[email protected] itimes.marc.gatech/ eislab.gatech/projects

60
Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability [email protected] http://itimes.marc.gatech.edu/ http://eislab.gatech.edu/projects/ 2003 Aerospace Product Data Exchange (APDE) Workshop April 7-9, 2003 NIST • Gaithersburg, Maryland A full report version is available here: http://eislab.gatech.edu/pubs/reports/EL004/

Upload: nadine

Post on 13-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

2003 Aerospace Product Data Exchange (APDE) Workshop April 7-9, 2003 NIST • Gaithersburg, Maryland . Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability. [email protected] http://itimes.marc.gatech.edu/ - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

Characterizing Fine-Grained Associativity Gaps:A Preliminary Study of CAD-CAE Model [email protected]://itimes.marc.gatech.edu/http://eislab.gatech.edu/projects/

2003 Aerospace Product Data Exchange (APDE) Workshop April 7-9, 2003

NIST • Gaithersburg, Maryland

A full report version is available here: http://eislab.gatech.edu/pubs/reports/EL004/

Page 2: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

2

AbstractConference Series Archive: http://step.nasa.gov/

Characterizing Fine-Grained Associativity Gaps:A Preliminary Study of CAD-CAE Model Interoperability

This presentation describes an initial study towards characterizing model associativity gaps and other engineering interoperability problems. Drawing on over a decade of X-analysis integration (XAI) research and development, it uses the XAI multi-representation architecture (MRA) as a means to decompose the problem and guide identification of potential key metrics.

A few such metrics are highlighted from the aerospace industry. These include number of structural analysis users, number of analysis templates, and identification of computing environment components (e.g., number of CAD and CAE tools used in an example aerospace electronics design environment).

One problem, denoted the fine-grained associativity gap, is highlighted in particular. Today such a gap in the CAD-CAE arena typically requires manual effort to connect an attribute in a design model (CAD) with attributes in one of its analysis models (CAE). This study estimates that 1 million such gaps exist in the structural analysis of a complex product like an airframe. The labor cost alone to manually maintain such gaps likely runs in the tens of millions of dollars. Other associativity gap costs have yet to be estimated, including over- and under-design, lack of knowledge capture, and inconsistencies.

Narrowing in on fundamental gaps like fine-grained associativity helps both to characterize the cost of today’s problems and to identify basic solution needs. Other studies are recommended to explore such facets further.

A full report version is available here: http://eislab.gatech.edu/pubs/reports/EL004/

X = design, mfg., sustainment, and other lifecycle phases.

Page 3: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

3

Model Interoperability Challenges:

Heterogeneous Transformations

Heterogeneous Transformation

Homogeneous Transformation

Mentor Graphics Cadence

STEPAP210

Mentor Graphics Ansys

STEPAP210

STEPAP209??

DesignModel A

DesignModel B

DesignModel A

AnalysisModel A

Page 4: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

4

Analogy: Bottom-Up Budget Estimation

Goal: Conceptual Frameworkfor Complex Model Interoperability

Characterization & Solutions

Detailed Travel Estimate Breakdown Per Day Per Trip Per Trip Per TripPer Person Subtotal Per Person Per Day

No. of No. of No. of Rental Car TRIPPurpose of Trip Destination People Days Nights Lodging M&IE Other Airfare Other & Gas Other Other TOTAL

a. ECAD vendor interface meeting Denver, CO 1 2.0 2.0 83$ 42$ 8$ 266$ 388$ 9$ 51$ -$ 36$ 801$ b. Sys. Engineering review Los Angeles, CA 1 5.0 5.0 99$ 46$ 8$ 765$ 534$ 9$ 51$ -$ 36$ 1,599$ c. Project planning meeting Seattle, WA 1 3.0 3.0 104$ 46$ 8$ 474$ 618$ 9$ 51$ -$ 36$ 1,290$

Notes TRAVEL GRAND TOTAL: 3,690$ 1. Lodging and M&IE (Meals & Incidental Expenses) are based on DoD Joint Travel Regulations per diem rates.2. "Other" under "Per Day Per Person" includes items like Atlanta airport parking ($8/day). Total person-trips: 33. Airfare rates are based on the current State of Georgia contract. Avg person-trip cost: 1,230$ 4. "Other" under "Per Trip Per Person" includes items like mtg. registration fees (if applicable) and mileage to/from the Atlanta airport ($9).5. Rental car rates are based on the current State of Georgia contract + 20% tax + $5 gas per day.6. "Other" under "Per Trip Per Day" includes group shared items like trip-related daily equipment rental.7. "Other" under "Per Trip" includes group shared items like trip-related equipment rental, plus the state travel agent booking fee ($36 for domestic flights/travel).

