roof our prject

Upload: hundeejireenya

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Roof Our Prject

    1/33

    ROOF DESIGN

    1. ROOF LOADING

    1.1 LIVE LOAD

    ROOF CATEGORY (EBCS-1, 1995 TABLE 2.13)

    Roof not accessible except for normal maintenance, repair, painting

    &minor repairs are under category H.

    Imposed load on roof for slope category H

    Roof is qk=0.25 KN/m2

    Qk= 1KN

    1.2 WIND LOAD

    A. DETERMINATION OF EXTERNAL WIND PRESSURE (We)

    The wind pressure acting on external surface of a structure.

    We, shall be obtained from

    ( ) peeeref CzCqWe = ---------------------EBCS-1, 1995 Eqn 3.1

    Where qref = reference mean wind velocity pressure derived from

    reference wind velocity.

    Ce = exposure coefficient accounting for the terrain & height above

    the ground up to a height z.

    (Ze) = reference height for the relevant pressure coefficient.

    B. DETERMINATION OF REFERENCE WIND PRESSURE (qref)

    refref vq2

    2

    = EBCS-1, 1995 sec. 3.7.1

    Where:

    1. r=air density (kg/m3) considering altitude of the place above

    mean sea level

    Addis Ababa is found above sea level of 2000m

    r = 0.94 kg/m3 EBCS-1,1995 table 3.1

    2. refv = reference wind velocity

    refv = CDIRCTEMCALT refv , 0 ..EBCS-1, 1995 sec. 3.7.2(2)

    Mean return period 50 years..EBCS-1,1995 sec. 3.7.2(1)

  • 7/30/2019 Roof Our Prject

    2/33

    Where

    CDIR =is the direction factor taken as 1

    CTEM = is the temporary (seasonal) factor to be taken as 1

    CALT = is the altitude factor to be taken as 1

    refv , 0 = is the basic value of reference wind velocity to be

    taken as 22m/s.

    refv = CDIRCTEMCALT refv ,0 EBCS-1,1995- eqn. 3.7

    =1*1*1*22m/se

    =22m/se

    Reference wind pressure ( refq )

    refref vq2

    2

    =

    22*2

    94.0=refq 2 =227.48

    C. DETERMINATION OF EXPOSSURE COEFFICIENT, Ce (z).

    The exposure coefficient taken in to account, (Ce, z). The effect of

    Terrain roughness

    Topography and

    Height above ground on the mean wind speed and turbulence

    ..EBCS-1, 1995 sec.3.8.5 (1)

    For codification purpose it has been assumed that the quasi-static

    gust load is determined from. EBCS-1, 1995 sec. 3.8.5(2)

    ( ) ( ) ( )( ) ( )

    +=

    zCzC

    kzCzCzC

    tr

    Ttre

    71

    22

    .EBCS-1, 1995 eqn.3.15

    Where:

    kT = is the terrain factor defined as (for terrain category IV) urban areasin which at least 15% of the surface is covered with building & their

    average height exceeds 15m.

    kT =0.24 ...EBCS-1, 1995 tab.3.2

    Cr (z) = the roughness coefficient account for the variability of mean

    wind velocity at the site of the structure due to

  • 7/30/2019 Roof Our Prject

    3/33

    The height above the ground level (z)

    The roughness of the terrain depending on the wind direction

    ...EBCS-1, 1995 sec.3.8.2

    Cr (z), at height z is defined by logarithmic profileOne of the two cases must satisfy

    Case-1 ( )

    =

    0

    lnz

    zKzC Tr forzmin

  • 7/30/2019 Roof Our Prject

    4/33

    D. DETERMINATION OF EXTERNAL PRESSURE COEFFICIENT (Cpe

    (z))

    External pressure coefficient for hipped roofs.

    For wind direction = 0

    0

    For wind direction =

    90

    0

    o ..

    e=b=23.90 or e=2h=2*16.50=33 e=23.90

    2.39 7.96

    18.

    38

    5.

    52

    0.

    74

    9.

    24

    9.24

    10.35

    0

    1.50

    15

    20.70

    = 0

    0

    Wind

    = 90

    0

    H=16.5

    0

    90

    1.50

    10.4515.00

    23.90

    h=160

    o= tan-1(1.5*2/20.7)=8.250 90= tan-1(1.5*2/10.45)=8.170

    Reference height: ze=h=16.50m Reference height:

