rohleder presentation

135
Segmental Bridge Technology – Established and Evolving W. Jay Rohleder, Jr, P.E., S.E. Senior Vice President / Project Development FIGG 1

Upload: mcwong98

Post on 24-Oct-2014

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rohleder Presentation

Segmental Bridge Technology –Established and Evolving

W. Jay Rohleder, Jr, P.E., S.E. Senior Vice President / Project Development

FIGG

1

Page 2: Rohleder Presentation

Segmental Bridge Topics Addressed

• Definition of concrete segmental bridge construction methods and related design considerations.

• The evolution of concrete segmental bridge technology over the past 30 years in the U.S.

• Design principles and practices that provide the economic and durability value for this structure type.

• Continuing evolution of the segmental bridge construction technology and related design concepts.

2

Page 3: Rohleder Presentation

Definition of Segmental BridgesBridges, that are typically concrete box structure types, constructed using repetitive elements that are progressively connected together to form a completed structure. Construction Load Cases are particularly critical considerations in developing the design and building methods for segmental bridges.

3

Page 4: Rohleder Presentation

CABLE STAYED BRIDGESCABLE STAYED BRIDGES

LONG SPAN BRIDGESLONG SPAN BRIDGES ENVIRONMENTALLY SENSITIVEENVIRONMENTALLY SENSITIVE

LONG BRIDGES OVER WATERLONG BRIDGES OVER WATER ARCHESARCHES

URBAN BRIDGESURBAN BRIDGES

SEGMENTAL BRIDGE APPLICATIONS

RAIL BRIDGESRAIL BRIDGES

4

Page 5: Rohleder Presentation

Segmental Bridge Methods, Components and Evolution

of the Technique

5

Page 6: Rohleder Presentation

Segmental Construction Methods• SPAN-by-SPAN (Precast)

• CANTILEVER (Precast or Cast-in-Place)> Balanced> Uni-Directional

• INCREMENTAL LAUNCH(Typically an Inefficient use of materials,

so Not commonly used –need tangent or constant curvature)

6

Page 7: Rohleder Presentation

Segmental Construction Methods• Span by Span

JFK AirTrain, NY City

7

Page 8: Rohleder Presentation

• Balanced Cantilever

Sagadahoc Bridge, ME

Segmental Construction Methods

8

Page 9: Rohleder Presentation

• Uni-Directional Cantilever (shown)• Mixed Methods

Garcon Point Bridge, FL

Segmental Construction Methods

9

Page 10: Rohleder Presentation

Precast Joints

• Keys (i.e. no reinforcing across joints)• Epoxy

– Temporary Clamping– Temperature

10

Page 11: Rohleder Presentation

• Reinforcing Bars• Joint Preparation• Bulkheads

Cast-in-Place Joints

11

Page 12: Rohleder Presentation

Post-Tensioning (PT) Arrangements

Layout Orientation• Longitudinal

– Span by Span– Cantilever

• Transverse• Vertical

Placement Type• Internal Tendons• External Tendons

12

Page 13: Rohleder Presentation

• Internal Tendons– Transverse– Longitudinal

(Cantilever)

Post-Tensioning (PT) Arrangements

13

Page 14: Rohleder Presentation

Post-Tensioning

Pre-Tensioning

Internal Transverse Pre-Stressing

14

Page 15: Rohleder Presentation

• External Tendons, LongitudinalSingle Point Deviators

Post-Tensioning (PT) Arrangements

15

Page 16: Rohleder Presentation

• External Tendons, LongitudinalMulti-Point Deviators

Post-Tensioning (PT) Arrangements

16

Page 17: Rohleder Presentation

Post-Tensioning (PT) Arrangements

• Vertical Tendons(in Precast Piers)

17

Page 18: Rohleder Presentation

Construction Engineering• Camber• Geometry Control• Prestressing Parameters• Erection Loads• Erection Equipment• Casting and Erection Manuals• Integrated Shop Drawings