Page 5: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

5

Contents Background

– Example Airframe Structural Analysis Needs (Boeing)– Example CAD/E/X Toolset (JPL)– Multi-Representation Architecture

» Conceptual framework for complex model interoperability» Quantity estimates by representation type

Characterization of CAD-CAE Associativity Gaps Summary

Page 7: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

7

Sizing Advice

Material Propertiesand AllowablesGeometry Data

Analysis MethodsDesign Guides,Textbooks, etc.

Internal Loads

AnalysisReport/Summary

DesignRequirements

Determine CriticalLocations

Select AnalysisMethods & Tools

PerformCalculations

Validate andApprove Results Report Results

DetermineApplied Loads

Idealize Structure

Gather GeometryData

Gather MaterialProperties &Allowables

Strength CheckNotes

Repeated for EachLoad Cycle

Process Inputs

Process Outputs

Current Typical Airframe Structural Analysis Process

From: Request for Information (RFI): Common Structures Workstation (CSW). June 14, 2000. The Boeing Company.

Available at http://eislab.gatech.edu/projects/boeing-psi/2000-06-csw-rfi/

Page 8: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

8

Common Structures Workstation (CSW) Design Requirements and Objectives: Contents

Page 9: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

9

Freebody diagrams, pictures, and descriptive textare included to create a fully documented, completeanalysis note.

1333.1MS

1ksi 48ksi 64MS

1LF

MS

AA

AA

A-A

tuA-A

Input parameters are tied to external sources ofdata: loads, geometry, materials,etc.

64 ksiFtuL =

Aluminum 2024-T351 Bare PlateSpecification: AMS 4037 and QQ-A-250/4Thickness, in.: 0.250 - 0.49

P1

alpha

Px

Py

755.8 lb.P1 =

alpha = 30.0 deg.

563.2 lb.Px =

Py = 227.6 lb.

Dependent values arecalculated automaticallyaccording to equations definedin the template.

0.333

Example Part-based

Analysis Template

Page 10: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

10

Connection with CAD-based Geometric Parameters

Geometry Data

0.125 in.thk_uprchord

The analysis system imports geometrydata directly, from the parameterizedCAD model into analysis variables.

Page 11: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

11

Contents Background

– Example Airframe Structural Analysis Needs (Boeing)– Example CAD/E/X Toolset (JPL)– Multi-Representation Architecture

» Conceptual framework for complex model interoperability» Quantity estimates by representation type

Characterization of CAD-CAE Associativity Gaps Summary

Page 12: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

12

Holding AccountBilling & Payable

E-CAE Toolsmiths and Workstations

DN

P O

pera

tions

ToolsmithsWorkstations

SystemSystemCAECAE

DIVISION 31DIVISION 31

Servers & Sys Admin M-CAE Servers& Sys Admin Servers & SATMOD Severs

* Not DNP Operations

Design, Build, Assembly, Test (DBAT) Process

CA

E C

ost C

ente

rs

JPL Projects and Technical DivisionsCus

tom

ers

Robin MoncadaRobin MoncadaManagement and Administration

SoapSat Took Kit SDKDoorsApGenFast Flight

Ansoft HPEE SofSonnet

Mentor GraphicsCadenceMathworks MatlabSynopsysSynplicityIlogix StatemateOrcad AutoCad RelexAvant!