    ze=h=16.50m

    e=b or 2h whichever is smaller

    b=cross wind dimension

  • 7/30/2019 Roof Our Prject

    5/33

    FOR WIND DIRECTION =900

    Imposed areas

    F = 2.07*3.175=6.75 =2*(6.75+2.12)=17.74m2

    o.5*2.07*2.05=2.12

    G = 2.07*10.25=21.22 m2

    H = 0.5*16.60*8.38=69.55 m2

    I = 0.5*16.56*8.33=68.97 m2

    e=b=20.70 or e=2h=33 e=20.70

    5.975=

    10.25

    5.975=

    10.35

    2.07= 8.28

    23.90

    20.70

    300

    3.10

    10.35

    13.55

    10.45

  • 7/30/2019 Roof Our Prject

    6/33

    J = (0.5*20.70*10.45)-68.97=39.19 m2

    L = 2.07*10.35=21.42 m2

    M=0.5*8.28*8.28=34.28 m2*2=68.56 m2

    N=0.5*(21.83+3.10)*10.35-34.28=94.73 m2*2 =189.466 m2

    FOR WIND DIRECTION =00

    F=3.562*2.39=8.51

    =0.5*2.413*2.39=2.88 =2(8.51+2.88)=22.78 m2

    G=11.95*2.39=28.56 m2

    H=0.5(18.38+3)*7.96=85.01 m2

    I=0.5(0.74+19.12)*7.96=79.04 m2

    J=2.39*7.96=19.02*2=38.05 m2

    K=0.5(3+5.52)*2.39=10.18 m2

    L=0.5(10.45*20.70)-84.49=23.67*2=47.34 m2

    M=0.5(9.24*18.31)=84.59*2=168.18 m2

    Roof0 = 8.27o

    Region F G H I J K M

    Cpe,10 5 -1.7 -1.2 -0.6 -0.3 -0.6 0.6 -0.6

    Cpe,1 5 -2.5 -2.0 -1.2 -0.3 -0.6 0.6 -1.2

    5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

    Cpe,10 15 -0.9 -0.8 -0.3 -0.5 -1.0 -1.2 -0.6

    Cpe,1 15 -2.0 -1.5 -0.3 -0.5 -1.5 -2.0 1.2

    15 0.2 0.2 0.2 0.0 0.0 0.0 0.0

    Cpe,10 0 -1. 440 -1.070 -0. 503 -0. 365 -0. 730 0. 015 -0. 600

    Cpe,1 0 -2.338 -1.838 -0.908 -0.365 -0.893 -0.245 -0.420

    Cpe,10 0 0.065 0.065 0.065 0.000 0.000 0.000 0.000

    Cpe,1

    0

    0.065 0.065 0.065 0.000 0.000 0.000 0.000

    Roof0 = 8.17o

  • 7/30/2019 Roof Our Prject

    7/33

    Region F G H I J L N

    Cpe,10 5 -1.7 -1.2 -0.6 -0.3 -0.6 -1.2 -0.4

    Cpe,1 5 -2.5 -2.0 -1.2 -0.3 -0.6 -2.0 -0.4

    5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

    Cpe,10 15 -0.9 -0.8 -0.3 -0.5 -1.0 -1.4 -0.3

    Cpe,1 15 -2.0 -1.5 -0.3 -0.5 -1.5 -2.0 -0.3

    15 0.2 0.2 0.2 0.0 0.0 0.0 0.0

    Cpe,10 90 -1.446 -1.073 -0.505 -0.363 -0.727 -1.263 -0.368

    Cpe,1 90 -2.342 -1.842 -0.915 -0.363 -0.885 -2.000 -0.368

    Cpe,10 90 0.063 0.063 0.063 0.000 0.000 0.000 0.000

    Cpe,1 90 0.063 0.063 0.063 0.000 0.000 0.000 0.000

    External Wind Pressure calculation at = 0o

    Qref Ce(z) Cpe W e(KN/m2)F 227.5 1.584 -1.440 -0.519

    227.5 1.584 0.065 0.023

    G 227.5 1.584 -1.070 -0.386

    227.5 1.584 0.065 0.023

    H 227.5 1.584 -0.503 -0.181

    227.5 1.584 0.065 0.023

    I 227.5 1.584 -0.365 -0.132

    J 227.5 1.584 -0.730 -0.263

    K 227.5 1.584 0.015 0.005

    L 227.5 1.584 -1.265 -0.456

    M 227.5 1.584 -0.600 -0.216

    External Wind Pressure calculation at = 90o

    Qref Ce(z) Cpe We(KN/m2)

    F 227.5 1.584 -1.446 -0.521

    227.5 1.584 0.063 0.023

    G 227.5 1.584 -1.073 -0.387

    227.5 1.584 0.063 0.023

    H 227.5 1.584 -0.505 -0.182

    227.5 1.584 0.063 0.023

    I 227.5 1.584 -0.363 -0.131

    J 227.5 1.584 -0.727 -0.262

    K 227.5 1.584 -1.263 -0.455L 227.5 1.584 -0.600 -0.216

    M 227.5 1.584 -0.368 -0.133

    1.3 DESIGN OF ROOF COVER (DESIGN OF EGA)

    Maximum wind load (critical wind load) is

  • 7/30/2019 Roof Our Prject

    8/33

    WL=-0.521 KN/m2from computation

    Live load from ..EBCS-1, 1995

    Distributed live load qk=0.25 KN/m2

    Concentrated live load Qk=1KN

    Purlin spacing=1.5m

    Take EGA-300 from KMPF manual

    Thickness t=0.5mm, section modulus Sx=1970

    Load W=3.92kg/m

    Uniform load carrying capacity =1.36KPa=ULC

    Load computation for roof cover

    EGA width is 0.90m

    EGA load in KN/m2

    DLEGA=(3.92Kn/m)/(0.90m)