18

Page 19: Rohleder Presentation

Precasting Yard Operations

• Pre-Tied Reinforcing Cage Jigs• Casting Beds

> Long Line> Short Line

• Storage & Delivery

19

Page 20: Rohleder Presentation

• Long Line Segment Casting

20

Page 21: Rohleder Presentation

• Short Line Segment Casting

21

Page 22: Rohleder Presentation

TYPICAL CASTING YARD LAYOUT

Batch Plant

Segment Storage

Rebar Jigs

Casting Beds

Segments in Storage

Possible Double Stack

22

Page 23: Rohleder Presentation

JFK AirTrain, NY, NY

9 Miles of Elevated Precast Segmental Bridge

23

Page 24: Rohleder Presentation

• 5,500 Segments• 14 Casting Cells

Precasting Facility - JFK AirTrain

24

Page 25: Rohleder Presentation

Precasting Facility - JFK AirTrain

25

Page 26: Rohleder Presentation

Segment DeliveryPrecasting Facility - JFK AirTrain

26

Page 27: Rohleder Presentation

I-93 Viaducts & Ramps, Boston, MA

27

Page 28: Rohleder Presentation

Precast plant 85 miles away by truckPrecasting Facility – I-93 Viaducts, Boston

85 Mile

s

28

Page 29: Rohleder Presentation

• 15 Acres• 1250 Segments• Casting Cells

4 Typ., 1 Combined

Precast plant in Sanford, MEPrecasting Facility – I-93 Viaducts, Boston

29

Page 30: Rohleder Presentation

Central concrete delivery - casting 3 beds / dayPrecasting Facility – I-93 Viaducts, Boston

30

Page 31: Rohleder Presentation

• 1040 – Total Segments(958 Typical, 82 Specialty)

• 3 - Typical Casting Cells• 1 - Specialty Casting Cell

Precasting Facility – Susquahanna River, PA.

31

Page 32: Rohleder Presentation

Susquehanna River Bridge, PA

• Assembly Line – Reinforcing Cage Jig

32

Page 33: Rohleder Presentation

• Assembly Line – Casting Bed Set-Up

Susquehanna River Bridge, PA

33

Page 34: Rohleder Presentation

Match CastSegment

Wet CastSegment

34

Page 35: Rohleder Presentation

• Assembly Line – Segment Pour

35

Page 36: Rohleder Presentation

• Assembly Line – Steam Cured Segments

Susquehanna River Bridge, PA

36

Page 37: Rohleder Presentation

• Segment Storage Handling,Lifting with Strap under Wing

Susquehanna River Bridge, PA

37

Page 38: Rohleder Presentation

• Segment Handling

Lifting with Bars through Lifting Holes

38

Page 39: Rohleder Presentation

1

2

3

• Segment Storage

Three Point Supports

39

Page 40: Rohleder Presentation

• Segment Storage

Double Stacking

40

Page 41: Rohleder Presentation

PRECAST SUPERSTRUCTUREComparison Table

Project: Susq. I-93 JFK Victory Sagadahoc(Pa.) (Ma.) (NY) (NJ) (Maine)

No. Segments - 1040 1250 5409 927 202 Max. Wt. (Tons) - 105 80 38 82 100 No. Typical Beds - 3 4 11 8 1 Casting Yard Size - 20 A 15 A N/A N/A 12 A

Cast 1 Segment / Day / Bed

41

Page 42: Rohleder Presentation

Precast SegmentalSpan-by-Span Construction

42

Page 43: Rohleder Presentation

SECTION A-AA

A

Typical Span-by-Span Erection

43

Page 44: Rohleder Presentation

•Advance Truss to Next Span

Typical Span-by-Span Erection

44

Page 45: Rohleder Presentation

•Deliver Segments•Set Segments

Typical Span-by-Span Erection

45

Page 46: Rohleder Presentation

•Deliver Segments•Set Segments

Typical Span-by-Span Erection

46

Page 47: Rohleder Presentation

•Epoxy Joints•Join Segments

•Deliver Segments•Set Segments

Typical Span-by-Span Erection

47

Page 48: Rohleder Presentation

•Epoxy Joints•Align Pier Segm.