Place & Route- Actel- Xilinx - Atmel

(and many more)

PTC Computer VisionPTC Pro-ESDRC IdeasSDRC FemapSolid WorksCosmosNASTRANAdamsSinda/Fluent

PDMS -

EDMGSDRC MetaphaseSherpa

Visual ToolSetsCool JexPercepsRational RoseRuifyHarlequin LISPI-Logix Rhapsody

Code VLensViewTraceProZemax

Software Tools

ElectronicsElectronicsCAECAE

DIVISION 34DIVISION 34

RF & EMRF & EMCAECAE

DIVISION 33DIVISION 33

MechanicalMechanicalCAECAE

DIVISION 35DIVISION 35

SoftwareSoftwareCAECAE

DIVISION 36DIVISION 36

OpticalOpticalCAECAE

DIVISION 38DIVISION 38

M-CAE Toolsmithsand Workstations

Adapted from “Computer Aided Engineering Tool Service at JPL” - 2001-07-22 - Mike Dickerson -NASA-JPL

Example CAD/E/X Toolset (JPL)

~100 tools

Page 13: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

13

Contents Background

– Example Airframe Structural Analysis Needs (Boeing)– Example CAD/E/X Toolset (JPL)– Multi-Representation Architecture

» Constrained object knowledge representation» Conceptual framework for complex model interoperability

(e.g., between CAD-CAE models)» Quantity estimates by representation type

Characterization of CAD-CAE Associativity Gaps Summary

Page 14: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

14

Example Chip Package Products Source: www.shinko.co.jp

Plastic Ball Grid Array (PBGA) Packages Quad Flat Packs (QFPs)

Wafer Level Package (WLP)System-in-Package (SIP)

Glass-to-Metal Seals

Page 15: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

15

Flexible High Diversity Design-Analysis Integration

Electronic Packaging Examples: Chip Packages/Mounting Shinko Electric Project: Phase 1 (production usage)

EBGA, PBGA, QFP

CuGround

PKG

Chip

Analysis Modules (CBAMs) of Diverse Behavior & Fidelity

FEAAnsys

General MathMathematica

Analyzable Product Model

XaiTools

XaiToolsChipPackage

ThermalResistance

3D

Modular, ReusableTemplate Librariestemperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

xFF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

AF

sr1

oTTT

r3LL

m a t e r i a l

e f f e c t i v e le n g t h , L e f f

d e f o rm a t i o n m o d e l

l in e a r e l a s t ic m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r in g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

li n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t io n re a c t io n

t s1

A

S l ee v e 1

A t s2

d s2

d s1

S l e e v e 2

L

S h a f t

L ef f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b le s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b lea c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l ea c t u a l

M S

a l l o w a b let w i s t Analysis Tools

Design Tools

PWB DBMaterials DB*

Prelim/APM Design ToolXaiTools ChipPackage

ThermalStress

Basic3D**

** = Demonstration module

BasicDocumentation

Automation AuthoringMS Excel

Page 16: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

16

ProAM Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue**

1D,2D

1D,2D,3D

Modular, ReusableTemplate Libraries

ECAD Tools Mentor Graphics,

Accel*

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

et

thermal strain, t

elastic strain, e

mv3

mv2

xFF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

AF

sr1

oTTT

r3LL

m a t e r ia l

e f f e c t i v e l e n g t h , L e f f

d e f o rm a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o rs i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c ro s s s e c t io n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

li n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n re a c t i o n

t s1

A

S le e v e 1

A t s2

d s2

d s1

S l ee v e 2

L

S h a f t

L ef f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b le s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b lea c t u a l

M S

M a rg i n o f S a f e t y( > c a s e )

a l l o w a b l ea c t u a l

M S

a l lo w a b l et w i s t Analysis Tools

PWBWarpage

1D,2D

Materials DB

PWB Stackup ToolXaiTools PWA-B

STEP AP210‡ GenCAM**,

PDIF*

‡ AP210 DIS WD1.7 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

Page 17: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

17

Analysis Template Methodology & X-Analysis Integration Objectives (X=Design, Mfg., etc.)

Goal:Improve engineering processes via analysis templates

with enhanced CAx-CAE interoperability Challenges (Gaps):

– Idealizations & Heterogeneous Transformations– Diversity: Information, Behaviors, Disciplines, Fidelity, Feature Levels, CAD/CAE Methods

& Tools, …– Multi-Directional Associativity:

DesignAnalysis, Analysis Analysis Focus:

Capture analysis template knowledge for modular, regular design usage

Approach: Multi-Representation Architecture (MRA)

using Constrained Objects (COBs)