    2/044.0

    1000

    10*

    92.0

    /92.3mKN

    m

    mKNDL

    EGA==

    Case -1

    Pd=LLq+DL

    =1.6 qk+1.3 Gk

    =1.6*0.25+1.3(0.044)

    =1.6*0.25*cos(8.25)+1.3(0.044)

    =0.453KN/m2

  • 7/30/2019 Roof Our Prject

    9/33

    Moment calculation

    Because of in case 3 the value is greater than 1.36KN/m2 we shall compute

    the section modulus for case 3

    mKNm

    WlPL

    M /609.08

    5.1*0572.0

    4

    5.1*58.1

    84

    22

    =+=+=

    Section modulus, SX

    Allowable carrying capacity of roof is 250N/mm2

    3

    2

    6

    4.2434/250

    /10*609.0mm

    mmN

    mNmmMS

    all

    x ===

    From table of KMPF manual selec EGA sheet having section of modulus

    Sx

    >2434

    Take section of modulus Sx =2749mm

    3

    Section property

    Thikness t=0.7mm

    Weight w=5.49kg\m

    Capacity=1.90kpa

    Dead Load of EGA= 2/061.00.9*1000

    10*5.49mkn=

    Perpendicular dead load of EGA Ro0f is

    DL EGA =O.O61 cos8.25

    =0.0604

    Load computation at 0=8.25

    Case 1Pd=LLq+DL

    =1.6qk+1.3Gk

    =1.6*0.25COS8.25+1.3(0.0604)

    =0.474KN/m2

    Case 2

  • 7/30/2019 Roof Our Prject

    10/33

    Pd=WL+DL

    =1.6WL+0.9GK

    =1.6*O.521+0.9(0.0604)

    =0.834KN/m2

    Case 3

    Pd=LLQK+DL

    =1.6QK+1.3GK

    =1.6*1*cos8.25+1.3(0.0604)

    =1.583KN+0.0785KN/m2

    Moment Computation

    Case1

    M=Pd L2/8=0.474*1.52/8=0.133KNm/m

    Case 2

    M=PdL2/8=0.834*1.52/8=0.235kNm/m

    Case 3

    M=Pd*L/4+PdL2/8

    =1.583*1.5/4+0.0785*1.52/8

    =0.594+0.0221

    =0.616kNm/mSection modulus computation

    SX=M/rall=0.616*106Nmm/m/250N/mm2

    2464.31mm3

  • 7/30/2019 Roof Our Prject

    11/33

    Thickness t=0.7mm=0.0007m

    2;ZIGBA PURLIN

    Unit weight =6KN/m3

    Allowable stress, ball=6.9Mpa.

    C/C purlin spacing=0.9m

    Cross sectional area=50x70mm

    Truss spacing=1.5m

    A/ INTERIOR PURLIN

    Dead load computation

    DL EGA=0.055KN/m

    DL Purlin=0.05*0.07*6=0.021KN/m

    Total dead load, DL=0.076KN/m

    LOAD COMPUTATION

    Note:

    1.Wind pressure is acts on the areas of the surface producing force

    normal to the surface of the structure (EBCS-1-1995 SEC.3.4.1(1))

    2.The characteristics values Qk&qk are related to the projected area of

    the roof under consideration(EBCS-1-1995 sec.2.6.3.4.2(1))

    WIND LOADSWL+=0.023KN/m2

    WL-=0.521KN/m2

    X-Components

    DLGK=0.076sin8.25=0.0109KN/m

    LLqk=0.25*0.9sin8.25=0.0323KN/m

    LLQK=1*sin8.25=0.1435KN/m

    Y-components

    DLGK=0.076cos8.25=0.0752KN/m

    LLqk=0.25*0.9cos8.25=0.2227KN/m

    LLQK=1*cos8.25=0.9897KN/m

    WL=0.023*0.9=0.0207KN/m

  • 7/30/2019 Roof Our Prject

    12/33

    COMBINATION

    X-direction

    Case1: Pdx=dead load distributed live load

    =1.3Gk+1.6qL

    =1.3*0.0109+1.6*0.0323

    =0.0659KN/m

    Case 2:Pdx=Dead load +Concentrated live load

    =1.3Gk+1.6qk

    =1.3*0.0109 +1.6*0.1435

    =0.244KN/m

    Y-directionCase1:Pdy=dead load +distributed live load

    =1.3Gk+1.6qk

    =1.3(0.0752) +1.6(0.2227)

    =0454KN/m

    Case 2:Pdy=Dead Load +Wind Load

    =0.9Gk+1.3WkESCP1.1983 Sec3.3.2.1(4)

    =0.9(0.0752) +1.3(0.0207)

    =0.0946KN/m

    Case 3:Pdy=dead Load +Concentrated live load=1.3Gk+1.6Qk----------ESCP 1.1983Sec.3.3.2.1(1)