•Deliver Segments•Set Segments

Typical Span-by-Span Erection

48

Page 49: Rohleder Presentation

•Align Pier Segm.•Thread Tendons•Cast Closure

•Deliver Segments•Set Segments•Epoxy Joints

Typical Span-by-Span Erection

49

Page 50: Rohleder Presentation

•Stress Tendons•Lower Truss andRepeat Process

SECTION A-AA

A

Typical Span-by-Span Erection

50

Page 51: Rohleder Presentation

- Underslung Trusses- Overhead Gantry- Falsework Supports

Precast Span-by-SpanSegments Erected using:

51

Page 52: Rohleder Presentation

ERECTION TRUSSES – Under Bottom Soffit

52

Page 53: Rohleder Presentation

Deck Designed for Support ConditionERECTION TRUSSES – Under Wings

53

Page 54: Rohleder Presentation

ERECTION with OVERHEAD GANTRY

54

Page 55: Rohleder Presentation

• Tower on FoundationERECTION TRUSS SUPPORTS

55

Page 56: Rohleder Presentation

• Pier BracketERECTION TRUSS SUPPORTS

56

Page 57: Rohleder Presentation

Delivery of Segments from AboveSpecialized Erection Equipment

WMATA, VA

57

Page 58: Rohleder Presentation

SPAN-BY-SPAN CONSTRUCTION EXAMPLEMay 2007

Susquehanna River Bridge, PA

58

Page 59: Rohleder Presentation

Casting Yard

Pennsylvania Turnpike

Commission

Bridge –East Approach

Susquehanna River Bridge, PA

59

Page 60: Rohleder Presentation

West EndCalverIslandEast End

Casting Yard

New WB

New EB

Existing Bridge

Twin Bridges with each:• 5,910’ Long by 57’ Wide• 40 Spans – 35 @ 150’, 5 @ 132’• 21 River Piers• 18 Land Piers

Susquehanna River Bridge, PA

60

Page 61: Rohleder Presentation

ONE

THREE

TWO

ERECTION PHASES

Susquehanna River Bridge, PA

61

Page 62: Rohleder Presentation

Casting YardCasting Yard

Segment Segment ErectionErection

Access RoadAccess Road

Susquehanna River Bridge, PA

62

Page 63: Rohleder Presentation

Susquehanna River Bridge, PA

Segments Delivered from Storage

63

Page 64: Rohleder Presentation

Segments Delivered from Above

Susquehanna River Bridge, PA

64

Page 65: Rohleder Presentation

Susquehanna River Bridge, PA

65

Page 66: Rohleder Presentation

Susquehanna River Bridge, PA

66

Page 67: Rohleder Presentation

Susquehanna River Bridge, PA

67

Page 68: Rohleder Presentation

Susquehanna River Bridge, PA

Segment Alignment

68

Page 69: Rohleder Presentation

Susquehanna River Bridge, PA

69

Page 70: Rohleder Presentation

Susquehanna River Bridge, PA

70

Page 71: Rohleder Presentation

Susquehanna River Bridge, PA

ELEVATION

SECTION VIEWS

71

Page 72: Rohleder Presentation

Susquehanna River Bridge, PA

72

Page 73: Rohleder Presentation

Susquehanna River Bridge, PA

Activities Off the Critical Path

73

Page 74: Rohleder Presentation

Achieved Typical Span x Span

Erection Rate of 2 Spans per Week

Susquehanna River Bridge, PA

74

Page 75: Rohleder Presentation

VERTICAL CLEARANCES

RAILROAD LINESLOCAL AIRPORT

Susquehanna River Bridge, PA

75

Page 76: Rohleder Presentation

November 2004 - NTPMay 2007 - New Bridge Complete

Susquehanna River Bridge, PA

76

Page 77: Rohleder Presentation

• Quick, Simple Erection (2 - 3 Spans / Week)• Easy Geometry Control• Savings from less MOT• Minimum User Delays• Cost Effective• Simple Design• Durable Structures