Page 18: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

18

X-Analysis Integration Techniquesfor CAD-CAE Interoperability

http://eislab.gatech.edu/research/

a. Multi-Representation Architecture (MRA)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model

b. Explicit Design-Analysis Associativity

c. Analysis Module Creation Methodology

I n f o r m a l A s s o c i a t i v i t y D i a g r a m

C o n s t r a i n e d O b j e c t - b a s e d A n a l y s i s M o d u l eC o n s t r a i n t S c h e m a t i c V i e w

P l a n e S t r a i n B o d i e s S y s t e m

P W A C o m p o n e n t O c c u r r e n c e

CL

1

m a t e r i a l ,E( , )g e o m e t r y

b o d y

p l a n e s t r a i n b o d y , i = 1 . . . 4P W B

S o l d e rJ o i n t

E p o x y

C o m p o n e n tb a s e : A l u m i n a

c o r e : F R 4

S o l d e r J o i n t P l a n e S t r a i n M o d e l

t o t a l h e i g h t , h

l i n e a r - e l a s t i c m o d e l

A P M A B B

3 A P M 4 C B A M

2 A B Bc

4b o d y 3b o d y

2b o d y

1h oT

p r i m a r y s t r u c t u r a l m a t e r i a l

ii

i

1 S M M

D e s i g n M o d e l A n a l y s i s M o d e l

A B B S M M

s o l d e rs o l d e r j o i n t

p w b

c o m p o n e n t

1 . 2 5

d e f o r m a t i o n m o d e l

t o t a l h e i g h t

d e t a i l e d s h a p e

r e c t a n g l e

[ 1 . 2 ]

[ 1 . 1 ]

a v e r a g e

[ 2 . 2 ]

[ 2 . 1 ]

cT c

T s

i n t e r - s o l d e r j o i n t d i s t a n c ea p p r o x i m a t e m a x i m u m

s j

L s

p r i m a r y s t r u c t u r a l m a t e r i a lt o t a l t h i c k n e s s

l i n e a r - e l a s t i c m o d e l

P l a n e S t r a i n

g e o m e t r y m o d e l 3

a

s t r e s s - s t r a i nm o d e l 1

s t r e s s - s t r a i nm o d e l 2

s t r e s s - s t r a i nm o d e l 3

B o d i e s S y s t e m

x y , e x t r e m e , 3

T 2

L 1

T 1

T 0

L 2

h 1

h 2

T 3T s j

h s

h c

L c

x y , e x t r e m e , s jb i l i n e a r - e l a s t o p l a s t i c m o d e l

l i n e a r - e l a s t i c m o d e l

p r i m a r y s t r u c t u r a l m a t e r i a l l i n e a r - e l a s t i c m o d e lc o m p o n e n to c c u r r e n c e

s o l d e r j o i n ts h e a r s t r a i nr a n g e

[ 1 . 2 ]

[ 1 . 1 ]l e n g t h 2 +

3 A P M 2 A B B 4 C B A M

F i n e - G r a i n e d A s s o c i a t i v i t y

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Analysis Procedures

CommercialAnalysis ToolsAnsys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder JointComponent

APM CBAM ABB SMM

Ubiquitous Analysis(Module Usage)

Ubiquitization(Module Creation)

CAE

Physical Behavior Research,Know-How, Design Handbooks, ...

Page 19: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

19

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– SummaryPart 4: Advanced Topics & Current Research

Page 20: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

20

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model

O(100) tools

Page 21: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

21

Analyzable Product Models (APMs)

SolidModeler

MaterialsDatabase

FastenersDatabase

Design Applications Analysis Applications

FEA-BasedAnalysis

Formula-BasedAnalysis

Combineinformation

Add reusablemultifidelity

idealizations

Analyzable Product Model(APM)

...Provide advanced access to design data needed by diverse analyses.

Support multi-directionality

Page 22: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

22

Multi-Fidelity IdealizationsSame Behavior; Idealized Geometries of Varying Dimension

inboard beam

Design Model (MCAD) Analysis Models (MCAE)

1D Beam/Stick Model

3D Continuum/Brick Model

flap support assembly

Behavior = Deformation

Page 23: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

23

Flap Link Geometric Model(with idealizations)