    =1.3(0.0752)+1.6(0.9897)

    =1.679KN/m

    Case 4:Pdy=Dead Load +Live Load +Wind Load

    =0.8(1.3Gk +1.6qk +1.6 Wk)--------ESCP 1.1983 Sec.3.3.2.1(2)

    =0.8(1.3(0.0752)+1.6(0.2227)+1.6(0.0207))

    =0.390KN/m

    Maximum Loads

    X-direction. Pdx=0.0659KN/m

    Y-direction. Pdy=0.454KN/m

    Mx=WxL2/8=(0.0659*1.52)/8=0.1853KN-m

    My=WyL2/8=(0.454*1.52)/8=0.1277KN-m

  • 7/30/2019 Roof Our Prject

    13/33

    Section Modulus

    Zy=b2h/6=(0.052*0.07)/6=2.917*10-5

    Zx=bh2/6=(0.05*0.072)/6=4.0833*10-5

    Check Bending Stress

    x=Mx/Zx=0.01853/4.0833*10-5=453.80KN/m2

    x=(453.80*103/106)N/mm2

    x=0.454N/mm2

    x=0.454Mpa

    y=My/Zy=0.1277/2.917*10-5=4377.785KN/m2

    y=(43775.785*103/106)N/mm2

    y=4.378N/mm2

    y=4.378Mpa

    220 yxtalt +=

    22378.4454.0 +=total

    !...........96.6401.4 OkMpaMpaallbtotal

    ==

    Deflection Check

    Allowable deflection

    mmmmL

    5.7200

    1500

    200max ===

    EI

    WL

    384

    54

    =

    Where:

    E=12KN/mm2

    =12*106/m2

    X-direction

    Dead Load DLy=0.0752KN/m

    Dead LoadLLy=0.2227KN/m

    Ix=bd3/12=(0.05*0.073)/12=1.429*10-6

    mmmmKN

    x 14.100114.010*429.1*10*12*384

    5.1*/)2227.00752.0(*566

    4

    ==+

    =

  • 7/30/2019 Roof Our Prject

    14/33

    y-direction

    Dead Load DLx=0.0109KN/m

    Live Load LLx=0.0323KN/m

    Iy=b3*d/12=(0.053*0.07)/12=0.729*10 -6

    mmmmKN

    y 325.0000325.010*729.0*10*12*384

    5.1*/)0323.00109.0(*566

    4

    ==+

    =

    mmyxtotal

    85.1325.014.1 2222 =+=+=

    1.185mm vdd f where: rsterssdesignshead = e

    Vd=the design value for end shear force

    A

    vdd

    2

    3=

    2

    wlvd= ;W=factererd load combination

    =1.3(0.076)+1.6(0.25)=0.4988KN/m

    A=cross sectional area

    =0.05*0.07=0.0035m

    2

    KNvd 3741.02

    5.1*4988.0==

    22 /1603.0/33.16007.0*05.0*2

    3741.0*3

    2

    3mmNmKN

    KN

    A

    vdd ====

    Design shear strength; fvd

    m

    fvkkfvd

    *mod= ;Where:-kmod=0.8,modification factor for medium

    forwoodm3.1

    =2

    /5.2 mmNrengthticshearstcharactersfvk ==

    2/54.1

    3.1

    5.2*8.0mmNfvd ==

    !/54.1/1603.022 OkmmNfvdmmNd =

  • 7/30/2019 Roof Our Prject

    15/33

    Design Bearing stress

    dccdc fk 909090 *

    where:-

    lbb

    vdcd

    *90 = ;Assume that 125.15.1*75.075.0 === llb

    22

    90 /00651.0/651.6125.1*05.0

    3741.0mmNmKNcd ===

    m

    kccsysdm

    dc

    fkkkf

    90900

    90

    ***=

    Where:-

    Ksys=load shearing factor=1

    Kc90=bearing factor=1

    2

    90 /5.2 mmNthticsstrengcharactersf kc ==

    ==> hingstrengtDesignbearf dc =90

    2

    90/54.1

    3.1

    5.2*1*1*8.0mmNf dc ==

    ==> dccdc ff 909090 *

    0.06511*1.54

    0.06511.54------------------OK!

    Vibration

    The fundamental frequency of vibration of rectangular supported on four

    edges

    ( )

    m

    lEI

    lf *

    221

    =

    Where:-

    m=mass equal to self-weight and other permanent action per unit

    area(KN/m2)

    l =span length=1.5m

    ( EI) l =in l direction

    (EI)b=in b direction

    632

    10*875.4212

    07.0*5.1

    12

    * ===dl

    Il

    b L

    d

  • 7/30/2019 Roof Our Prject

    16/33

    6

    3

    10*429.112

    07.0*05.0 ==bI

    ( ) mNmKNlEI /514500/5.54110*875.42*10*12 66 ===

    ( ) mNmKNbEI /17148/148.1710*429.1*10*12 66 ===

    Mass;M=factored combined load

    M=0.4988KN/m/m

    2288.49

    10

    1000*4988.0

    m

    kg

    m

    KgM ==

    Htzf 90.7088.49

    514500*

    5.1*221

    ==

    ==>Since fundamental frequency greater than8Htz;

    The following condition should be satisfied.

