rti vorlesung 8 - eth z...zeros 5 โ€ข a zero ๐œis a frequency at which the transfer function ฮฃ is...

42
8.11.2019 RTI Vorlesung 8

Upload: others

Post on 03-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

8.11.2019

RTI Vorlesung 8

Page 2: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Recap

2

BIBO

Stability

Poles

Transfer

Functions

2nd-Order

System

Zeros

Static gain

Page 3: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Transfer function

3

Y ๐‘  โ‹… ๐‘ 2 + ๐‘Ž1 โ‹… ๐‘  + ๐‘Ž0๐‘Ž ๐‘ 

= ๐‘1 โ‹… ๐‘  + ๐‘0๐‘ ๐‘ 

โ‹… ๐‘ˆ ๐‘ 

Origin: differential equation: ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž1 โ‹… ๐‘ฆโ€ฒ + ๐‘Ž0 โ‹… ๐‘ฆ = ๐‘1 โ‹… ๐‘ข

โ€ฒ + ๐‘0 โ‹… ๐‘ข

Y ๐‘  โ‹… ๐‘ 2 +๐‘Ž1 โ‹… Y ๐‘  โ‹… ๐‘  + ๐‘Ž0 โ‹… Y ๐‘  = ๐‘1 โ‹… ๐‘ˆ ๐‘  โ‹… ๐‘  + ๐‘0 โ‹… ๐‘ˆ ๐‘ 

Y ๐‘  =๐‘(๐‘ )

๐‘Ž(๐‘ )โ‹… ๐‘ˆ ๐‘ 

The transfer function is on operator which maps the input ๐‘ˆ ๐‘  to the output ๐‘Œ(๐‘ ) in

the frequency domain

Y ๐‘  = ๐›ด(s) โ‹… ๐‘ˆ ๐‘ 

Page 4: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Poles

4

โ€ข A pole ๐œ‹ is a frequency ๐‘  at which ฮฃ ๐‘  is infinite.

โ€ข The poles describe the inherent dynamics of the plant.

โ€ข The poles are relevant for the stability of the system

The poles are the roots of the denominator polynomial ๐‘Ž(๐‘ ).

Y ๐‘  โ‹… ๐‘ 2 + ๐‘Ž1 โ‹… ๐‘  + ๐‘Ž0๐‘Ž ๐‘ 

= ๐‘1 โ‹… ๐‘  + ๐‘0๐‘ ๐‘ 

โ‹… ๐‘ˆ ๐‘ 

Origin: differential equation: ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž1 โ‹… ๐‘ฆโ€ฒ + ๐‘Ž0 โ‹… ๐‘ฆ = ๐‘1 โ‹… ๐‘ข

โ€ฒ + ๐‘0 โ‹… ๐‘ข

Y ๐‘  โ‹… ๐‘ 2 +๐‘Ž1 โ‹… Y ๐‘  โ‹… ๐‘  + ๐‘Ž0 โ‹… Y ๐‘  = ๐‘1 โ‹… ๐‘ˆ ๐‘  โ‹… ๐‘  + ๐‘0 โ‹… ๐‘ˆ ๐‘ 

Page 5: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Zeros

5

โ€ข A zero ๐œ is a frequency ๐‘  at which the transfer function ฮฃ ๐‘  is zero.

โ€ข This zero describes the nontrivial dynamics of the system, which for a given initial state

and a given input yield an output of ๐‘ฆ ๐‘ก = 0 for all times ๐‘ก โ‰ฅ 0.

The zeros are the roots of the numerator polynomial ๐‘(๐‘ ).