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

tfb tw

wf

rf

f

Section B-B(at critical_cross_section)

shaft

Leff

s

tft

A, I, J

tapered I

htotaltf tw

wf

tfb tw

wf

f

tft

hw hw hw

basic I

htotalhtotal

tf

Multifidelity Idealizations

A, I, J A, I, J

rib1

Detailed Design

rib2

red = idealized parameter

28b

Page 24: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

24

Flap Linkage ExampleManufacturable Product Model (MPM) = Design Description

Product Attribute

Ri Product Relation

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

flap_link

sleeve_1

rib_2

w

t

r

x

name

R3

R2

t2f

wf

tw

t1f

cross_section

w

t

r

x

R1

COB flap_link SUBTYPE_OF part; part_number : STRING; inter_axis_length, L : REAL; sleeve1 : sleeve; sleeve2 : sleeve; shaft : tapered_beam; rib1 : rib; rib2 : rib;RELATIONS PRODUCT_RELATIONS pr2 : "<inter_axis_length> == <sleeve2.origin.y> -

<sleeve1.origin.y>"; pr3 : "<rib1.height> == (<sleeve1.width> -

<shaft.cross_section.design.web_thickness>)/2"; pr4 : "<rib2.height> == (<sleeve2.width> -

<shaft.cross_section.design.web_thickness>)/2";...

END_COB;

Extended Constraint Graph

Constrained Object (COB) Structure (template)

Page 25: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

25

Flap Linkage ExampleAnalyzable Product Model (APM) = MPM Subset + Idealizations

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Extended Constraint Graph

Partial COB Structure (COS)

effective_length, Leff == inter_axis_length -

(sleeve1.hole.cross_section.radius + sleeve2.hole.cross_section.radius)

Page 26: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

26

Concurrent Multi-FidelityCross-Section Representations

MULTI_LEVEL_COB cross_section; design : filleted_tapered_I_section; tapered : tapered_I_section; basic : basic_I_section;RELATIONS PRODUCT_IDEALIZATION_RELATIONS pir8 : "<basic.total_height> == <design.total_height>"; pir9 : "<basic.flange_width> == <design.flange_width>"; pir10 : "<basic.flange_thickness> == <design.flange_base_thickness>"; pir11 : "<basic.web_thickness> == <design.web_thickness>";

pir12 : "<tapered.total_height> == <design.total_height>"; pir13 : "<tapered.flange_width> == <design.flange_width>"; pir14 : "<tapered.flange_base_thickness> == <design.flange_base_thickness>"; pir15 : "<tapered.flange_taper_thickness> == <design.flange_taper_thickness>"; pir16 : "<tapered.flange_taper_angle> == <design.flange_taper_angle>"; pir17 : "<tapered.web_thickness> == <design.web_thickness>";END_MULTI_LEVEL_COB;

Detailed Design Cross-SectionIdealized Cross-SectionsAssociativity Relations betweenCross-Section Fidelities

tfb tw

wf

rf

f

Section B-B(at critical_cross_section)

tft

A, I, J

tapered I

htotaltf tw

wf

tfb tw

wf

f

tft

hw hw hw

basic I

htotalhtotal

tf

Multifidelity Idealizations

A, I, J A, I, J

Detailed Design

Page 27: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

27

Design Model

Idealized Model

Design-Idealization Relation

flap_linkflap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R3

R2

R3

R2

R1R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

R8

R9

R10

R8

R9

R10

6R6R

R7R7

R12R12

11R11R

1R1R

2

3

4

5

R

R

R

R

2

3

4

5

R

R

R

R

2

3

4

5

R

R

R

R

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Product AttributeProduct Attribute

Idealized AttributeIdealized Attribute

Ri Idealization RelationRi Idealization Relation

Ri Product RelationRi Product Relation

Extended Constraint Graph

Flap Link APMImplementation in CATIA v5

Page 28: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

28

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model

O(100) types

Page 29: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

29

Analysis Building Blocks (ABBs)

Analysis Primitives

Beam

q(x)

Distributed Load

RigidSupport

Cantilever Beam System

Analysis Systems- Primitive building blocks - Containers of ABB "assemblies"

Material Models

Specialized

General

- Predefined templates

- User-defined systemsAnalysis VariablesDiscrete Elements

Interconnections

Continua

Plane Strain BodyLinear-Elastic

BilinearPlastic PlateLow Cycle

Fatigue

N

Mass Spring Damper

x

y q(x)

Beam

Distributed Load

RigidSupport

No-Slipbody 1body 2

Temperature,

Stress,

Strain,

T

Geometry

Object representation of product-independent analytical engineering concepts

Page 30: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

30

Common Structures Workstation (CSW) Request for Information June 2000, The Boeing Company.