ADVANTAGES OF SPAN-BY-SPAN

Beautiful Bridges

77

Page 78: Rohleder Presentation

Precast SegmentalBalanced Cantilever Construction

78

Page 79: Rohleder Presentation

Balanced Cantilever Erection

ERECTION SEQUENCE I

79

Page 80: Rohleder Presentation

Balanced Cantilever Erection

ERECTION SEQUENCE II

80

Page 81: Rohleder Presentation

ERECTION SEQUENCE IV

ERECTION SEQUENCE III

Balanced Cantilever Erection

81

Page 82: Rohleder Presentation

- Barge-mounted cranes- Ground based cranes- Beam and Winch- Overhead Gantry

Precast Balanced Cantilever Segments Erected using:

82

Page 83: Rohleder Presentation

BALANCED CANTILEVER EXAMPLE

September 2007

Victory Bridge, NJ

• Twin 3,971’ Long Bridges• Main Span Unit 330’, 440’, 330’• 100’ Tall Precast Piers• SxS Appr., B.C. Main Span Unit

83

Page 84: Rohleder Presentation

Victory Bridge, NJ

84

Page 85: Rohleder Presentation

Victory Bridge, NJ

85

Page 86: Rohleder Presentation

Victory Bridge, NJ

86

Page 87: Rohleder Presentation

Victory Bridge, NJ

87

Page 88: Rohleder Presentation

Victory Bridge, NJ

88

Page 89: Rohleder Presentation

Victory Bridge, NJ

89

Page 90: Rohleder Presentation

Victory Bridge, NJ

90

Page 91: Rohleder Presentation

Average production:4 to 6 segments/day (45 ft)

Balanced Cantilever Erection

Victory Bridge, NJ

91

Page 92: Rohleder Presentation

Victory Bridge, NJ

1st Bridge Open to Traffic in 15 mo.2nd Bridge Completed in 9 mo.