Y ๐‘  โ‹… ๐‘ 2 + ๐‘Ž1 โ‹… ๐‘  + ๐‘Ž0๐‘Ž ๐‘ 

= ๐‘1 โ‹… ๐‘  + ๐‘0๐‘ ๐‘ 

โ‹… ๐‘ˆ ๐‘ 

Origin: differential equation: ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž1 โ‹… ๐‘ฆโ€ฒ + ๐‘Ž0 โ‹… ๐‘ฆ = ๐‘1 โ‹… ๐‘ข

โ€ฒ + ๐‘0 โ‹… ๐‘ข

Y ๐‘  โ‹… ๐‘ 2 +๐‘Ž1 โ‹… Y ๐‘  โ‹… ๐‘  + ๐‘Ž0 โ‹… Y ๐‘  = ๐‘1 โ‹… ๐‘ˆ ๐‘  โ‹… ๐‘  + ๐‘0 โ‹… ๐‘ˆ ๐‘ 

Page 6: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Static gain

6

The static gain ฮฃ 0 is the value of the transfer function at ๐‘  = 0: ฮฃ 0 =๐‘0

๐‘Ž0

โ€ข The static gain ฮฃ 0 is the asymptotic value of lim๐‘กโ†’โˆž

๐‘ฆ(๐‘ก) in response to a step at the

input ๐‘ข ๐‘ก = โ„Ž(๐‘ก).

Y ๐‘  โ‹… ๐‘ 2 + ๐‘Ž1 โ‹… ๐‘  + ๐‘Ž0๐‘Ž ๐‘ 

= ๐‘1 โ‹… ๐‘  + ๐‘0๐‘ ๐‘ 

โ‹… ๐‘ˆ ๐‘ 

Origin: differential equation: ๐‘ฆโ€ฒโ€ฒ + ๐‘Ž1 โ‹… ๐‘ฆโ€ฒ + ๐‘Ž0 โ‹… ๐‘ฆ = ๐‘1 โ‹… ๐‘ข

โ€ฒ + ๐‘0 โ‹… ๐‘ข

Y ๐‘  โ‹… ๐‘ 2 +๐‘Ž1 โ‹… Y ๐‘  โ‹… ๐‘  + ๐‘Ž0 โ‹… Y ๐‘  = ๐‘1 โ‹… ๐‘ˆ ๐‘  โ‹… ๐‘  + ๐‘0 โ‹… ๐‘ˆ ๐‘ 

Page 7: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

BIBO Stability

7

ฮฃ(๐‘ )๐‘ข(๐‘ก) ๐‘ฆ(๐‘ก)

A system is called bounded-input bounded-output (BIBO) stable iff all

โ€ข finite inputs ๐‘ข ๐‘ก < ๐‘š result in

โ€ข finite outputs ๐‘ฆ ๐‘ก < ๐‘€

Theorem 1: For linear systems, BIBO stability is given if the following holds

Theorem 2: a system ฮฃ(๐‘ ) is

โ€ข BIBO stable iff all poles ๐œ‹ have negative real parts, and

โ€ข not BIBO stable in all other cases.

๐‘ข(๐‘ก) ๐‘ฆ(๐‘ก)

๐œŽ ๐‘ก = Impulse response

Page 8: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

2nd Order Systems:

Poles and the Time-Domain Behavior

8

Location of the poles

in the complex plane

Step response

in the time domain

Page 9: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Zeros and the Time-Domain Behavior

9

๐›ฟ = 0.5

๐›ด ๐‘  =โˆ’1/๐œ โ‹… ๐‘  + 1 โ‹… ๐œ”0

2

๐‘ 2 + 2 โ‹… ๐›ฟ โ‹… ๐œ”0 โ‹… ๐‘  + ๐œ”02

Page 10: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for
Page 11: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