    /F1.5mm/KN and100( 1f -1)

    Where:-

    =damping coefficient=0.01

    =maximum vertical deflection caused by concentrated vertical force

    F=1KN

    mmmEI

    pL

    x

    1.40041.0429.1*12*48

    5.1*1

    48

    33

    ====

    633

    10*429.112

    07.0*05.0

    12

    ===bd

    Ix

    610*12=E

    ylsevelocitisunitimpe=

    ( )

    200

    6.04.0440

    ++

    =mbl

    Where:-

    b=width(m)

    40=number of first-order model with natural frequency below 40Htz

    ( )

    ( )

    25.042

    1

    40 140

    =

    bEI

    lEI

    l

    b

    f

  • 7/30/2019 Roof Our Prject

    17/33

    ( )( )

    25.042

    40

    17148

    514500

    5.1

    05.01

    9.70

    40

    =

    =((-0.682)(0.000001234)(30))

    =(-2.525*10

    -5

    )

    1/4

    =0.07089

    M =04988KN/m

    ( )00885.0

    037441.200

    770136.1

    2005.1*05.0*4988.0

    07089.0*6.04.04==

    ++

    =

    ( )11100

    f

    Where:-

    ( ) 291.0101.0*90.7011 ==f

    V0.262OK!

    /F1.5mm/KN

    4.1mm/1KN=4.1KN>1.5mm/KNNot OK!

    CHECK FOR LATERAL BUCKLING

    1.5 TRUSS DESIGN

    The truss is constructed of eucalyptus since the purilnes are at 0.9m

    spaced. The rafter and the horizontal member are assumed to be

    continuous throughout the length. The truss is designed for the maximum

    reaction force from the purline .

    291.0100

  • 7/30/2019 Roof Our Prject

    18/33

    Load from purilne to truss.

    ( ) mKNW /459.0459.00659.0 22 =+=

    Reaction force KNWL

    R 344.02

    5.1*459.0

    2===

    Exterior reaction force Re=0.344KN at 0.9m spacing,

    Interior reaction force Ri=0.344KN at 0.9m spacing on rafter of the truss.

    LOAD FROM TRUSS

    Material property:-property of equliptus.

    TRUSS TOTAL LENGTH COMPUTITION

    Truss 1

    Major horizontal =10.45m

    >> vertical =1.50m

    Unit wt.

    (KN/m3)

    diamet

    er(m)

    area(m2) wt.

    (KN/m)

    remark

    10 8.5 0.10 0.0079 0.067 V&D members

    12 8.5 0.12 0.0113 0.096 major V,H&rafter

    W(KN/m)

    R

    R

    Wx=0.0659 KN/m It includes self

    Wy=0.459 KN/m weight of purline.

  • 7/30/2019 Roof Our Prject

    19/33

    >> diagonal (rafter) =10.56m

    Total length =22.51m

    Vertical & diagonal members

    Spacing of vertical i=1.20m

    Slope of roof in (%)=14.36%

    No of verticals =9

    No of diagonals =8

    No of joints =10

    Total length of vertical and diagonal members =17.35

    TOTAL LOAD COMPUTATION

    Factor loads: wt(10)=16.6m*0.087 KN/m=1.44 KN

    wt(12)=22.62m*0.125 KN/m=2.83 KN

    total load of truss =4.27 KN

    No of joints =10

    Internal joints =8

    External joints =2

    Loads on truss joints

    KNsofvertical

    totalloadsernaljo 474.0927.4

    #intint ===

    KNloadsernaljo

    sexternaljo 237.02

    474.0

    2

    intintint ===

    DEAD LOAD OF CHIP WOOD CEILING (CHIP BOARD).

    Properties of chip board

    Unit wt., =8KN/m3

    Thickness, t=8mm=0.008m

    Truss spacing =1.5m

    Length =10.45m

    Wt=*t*l*c/c spacing

    =8KN/m3*0.008m*10.45m*1.5m

    =1.0032KN

  • 7/30/2019 Roof Our Prject

    20/33

    Factored load=1.3*1.0032KN =1.30416 KN

    DEAD LOAD OF CEILING BATTENS (30mmx40mm)

    Spacing c/c=60mm

    In the truss direction # of ceiling battens=10.45/0.6=17.4

    Use 18 battens

    Other direction # of ceiling battens=1.5/0.6=2.5,use 3 battens

    Length of ceiling battens is =18*1.5+3*10.45=58.35m

    Unit wt, = 6kN/m3

    Wt of battens=6*0.03*0.04*38.35=0.42012KN

    Factored battens load =0.546156kN

    T0tal load at the bottom of the truss Joints

    Load =1.30416+0.546156=1.850kN

    # Of Joints=10

    Exterior =2

    Interior =2

    Joint load Int = kN206.09

    850.1=

    Joint load ext = kN103.02

    206.0

    =

    Total load at the top of the truss joints.