Appendix B: Required Standard Analysis Methods

Available at http://eislab.gatech.edu/projects/boeing-psi/2000-06-csw-rfi/

~110 generic template

groupings

Page 31: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

31

Appendix B: Required Standard Analysis Methods(continued)

Page 32: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

32

COB-based Libraries of Analysis Building Blocks (ABBs)Material Model and Continuum ABBs - Constraint Schematic-S

Material Model ABB

Continuum ABBs

modularre-usage

E

O n e D L i n e a rE la s t i c M o d e l

T

G

e

t

m a t e r i a l m o d e l

p o l a r m o m e n t o f i n e r t i a , Jr a d iu s , r

u n d e f o r m e d l e n g t h , L o

t w i s t ,

t h e t a s t a r t , 1

t h e t a e n d , 2

r 1

12

r 3

0Lr

JrT r

t o r q u e , T r

xTT

G , r , , ,J

L o

y

m ateria l m odel

tem perature, T

re ference tem perature, T o

force, F

area, A

undefo rm ed length, L o

to ta l e longation,L

length, L

start, x 1

end, x 2

E

O ne D LinearE lastic M odel

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

AF

edb.r1

oTTT

r3

LL

xFF

E, A ,

LL o

T , ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, telastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

Page 33: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

33

COB-based Libraries of Analysis Building Blocks (ABBs)Material Model and Continuum ABBs - COB Structure-S

COB one_D_linear_elastic_model SUBTYPE_OF elastic_model; youngs_modulus, E : REAL; poissons_ratio, : REAL; cte, : REAL; shear_modulus, G : REAL; strain, : REAL; stress, : REAL; shear_stress, : REAL; shear_strain, : REAL; thermal_strain, t : REAL;

elastic_strain, e : REAL;

temperature_change, T : REAL; RELATIONS r1 : "<shear_modulus> * ( 2 * (1 + <poissons_ratio> ) )

== <youngs_modulus> "; r2 : "<strain> == <elastic_strain> + <thermal_strain>"; r3 : "<elastic_strain> == <stress> / <youngs_modulus>"; r4 : "<thermal_strain> == <cte> * <temperature_change>"; r5 : "<shear_strain> == <shear_stress> / <shear_modulus>";END_COB;

COB one_D_linear_elastic_model_isothermal SUBTYPE_OF one_D_linear_elastic_model; RELATIONS r6 : "<temperature_change> == 0";END_COB;

COB slender_body SUBTYPE_OF deformable_body; undeformed_length, L0 : REAL;

reference_temperature, T0 : REAL;

temperature, T : REAL;RELATIONS sb1 : "<material_model.temperature_change>

== <temperature> - <reference_temperature>";END_COB;

COB extensional_rod SUBTYPE_OF slender_body; start, x1 : REAL;

end, x2 : REAL;

length, L : REAL; total_elongation, &Delta;L : REAL; force, F : REAL; area, A : REAL; material_model : one_D_linear_elastic_model_noShear; RELATIONS er1 : "<length> == <end> - <start>"; er2 : "<total_elongation> == <length> - <undeformed_length>"; er3 : "<material_model.strain> == <total_elongation> / <undeformed_length>"; er4 : "<material_model.stress> == <force> / <area>";END_COB;

Page 34: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

34

Appendix B: Required Standard Analysis Methods(continued)

e

setr

Pf02

21

e

behtPCf

),,( 13 hbrfK

e

setr

Pf02

e

setr

Pf02

21

e

behtPCf

21

e

behtPCf

),,( 13 hbrfK ),,( 13 hbrfK

Page 35: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

35

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model O(10,000)

Page 36: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

36

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, Jradius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0Lr

JrTr

torque, Tr

xTT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

AF

edb.r1

oTTT

r3

LL

xFF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowableactual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rLws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowableactual

MS

ux mos model

Margin of Safety(> case)

allowableactual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowableactual

MS

Margin of Safety(> case)

allowableactual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 37: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

37

(1a) Analysis Template: Flap Link Extensional Model

Tutorial Example:Flap Link Analysis Template (CBAM)