20.09. Lektion 1 โ€“ Einfรผhrung

27.09. Lektion 2 โ€“ Modellbildung

4.10. Lektion 3 โ€“ Systemdarstellung, Normierung, Linearisierung

11.10. Lektion 4 โ€“ Analyse I, allg. Lรถsung, Systeme erster Ordnung, Stabilitรคt

18.10. Lektion 5 โ€“ Analyse II, Zustandsraum, Steuerbarkeit/Beobachtbarkeit

25.10. Lektion 6 โ€“ Laplace I, รœbertragungsfunktionen

1.11. Lektion 7 โ€“ Laplace II, Lรถsung, Pole/Nullstellen, BIBO-Stabilitรคt

8.11. Lektion 8 โ€“ Frequenzgรคnge (RH hรคlt VL)

15.11. Lektion 9 โ€“ Systemidentifikation, Modellunsicherheiten

22.11. Lektion 10 โ€“ Analyse geschlossener Regelkreise

29.11. Lektion 11 โ€“ Randbedingungen

6.12. Lektion 12 โ€“ Spezifikationen geregelter Systeme

13.12. Lektion 13 โ€“ Reglerentwurf I, PID (RH hรคlt VL)

20.12. Lektion 14 โ€“ Reglerentwurf II, โ€žloop shapingโ€œ

Modellierung

Systemanalyse im Zeitbereich

Systemanalyse im Frequenzbereich

Reglerauslegung

10

Page 12: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Today: all about one property of asymptotically stable LTI transfer functions ๐›ด(๐‘ )

Page 13: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

12

The mapping ๐›ด ๐‘—๐œ” โˆถ โ„ โ†’ โ„‚ is the frequency response of the system ๐›ด(๐‘ )

Definition of frequency response (Frequenzgang)

Time Domain Frequency Domain

Given: ๐›ด(๐‘ )

๐›ด ๐‘—๐œ” = ๐›ผ2 + ๐›ฝ2

โˆ ๐›ด(๐‘—๐œ”) = arctan โˆ’๐›ฝ

๐›ผ

๐›ด ๐‘—๐œ” = ๐›ผ โˆ’ ๐‘—๐›ฝ, ๐›ผ, ๐›ฝ โˆˆ โ„

<

Im

Re

ฮฃ(๐‘—เท๐œ”)

โˆ ๐›ด(๐‘—เท๐œ”)

๐›ผ(๐‘—เท๐œ”)

โˆ’๐›ฝ(๐‘—เท๐œ”)

Page 14: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Proof of ๐‘ฆโˆž(๐‘ก) = ๐‘š โ‹… cos(๐œ” โ‹… ๐‘ก + ๐œ‘)

13

with

For any asymptotically stable LTI system ฮฃ(๐‘ ):Laplace Table

๐‘ฅ(๐‘ก) ๐‘‹(๐‘ )

โ„Ž ๐‘ก โ‹… cos(๐œ” โ‹… ๐‘ก)๐‘ 

๐‘ 2 + ๐œ”2

โ„Ž ๐‘ก โ‹… sin(๐œ” โ‹… ๐‘ก)๐œ”

๐‘ 2 + ๐œ”2

โ„Ž ๐‘ก โ‹… ๐‘ก๐‘› โ‹… ๐‘’๐›ผโ‹…๐‘ก๐‘›!

๐‘  โˆ’ ๐›ผ ๐‘›+1

Page 15: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

How to get frequency response experimentally

14

โ€ข Excite an asymptotically stable LTI

system with a harmonic input

signal of a specific frequency

โ€ข Measure the steady-state response

โ€ข Compare the amplitude and the

phase of the response with the

amplitude and the phase of the input

signal; save results for chosen

frequency

โ€ข Repeat the experiment for various

other excitation frequencies

Page 16: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Example of a Frequency Response

๐‘ข(๐‘ก)

๐‘ฆ(๐‘ก)

Linear system ฮฃ ๐‘  :

damped single mass oscillator,

two states โ†’ 2nd order system

๐‘š๐œ”

[โˆ’]

Frequency ๐œ”๐œ‘๐œ”

[deg]

Frequency ๐œ”

Page 17: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

General representations of frequency responses

16

The frequency response can be displayed by two different diagrams.

โ€ข The frequency-explicit Bode diagram with two separate curves

โ€ข The frequency-implicit Nyquist diagram.

