERMFORMANCE

a complete set of constrained optimal time-scale invariant tuning rules for PID andFOPID controllers, for stable unstable and integral processes

the solution of the scalar standard H∞ control problem for fractional SISO LTIsystems

an H∞ model-matching robust design methodology suitable for both monotonicand nonmonotonic dynamics

the solution of a constrained optimal input-output dynamic inversion problem forfractional LTI systems

an inversion-based feedforward signal design for fractional control loops

a combined feedback/feedforward control design technique to cope withuncertainty in an effective way

...

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 45 / 46

Page 46: Robust Fractional Control · Outline 1 Fractional PID control Tuning rules 2 H∞ Optimal Control A model-matching problem 3 H∞ Model-matching controller design Optimal Controller

Fabrizio Padula (University of Brescia) Robust Fractional Control Cape Town, 23/8/2014 46 / 46