92

Page 93: Rohleder Presentation

Cast-in-Place SegmentalBalanced Cantilever Construction

93

Page 94: Rohleder Presentation

Wabasha Street Bridge, MN

1,248’ Long Twin Bridgeswith 398’ Main Spans

94

Page 95: Rohleder Presentation

Wabasha Street Bridge, MN

95

Page 96: Rohleder Presentation

Wabasha Street Bridge, MN

Continue through the Winter

96

Page 97: Rohleder Presentation

Blending shapes, texture and color Wabasha Street Bridge, MN

97

Page 98: Rohleder Presentation

Segmental BridgesMixing Construction Erection

Methods

98

Page 99: Rohleder Presentation

Sagadahoc Bridge, ME

3,000’ Bridge with420’ Main Span

over Kennebec River

99

Page 100: Rohleder Presentation

68’ Roadway with2 Cell Box Girder

Cast-in-Place Approach Units, with Precast

Main Span Unit Sagadahoc Bridge, ME

100

Page 101: Rohleder Presentation

520,000 sf of Structures - Completed Nov. 2002

I-93 Ramps & Viaducts, Boston MA

101

Page 102: Rohleder Presentation

I-93 Ramps & Viaducts, Boston MA

Span-by-Span Construction

102

Page 103: Rohleder Presentation

I-93 Ramps & Viaducts, Boston MA

Balanced Cantilever Construction

103

Page 104: Rohleder Presentation

Mid-Bay Bridge, FL

• Span-by-Span Approaches• One-Directional Cantilever Main Span

CIP low level piers

P/C high level piers

104

Page 105: Rohleder Presentation

Precast Segmental Piers

105

Page 106: Rohleder Presentation

Precast Piers

Directionof Erection

Erect 1 Segment an Hour,Approximately 1 Pier per Day

106

Page 107: Rohleder Presentation

Victory Bridge, NJ

107

Page 108: Rohleder Presentation

First segment cast6 weeks after NTP

Precast Piers

Victory Bridge, NJ

108

Page 109: Rohleder Presentation

Precast Piers Casting Bed

Victory Bridge, NJ

109

Page 110: Rohleder Presentation

Typical Precast Pier Details

110

Page 111: Rohleder Presentation

Precast Pier Erection

Victory Bridge, NJ

111

Page 112: Rohleder Presentation

Precast Pier Erection

Victory Bridge, NJ

112

Page 113: Rohleder Presentation

Precast Pier Erection

Victory Bridge, NJ

113

Page 114: Rohleder Presentation

Precast Pier Erection

Victory Bridge, NJ

114

Page 115: Rohleder Presentation

Precast Pier Erection

Victory Bridge, NJ

115

Page 116: Rohleder Presentation

Precast Pier Erection

Victory Bridge, NJ

116

Page 117: Rohleder Presentation

First pier erected5 months after NTP

Completed Precast Piers

Victory Bridge, NJ

117

Page 118: Rohleder Presentation

Cable StayedSegmental Superstructure

118

Page 119: Rohleder Presentation

U.S. Senator William V. Roth Jr. Bridge over C&D Canal, DE

1st concrete cable-stayed bridge in the Northeast – 1995

119

Page 120: Rohleder Presentation

Entirely Precast Segmental Bridge

U.S. Senator William V. Roth Jr. Bridge over C&D Canal, DE

120

Page 121: Rohleder Presentation

Segmental Cable-Stay BridgesI-280 Veterans’ Glass City Skyway, Ohio

1,225’ main span (2 @ 612’-6”)

Penobscot Narrows Bridge& Observatory, Maine (1,161’ main span)

Open Dec. 2006

Open June 2007

121

Page 122: Rohleder Presentation

Veterans’ Glass City SkywayPrecast SuperstructureCompleted in 8 Months

New Penobscot Narrows BridgeCast-in-Place SuperstructureCompleted in 15 Months

122

Page 123: Rohleder Presentation

Penobscot Narrows Bridge & Observatory, ME

123

Page 124: Rohleder Presentation

CIP Balanced Cantilever Construction

FormTraveler

FormTraveler

Penobscot Narrows Bridge & Observatory, ME

124

Page 125: Rohleder Presentation

Penobscot Narrows Bridge & Observatory, ME

125

Page 126: Rohleder Presentation

Penobscot Narrows Bridge & Observatory, ME

126

Page 127: Rohleder Presentation

Carbon Fiber Composite Strand Demonstration Project

Penobscot Narrows Bridge & Observatory, ME

127

Page 128: Rohleder Presentation

Veteran’s Glass City Skyway, Ohio

Veteran’s Glass City Skyway, OH

128

Page 129: Rohleder Presentation

Typical Pre-Cast Cross-Sections: Main SpanVeteran’s Glass City Skyway, OH

129

Page 130: Rohleder Presentation

Main Span Precast Segmental Construction

• Backspans: Span-by Span• Mainspan: One-Directional Cantilever

Veteran’s Glass City Skyway, OH

130

Page 131: Rohleder Presentation

• 3 pairs of segmentserected in cantilever– Epoxied segment joints– Segments post-tensioned

Veteran’s Glass City Skyway, OH

131

Page 132: Rohleder Presentation

Segmental Bridge Construction Benefits• Rapid Construction• Segments Delivered over Completed Spans

– No Need for Barge Delivery• Maintained Shipping Lanes at All Times

– Access to Port of Toledo

Veteran’s Glass City Skyway, OH

132

Page 133: Rohleder Presentation

Review Questions• Define a segmental concrete bridge structure type?• List 3 methods for constructing segmental bridges? • List benefits during construction that result from

using a segmental bridge construction technique?• List permanent bridge site layout benefits resulting

from using a segmental box girder bridge type?• What structural benefits apply to using a closed cell

box girder for a segmental bridge?• What segmental bridge technological advances offer

the most immediate benefits?

133

Page 134: Rohleder Presentation

Open-ended Assignment Questions

Can you identify a viable candidate location for a segmental bridge given your understanding of the potential benefits from using this structure type?

What new innovative applications of the segmental bridge construction technique can you envision?

134

Page 135: Rohleder Presentation

America Deserves Beautiful

Bridges

135