ยซBodeยป diagram Nyquist diagram

Real component

Ima

gin

ary

co

mp

on

ent

๐‘š๐œ”

[โˆ’]

๐œ‘๐œ”

[deg]

Page 18: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

17

The mapping ๐›ด ๐‘—๐œ” โˆถ โ„ โ†’ โ„‚ is the frequency response of the system ๐›ด(๐‘ )

Definition of frequency response (Frequenzgang)

Time Domain Frequency Domain

Given: ๐›ด(๐‘ )

๐›ด ๐‘—๐œ” = ๐›ผ2 + ๐›ฝ2

โˆ ๐›ด(๐‘—๐œ”) = arctan โˆ’๐›ฝ

๐›ผ

๐›ด ๐‘—๐œ” = ๐›ผ โˆ’ ๐‘—๐›ฝ, ๐›ผ, ๐›ฝ โˆˆ โ„

<

Im

Re

ฮฃ(๐‘—เท๐œ”)

โˆ ๐›ด(๐‘—เท๐œ”)

๐›ผ(๐‘—เท๐œ”)

โˆ’๐›ฝ(๐‘—เท๐œ”)

Page 19: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

18

Time

Domain

Frequency

Domain

๐‘ก

๐‘  = ๐‘Ž + ๐‘—๐‘

ฮฃ ๐‘  โ‹…๐‘ 

๐‘ 2 + ๐œ”2= ๐‘Œt ๐‘  +

๐›ผ โ‹… ๐‘  + ๐›ฝ โ‹… ๐œ”

s2 + ๐œ”2=๐›ผ โ‹… ๐‘  + ๐›ฝ โ‹… ๐œ”

s2 + ๐œ”2

ฮฃ ๐‘  โ‹…๐‘ 

๐‘ 2 + ๐œ”2= ๐‘Œt ๐‘  + ๐‘Œโˆž ๐‘  = ๐‘Œโˆž(๐‘ )

โ‡’ for lim๐‘กโ†’โˆž

, we must have lim๐‘ โ†’๐‘—๐œ”

:

โ‡’ ฮฃ ๐‘  โ‹… ๐‘  = (๐‘ 2 + ๐œ”2) โ‹… ๐‘Œt ๐‘  + ๐›ผ โ‹… ๐‘  + ๐›ฝ โ‹… ๐œ” = (๐›ผ โ‹… ๐‘  + ๐›ฝ โ‹… ๐œ”)

โ‡’ ฮฃ ๐‘—๐œ” โ‹… ๐‘—๐œ” = ๐›ผ โ‹… ๐‘—๐œ” + ๐›ฝ โ‹… ๐œ”

How to get frequency response from ๐›ด(๐‘ ) (I)aka โ€œproof: lim

๐‘กโ†’โˆžโ‡’ lim

๐‘ โ†’๐‘—๐œ”โ€

๐‘Œ ๐‘  = ๐‘Œโˆž ๐‘  + ๐‘Œ๐‘ก(๐‘ )๐‘ฆ ๐‘ก = ๐‘ฆโˆž ๐‘ก + ๐‘ฆ๐‘ก ๐‘ก

lim๐‘กโ†’โˆž

๐‘ก โˆˆ [0,โˆž] ๐‘  = ๐‘Ž + ๐‘— โ‹… ๐‘

๐‘ฆ ๐‘ก = ๐‘ฆโˆž ๐‘ก ๐‘Œ ๐‘  = ๐‘Œโˆž(๐‘ )lim๐‘ โ†’?

Free variableFree variable

Page 20: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

19

Re(ฮฃ ๐‘—๐œ” )

Im(ฮฃ ๐‘—๐œ” )

How to get frequency response from ๐›ด(๐‘ ) (II)determine ๐‘š and ๐œ‘

Page 21: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

20

The mapping ๐›ด ๐‘—๐œ” โˆถ โ„ โ†’ โ„‚ is the frequency response of the system ๐›ด(๐‘ )

Definition of frequency response (Frequenzgang)

Time Domain Frequency Domain

Given: ๐›ด(๐‘ )