    Interior joint load =0.688+0.51=1.188 KN

    exterior joint load =0.344+0.26=0.604 KN

    REACTION FORCES OF THE TRUSS

    4.80

    0.6

    A B C D E F G H I

    I

    I

    II

    I

    I

    I

    J

    1.5

    0.65

    0.20.20.20.1

    R3=1.40

    0.20.2

    0.2 0.2 0.20.2

    R1=0.02 R2=1.27

    5.00

    0.61.2

    1.2

    1.21.2

    1.2

    1.2

    1.21.2

    1

    2

    34

    56

    7

    8

    91.

    32

    1.

    14

    0.

    96

    0.

    78

    0.

    61

    0.

    44

    0.

    27

    1.82 1.69 1.581.47

    1.35 1.28 1.231.20

    1.5

    0

    0.

    12

  • 7/30/2019 Roof Our Prject

    21/33

    R1=0.02

    R2=11.18+1.40+0.02=12.60

    R3=1.40

    Joint-J

    Fy=0 ==>JI sin8.17-0.6-0.1=0

    0.142JI =0.7JI=0.7/ 0.142=4.93 KN..tension

    Fx=0 ==>JS-JIcos8.17=0

    JS=4.93 cos 8.170=4.88 KN.. compression

    Joint-S

    =8.170

    0.1

    JI

    JS

    0.6

    0.14

    RS

    0.21

    IS

    SJ

  • 7/30/2019 Roof Our Prject

    22/33

    Fy=0 ==> -IS-0.21+1.4=0

    IS=-0.21+1.4=1.19.tension

    Fx=0 ==> -RS+SJ=0

    RS=SJ = 4.88 KN.compression

    Joint-I

    Fy=0 ==>HI sin8.170+RI sin4.430+IS-1.2-JI sin8.170=0

    0.142HI +0.077RI=-1.19+1.2+4.93*0.142

    0.142HI +0.077RI= 0.71 KN.*

    Fx=0 ==>-HI cos8.170+RI cos4.430+JI cos8.170=0

    -0.99HI +0.997RI=-4.93*0.99

    -0.99HI +0.997RI=-4.88 KN.**

    Solving for the two equations simultaneously:

    HI= 4.975 KNTENSION

    RI= 0.0456KN.COMPRESION

    Joint-R

    Fy=0 ==> RH+RI sin4.43-0.21=0

    RH=0.0456*0.077+0.21=0.214 KN.tension

    Fx=0 ==>QR-RS+RI cos4.430=0

    JI

    =tan -1(.093/1.2)= 4.430

    IS

    HI

    RI

    1.2

    RH

    =tan -1(0.093/1.2)=4.430

    0.21

    RI

    QR RS

  • 7/30/2019 Roof Our Prject

    23/33

    QR=4.88-0.0456 *0.997=4.835 KN compression

    Joint-H

    Fy=0 ==> +HQ sin12.680+HG sin8.170-HI sin8.170-RH -1.2= 0

    0.22HQ+HG sin8.170=4.975*0.142+1.2+0.214

    0.22HQ +0.142HG= 2.12.*

    Fx=0 ==> HQ cos12.680-HG cos8.170+HI cos8.170=0

    0.976HQ-0.99HG =-4.975*0.99

    0.976HQ -0.99HG= -4.925.**

    Solving for the two equations simultaneously:

    HQ= 3.927 KNCOMPRESION

    HG= 8.846KN.TENSION

    Joint-Q

    Fy=0 ==> QG-QHsin12.68-0.21=0

    QG=3.927*0.22+0.21=1.074 KN.TENSION

    Fx=0 ==> QP-QR-QHcos12.680=0

    QP= 4.835 +3.927*0.976=8.615KN......COMPRESSION

    Joint-G

    HI=4.96

    =tan -1(0.27/1.2)= 12.680

    RH

    HG

    HQ

    1.2

    QG

    0.21

    QP

    QH

    QR =tan-1(0.27/1.2)= 12.680

    GH= 5.87

    =tan -1(0.44/1.2)= 20.1360

    GQ

    GF

    GP

    1.2

  • 7/30/2019 Roof Our Prject

    24/33

    Fy=0 ==> GP sin20.1360+GF sin8.170-GH sin8.170-GQ-1.2 =0

    0.344GP+0.142GF=8.81*0.142+1.07+1.2

    0.344GP +0.142GF= 3.52.*

    Fx=0 ==> GP cos20.1360-GF cos8.170+HG cos8.170=0

    0.94GP-0.99GF =-8.81*0.99

    0.94GP -0.99GF= -8.72.**

    Solving for the two equations simultaneously:

    GP= 4.74 KNCOMPRESION

    GF= 13.30 KN.TENSION

    Joint-P

    Fy=0 ==> PF-PGsin20.136-0.21=0

    PF=4.74*0.344+0.21=1.84 KN.TENSION

    Fx=0 ==> PO-PQ-PGcos20.1360=0

    PO= 8.64 +4.74*0.94=13.10KN......COMPRESSION

    Joint-F

    PF

    0.21

    PO

    PG

    PQ =tan-1(0.44/1.2)= 20.1360

    FG= 13.30

    =tan -1(0.61/1.2)= 26.950

    FP

    FE

    OF

    1.2

  • 7/30/2019 Roof Our Prject

    25/33

    Fy=0 ==> OF sin26.950+FE sin8.170-FG sin8.170-FP-1.2 =0

    0.453OF+0.142FE=13.30*0.142+1.84+1.2

    0.453OF +0.142FE= 4.93.*

    Fx=0 ==> OF cos26.950-FE cos8.170+FG cos8.170=0

    0.89OF-0.99FE =-13.30*0.99

    0.89OF -0.99FE= -13.167.**

    Solving for the two equations simultaneously:

    OF= 5.23 KNCOMPRESION

    EF= 18.01 KN.TENSION

    Joint-O

    Fy=0 ==> OE-OF sin26.95-0.21+12.60=0

    OE=5.23*0.453+0.21-12.60=-10.02

    KN.COMPRESION

    Fx=0 ==> NO-OP-OF cos26.950=0

    NO= 13.10 +5.23*0.89=17.76

    KN......COMPRESSION

    Joint-E

    OE

    0.21NO

    OF

    OP =tan-1(0.61/1.2)= 26.950

    12.60

    EF= 18.01

    =tan -1(0.78/1.25)= 31.960

    EO

    ED

    EN

    1.2

  • 7/30/2019 Roof Our Prject

    26/33

    Fy=0 ==> -EN sin31.960+ED sin8.170-EF sin8.170-EO-1.2 =0

    -0.529EN+0.142ED=18.01*0.142-10.02+1.2

    -0.592EN +0.142ED= -6.26.*

    Fx=0 ==> -EN cos31.960-ED cos8.170+EF cos8.170=0

    -0.848EN-0.99ED =18.01*0.99

    -0.848EN -0.99ED= 17.83.**

    Solving for the two equations simultaneously:

    EN= 5.19 KNCOMPRESION

    ED= -22.46 KN.TENSION

    Joint-N

    Fy=0 ==> ND+NE sin31.96-0.21=0

    ND=-5.19*0.529+0.21=-2.54 KN.COMPRESION

    Fx=0 ==> NM-NO+NE cos31.960=0

    NM= 17.76-5.19*0.848=13.38

    KN......COMPRESSION

    Joint-D

    Fy=0 ==> -MD sin37.520+CD sin8.170-ED sin8.170-DN-1.2 =0

    -0.609MD+0.142CD=-22.46*0.142+-2.54+1.2

    -0.609MD +0.142CD= -4.53.*

    Fx=0 ==> -MD cos37.520-CD cos8.170+ED cos8.170=0

    -0.793MD-0.99CD =22.46*0.99

    ED= -22.46

    =tan -1(0.96/1.25)= 37.520

    DN

    CD

    MD

    1.2

    ND

    0.21

    NM

    NE

    NO=tan -1(0.78/1.25)= 31.960

  • 7/30/2019 Roof Our Prject

    27/33

    -0.793MD -0.99CD= 22.24.**

    Solving for the two equations simultaneously:

    MD= 1.855 KNTENSION

    CD= -23.95 KNCOMPRESION

    Joint-M

    Fy=0 ==> MC+MD sin37.52-0.21=0

    MC=-1.855*0.609+0.21=-0.92

    KN..COMPRESSION

    Fx=0 ==> ML-MN+MD cos26.950=0

    ML= 13.38 -1.855*0.793=11.89

    KN..COMPRESSION

    Joint-C

    Fy=0 ==> CL sin42.360+CB sin8.170-CD sin8.170+CM-1.2 =0

    0.674CL+0.142CB=-23.95*0.142+0.92+1.2

    0.674CL +0.142CB= 1.28.*

    Fx= 0 ==> CL cos42.360-CB cos8.170+CD cos8.170=0

    0.739CL-0.99CB =23.95*0.99

    MC

    0.21

    ML

    MD

    MN =tan-1(0.96/1.25)= 37.520

    CD= -23.95

    =tan -1(1.14/1.25)= 42.360

    CM

    CB

    CL

    1.2

  • 7/30/2019 Roof Our Prject

    28/33

    0.739CL -0.99CB= 23.71.**

    Solving for the two equations simultaneously:

    CL= 3.73 KNCOMPRESION

    CB= 21.17 KN.TENSION

    Joint-L

    Fy=0 ==> BL-LC sin42.36-0.21=0

    BL=3.73*0.674+0.21=2.72 KN.TENSION

    Fx=0 ==> LK-ML-LC cos42.360=0

    LK= 11.89+3.73*0.739=14.65

    KN.COMPRESSION

    Joint-B

    Fy=0 ==> BK sin46.560+BA sin8.170-BC sin8.170-BL-1.2 =0

    0.726BK+0.142BA=21.17*0.142+2.72+1.20.726BK +0.142BA= 6.93.*

    Fx=0 ==> BK cos46.560-BA cos8.170+BC cos8.170=0

    0.688BK-0.99BA =-21.17*0.99

    0.688BK -0.99BA= -20.96.**

    Solving for the two equations simultaneously:

    BL

    0.21

    LK

    LC

    LM =tan-1(1.14/1.25)= 42.360

    BC= 21.17

    =tan -1(1.32/1.25)= 46.560

    BL

    BA

    BK

    1.2

  • 7/30/2019 Roof Our Prject

    29/33

    BK= 4.75KNCOMPRESION

    BA=24.47KN.TENSION

    Joint-K

    Fy=0 ==> -AK+KB sin46.56-0. 1+0.02=0

    AK=4.75*0.726-0. 1+0.02=3.37.TENSION

    Fx=0 ==> -KL+KB cos46. 560+0.53=0

    -14.64+4.75 *0.688+0.53=0. OK!

    Joint-A

    Fy=0 ==> AK-0.6-ABsin8.17=0

    3.37+0.6-24.47sin8.17=0. OK!

    Wall load

    Moment Due To External Wind Pressure, We.

    We=qref*Ceze*Cpe

    From the previous computition

    qref=227.48

    Ce=1.5836

    External pressure coefficient, (Cpe)

    For wall

    ==

    ==

    mh

    mbe

    3350.16*22

    10.23min

    The minimum value is e=b=23.10m

    0. 02

    AK

    0. 1

    0.53

    KBB

    EKL =tan-1

    (1.32/1.25)=46.560

    AK

    0.6

    AB

  • 7/30/2019 Roof Our Prject

    30/33

    Since d=19.90

  • 7/30/2019 Roof Our Prject

    31/33

    A We=227.48*1.5836*-1.0=-360.24 N/m2=-

    0.36024 KN/m2

    B* We=227.48*1.5836*-0.8=-288.19 N/m2=-

    0.28819 KN/m2

    D We=227.48*1.5836*0.787=283.51N/m2=0.28351 KN/m2

    E We=227.48*1.5836*-0.3=-108.07 N/m2=-

    0.10807 KN/m2

    Internal Wind Pressure

    Wi ==qref*ce(zi)*cpi

    in our case ce(zi)=ce(ze)=1.5836

    Taking the most critical cases ,cpi =+0.8 or -0.5

    qref =227.48 N/m2

    Wi =227.48*1.5836*0.8=288.19N/m2=288.19KN/m2

    =242*1.983*-0.5 =-108.07N/m2=-0.10808 KN/m2

    The net wind pressure,

    Wnet =We-Wi

    The critical wind pressure occurs on zone A of the building.

    Wnet ,max =-0.36024-0.10808 = -0.46832 KN/m

    2

    ,suction pressure.

    Approximate wind force calculation on the wall at each level

    The approximate wind force on the wall at each level is obtained by

    multiplying the wind

    Pressure by the area of the building contributing force at that level.

    Area contributed force

    Roof

    5th fl

    4th fl

    3th fl

    2th fl

    1th fl

    Gr fl

    23,10m

    3m

    2m

    3m

    3m

    3m

    3m1.5m

  • 7/30/2019 Roof Our Prject

    32/33

    level Height(m) Area(m2) F(KN)Roof 18.5 23.10*1.5=34.6

    5

    0.46832*34.65=16.2

    35th floor 17 23.10*3=69.30 0.46832*69.30=32.4

    54th floor 14 23.10*3=69.30 0.46832*69.30=32.4

    53th floor 11 23.10*3=69.30 0.46832*69.30=32.4

    52th floor 8 23.10*3=69.30 0.46832*69.30=32.4

    51th floor 5 23.10*3=69.30 0.46832*69.30=32.4

    5

    Ground floor 2 - 0

    Design Of Rafter

    LL=0.5KN/m2*1.20m=0.6 KN/m

    ed WDLLLW 35.135.13.1 +=

    ed WDLW *35.1*35.16.0*3.11 ++=

    mKNWd /71.146832.0*35.1076.0*35.175.0*3.11 =++=

    46832.0*35.1*35.16.0*3.12

    += DLWd

    mKNWd /45.046832.0*35.1076.0*35.175.0*3.12 =+=

  • 7/30/2019 Roof Our Prject

    33/33

    mKNLWd

    M /17.08

    9.0*71.1

    8

    * 22===

    Check the stress

    MPaI

    CMall

    9.6*

    ==

    634

    10*908.464

    1.0*

    64

    *

    ===

    d

    I

    !........................9.6559.110*908.4

    045.0*17.0

    6OKMPaMPa all ===

    Check deflection

    mmLe

    allowable 5.4200

    900

    200===

    !.............5.425.010*908.4*10*12*384

    9.0*1710*5

    384

    569

    44

    OKmmallmmEI

    Wl====

    1.71 KN/m

    9m

    d=100mmd