๐›ด ๐‘—๐œ” = ๐›ผ2 + ๐›ฝ2

โˆ ๐›ด(๐‘—๐œ”) = arctan โˆ’๐›ฝ

๐›ผ

๐›ด ๐‘—๐œ” = ๐›ผ โˆ’ ๐‘—๐›ฝ, ๐›ผ, ๐›ฝ โˆˆ โ„

<

Im

Re

ฮฃ(๐‘—เท๐œ”)

โˆ ๐›ด(๐‘—เท๐œ”)

๐›ผ(๐‘—เท๐œ”)

โˆ’๐›ฝ(๐‘—เท๐œ”)

Page 22: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

20.09. Lektion 1 โ€“ Einfรผhrung

27.09. Lektion 2 โ€“ Modellbildung

4.10. Lektion 3 โ€“ Systemdarstellung, Normierung, Linearisierung

11.10. Lektion 4 โ€“ Analyse I, allg. Lรถsung, Systeme erster Ordnung, Stabilitรคt

18.10. Lektion 5 โ€“ Analyse II, Zustandsraum, Steuerbarkeit/Beobachtbarkeit

25.10. Lektion 6 โ€“ Laplace I, รœbertragungsfunktionen

1.11. Lektion 7 โ€“ Laplace II, Lรถsung, Pole/Nullstellen, BIBO-Stabilitรคt

8.11. Lektion 8 โ€“ Frequenzgรคnge (RH hรคlt VL)

15.11. Lektion 9 โ€“ Systemidentifikation, Modellunsicherheiten

22.11. Lektion 10 โ€“ Analyse geschlossener Regelkreise

29.11. Lektion 11 โ€“ Randbedingungen

6.12. Lektion 12 โ€“ Spezifikationen geregelter Systeme

13.12. Lektion 13 โ€“ Reglerentwurf I, PID (RH hรคlt VL)

20.12. Lektion 14 โ€“ Reglerentwurf II, โ€žloop shapingโ€œ

Modellierung

Systemanalyse im Zeitbereich

Systemanalyse im Frequenzbereich

Reglerauslegung

21

Page 23: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Application of frequency responses

22

Development of nonparametric and parametric

models of the system ฮฃ(๐‘ ) via measurements

of the frequency response (ยซexperimentsยป).

Lecture 9

Modeling

Controller Design

Using the Nyquist theorem to assess the stability of a closed-loop

system based on the frequency response of the open-loop system.

Lecture 10, 11, โ€ฆ|ฮฃ

๐‘—๐œ”|[โˆ’]

โˆ ฮฃ๐‘—๐œ”

[deg]

Page 24: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

23

Examples of frequency responses

Bode diagrams of 1st order and 2nd systems

Page 25: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Bode Diagram Convention

24

โ€œBode diagramโ€ so far Conventional Bode Diagram

โ€ข Plot phase in degrees

โ€ข Plot frequency axis in log10 base

โ€ข Plot magnitude in dB (decibel) โ€“ also log10 base

Page 26: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Decibel Scale

25

Conversion Table

Decibel Scale:Decimal Scale Decibel Scale

100 40

10 20

5 13.97โ€ฆ

2 6.02โ€ฆ

1 0

0.1 -20

0.01 -40

0 -Inf

Page 27: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Advantages of log10 and dB (I)

26

โ€ข Curved lines become straight asymptotesโ€ข Slope of asymptotes change depending on poles/zeros location of ฮฃ(๐‘ )

โ€ข Poles and zeros of transfer function define โ€œedgesโ€โ€ข โ‡’ In simple cases, transfer function can be read directly from Bode diagram

โ€œBode diagramโ€ so far Conventional Bode Diagram

Page 28: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Rules for drawing a Bode diagram

27

TypeMagnitude

Change

Phase

Change

Stable pole @๐œ”๐œ‹ -20 dB/dec -90ยฐ

Unstable pole @๐œ”๐œ‹ -20 dB/dec +90ยฐ

Minimumphase zero @๐œ”๐œ +20 dB/dec +90ยฐ

Non-minimumphase zero @๐œ”๐œ +20 dB/dec -90ยฐ

Time delay 0 dB/dec โˆ’๐œ” โ‹… ๐‘‡

Rules for drawing a Bode diagram

๐œ”๐œ‹ = ๐œ‹ in ๐‘Ÿ๐‘Ž๐‘‘

๐‘ 

๐œ”๐œ = ๐œ in ๐‘Ÿ๐‘Ž๐‘‘

๐‘ 

Page 29: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Example: reading ฮฃ ๐‘  from bode plot

28

TypeMagnitude

Change

Phase

Change

Stable pole @๐œ”๐œ‹ -20 dB/dec -90ยฐ

Rules for drawing a Bode diagram

โ‡’ ๐œ”๐œ‹1,2= ๐œ‹1,2 = ๐œ”0

โ‹… ๐‘˜

Page 30: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

General Bode diagram of a 2nd order system

29

Example: with ๐‘˜ = 1

๐œ”0

๐œ”10 โ‹… ๐œ”0

๐œ”10 โ‹… ๐œ”0

0.1 โ‹… ๐œ”0

๐‘š ๐œ”

๐œ‘(๐œ”)

Static gain

Magnitude change

Phase change

Cut-off frequency

Page 31: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

30

Calculate the frequency response of

๐œ”

|ฮฃ(๐‘—๐œ”)|

๐œ”โˆ ฮฃ(๐‘—๐œ”)

ฮฃ ๐‘—๐œ” =๐‘Ž ๐‘—๐œ”

๐‘ ๐‘—๐œ”

โˆ ฮฃ ๐‘—๐œ” = โˆ ๐‘Ž ๐‘—๐œ” โˆ’ โˆ ๐‘ ๐‘—๐œ”

ฮฃ ๐‘—๐œ” =๐‘Ž ๐‘—๐œ”

๐‘ ๐‘—๐œ”

Drawing frequency response

Example: 1st order system (II)

ฮฃ ๐‘  =1

๐‘  + 1

Page 32: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Bode diagram of a 1st order system

31

Example: with ๐‘˜ = 1, ๐œ = 1

Static gain

Cut-off frequency

Magnitude change

Phase change

TypeMagnitude

Change

Phase

Change

Stable pole @๐œ”๐œ‹ -20 dB/dec -90ยฐ

Rules for drawing a Bode diagram

Page 33: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Advantages of log10 and dB (II)

32

โ€ข Multiplication of magnitudes becomes addition

ฮฃtot = ฮฃ1 โ‹… |ฮฃ2|

20 โ‹… log10( ฮฃtot ) = 20 โ‹… log10( ฮฃ1 โ‹… ฮฃ1 )

= 20 โ‹… log10 ฮฃ1 + 20 โ‹… log10( ฮฃ2 )

ฮฃ1 ๐‘—๐œ” = ๐›ด1(๐‘—๐œ”) โ‹… ๐‘’๐‘—๐œ‘1(๐‘—๐œ”)

ฮฃ2 ๐‘—๐œ” = ๐›ด2(๐‘—๐œ”) โ‹… ๐‘’๐‘—๐œ‘2(๐‘—๐œ”)ฮฃtot ๐‘—๐œ” = ฮฃ1 ๐‘—๐œ” โ‹… ฮฃ2 ๐‘—๐œ”

Sidenote: for phase we have addition property anyway!

โ‡’ ฮฃtot dB = ฮฃ1 dB + ฮฃ2 dB

โˆ (ฮฃtot) = โˆ (ฮฃ1 + ฮฃ2) = โˆ (ฮฃ1) + โˆ (ฮฃ2)

Page 34: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Bode Diagram of higher order system

33

Example: ฮฃ ๐‘  = 0.1 โ‹…๐‘  + 10

๐‘  + 0.5

Decimal

Scale

Decibel

Scale

2 6.02โ€ฆ

1 0

TypeMagnitude

Change

Phase

Change

Stable pole @๐œ”๐œ‹ -20 dB/dec -90ยฐ

Minimumphase

zero @๐œ”๐œ

+20 dB/dec +90ยฐ

Conversion Table

Rules for drawing a Bode diagram

Page 35: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

34

Examples of frequency responses

1st order and 2nd nyquist diagrams

Page 36: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Drawing frequency response

Example: 1st order system (I)

35

Calculate the frequency response of

Re ฮฃ(๐‘—๐œ”)

Im ฮฃ(๐‘—๐œ”)

ฮฃ ๐‘  =1

๐‘  + 1

Page 37: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Nyquist diagram of a 1st order system

36

Example: with ๐‘˜ = 1, ๐œ = 1 Static gain

Cut-off frequency

Magnitude change

Phase change

Page 38: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Nyquist diagram of a 2nd order

system

37

Example: with ๐‘˜ = 1

Page 39: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Library of Standard Elements

38

See Appendix A in the script

Page 40: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Why is cosine important? (I)

39

Fourier Series: ยซany signal can be written asยป

๐‘ข ๐‘ก =

๐‘˜=1

โˆž

๐ด๐‘˜ โ‹… cos(๐œ”๐‘˜ โ‹… ๐‘ก + ๐œ™๐‘˜)

๐‘ฆโˆž ๐‘ข1 =๐‘š ๐œ”1 โ‹… ๐ด1โ‹… cos ๐œ”1 โ‹… ๐‘ก + ๐œ™1 + ๐œ‘ ๐œ”1

๐‘ฆโˆž ๐‘ข2 =๐‘š ๐œ”2 โ‹… ๐ด2โ‹… cos ๐œ”2 โ‹… ๐‘ก + ๐œ™2 + ๐œ‘ ๐œ”2

๐‘ฆโˆž ๐‘ข3 = ๐‘š ๐œ”3 โ‹… ๐ด3 โ‹… cos ๐œ”3 โ‹… ๐‘ก + ๐œ™3 + ๐œ‘ ๐œ”3

โ‹ฎ

Linear System!+

+

+

+

โ‹ฎ

๐‘ข1 = ๐ด1 โ‹… cos(๐œ”1 โ‹… ๐‘ก + ๐œ™1)

๐‘ข2 = ๐ด2 โ‹… cos(๐œ”2 โ‹… ๐‘ก + ๐œ™2)

๐‘ข3 = ๐ด3 โ‹… cos(๐œ”3 โ‹… ๐‘ก + ๐œ™3)

๐‘ข4 = ๐ด4 โ‹… cos(๐œ”4 โ‹… ๐‘ก + ๐œ™4)

๐‘ฆโˆž ๐‘ก = ๐‘ฆโˆž ๐‘ข1 + ๐‘ฆโˆž ๐‘ข2 + ๐‘ฆโˆž ๐‘ข3 +โ‹ฏ

Page 41: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Why is cosine important? (II)

40

๐›ด(๐‘ ) is a linear system โ†” all linear operations are possible, among which:

โ€ข ๐œ๐จ๐ฌ(๐Ž๐’•) or ๐ฌ๐ข๐ง(๐Ž๐’•) are the only periodic signals that keep their shape when

passing through a system ฮฃ ๐‘  (they only change in magnitude and phase)

โ€ข All other (periodic) signals change shape in integration or derivation operation

โ€ข System output could not be described by scaled and shifted system input

โ€ข More than two variables (๐‘š,๐œ‘) would be necessary to describe output signal

Derivative operationd

d๐‘ก๐‘ฅ ๐‘ก โ†” ๐‘  โ‹… ๐‘‹(๐‘ )

โˆซ ๐‘ฅ ๐‘ก โ†”1

๐‘ โ‹… ๐‘‹(๐‘ )Integral operation

Page 42: RTI Vorlesung 8 - ETH Z...Zeros 5 โ€ข A zero ๐œis a frequency at which the transfer function ฮฃ is zero. โ€ข This zero describes the nontrivial dynamics of the system, which for

Closed loop stability with Nyquist diagram

41

๐ถ ๐‘ƒ๐‘Ÿ ๐‘’ ๐‘ข ๐‘ฆ

โˆ’