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l ea c t u a l

M S

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)*

CAD-CAEAssociativity (idealization usage)

Material ModelsGeometry

Requirements &Objectives

APM ABB

ABB

CBAM

SMM

Page 38: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

38

FEA-based Analysis Subsystem Used in Linkage Plane Stress Model (2D Analysis Problem)

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

Higher fidelity version vs. Linkage Extensional Model

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rLws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowableactual

MS

ux mos model

Margin of Safety(> case)

allowableactual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ABBSMM SMM Template

Page 39: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

39

Flap Link Extensional Model (CBAM)Example COB Instance in XaiTools (object-oriented spreadsheet)

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between design & analysis

Modular generic analysis templates(ABBs)

Library data for materials

Focus Point ofCAD-CAE Integration

example 1, state 1

Page 40: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

40

Contents Background

– Example Airframe Structural Analysis Needs (Boeing)– Example CAD/E/X Toolset (JPL)– Multi-Representation Architecture

» Conceptual framework for complex model interoperability» Quantity estimates by representation type

Characterization of CAD-CAE Associativity Gaps Summary

Page 41: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

41

Quantity estimates by MRA representation type

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model

O(100) tools

O(100) types

O(10,000)

Page 42: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

42

Contents Background

– Example Airframe Structural Analysis Needs (Boeing)– Example CAD/E/X Toolset (JPL)– Multi-Representation Architecture

» Conceptual framework for complex model interoperability» Quantity estimates by representation type

Characterization of CAD-CAE Associativity Gaps Summary

Page 43: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

43

CAD-CAE associativity relations are represented as APM-ABB relations (in CBAMs)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model

O(1,000,000) relations

An associativity gap is a computer-insensible relation

Page 44: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

44

e

setr

Pf02

21

e

behtPCf

),,( 13 hbrfK

Channel Fitting Analysis

Associativity Gapsbetween CAD and CAE Models

Analysis Model (with Idealized Features)

Detailed Design Model

Idealizations

1 : b = cavity3.inner_width + rib8.thickness/2 + rib9.thickness/2

“It is no secret that CAD models are driving more of today’s product development processes ... With the growing number of design tools on the market, however, the interoperability gap with downstream applications, such as finite element analysis, is a very real problem. As a result, CAD models are being recreated at unprecedented levels.” Ansys/ITI press Release, July 6 1999

http://www.ansys.com/webdocs/VisitAnsys/CorpInfo/PR/pr-060799.html

No explicitfine-grainedCAD-CAE

associativity

Page 45: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

45

Analysis Tools

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

F tuLT

Fty

F tyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

F su

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, ethickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,max allowable yield stress,

max allowable long transverse stress,max allowable shear stress,plastic ultimate strain,

plastic ultimate strain long transverse,young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

F su

epu

epuLT

E

FtuLT

product structure (channel f itting joint)

Flexible High Diversity Design-Analysis Integration Phases 1-3 Airframe Examples:

“Bike Frame” / Flap Support Inboard Beam

Analysis Modules (CBAMs) of Diverse Feature:Mode, & Fidelity

Design Tools

Materials DBFEA

Elfini*MATDB-like

Analyzable Product Model

XaiTools

XaiTools

Fitting:Bending/Shear

3D

1.5D

Modular, ReusableTemplate LibrariesMCAD Tools

CATIA v4, v5

Lug:Axial/Oblique; Ultimate/Shear

1.5D

Assembly:Ultimate/

FailSafe/Fatigue** = Item not yet available in toolkit (all others have working examples)

diagonal brace lug joint j = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowableactual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

nP join tlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, DoverD

PaxuWe

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

Fasteners DB

FASTDB-like

General Math Mathematica

In-HouseCodes

Image API(CATGEO);

VBScript

Page 46: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

46

“Bike Frame” Bulkhead Fitting Analysis TemplateUsing Constrained Object (COB) Knowledge/Info Representation

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, ethickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,max allowable yield stress,

max allowable long transverse stress,max allowable shear stress,plastic ultimate strain,

plastic ultimate strain long transverse,young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

e

setr

Pf02

21

e

behtPCf

),,( 13 hbrfK

18 CAD-CAE associativity relations

Page 47: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

47

Cost of Associativity GapsReference: http://eislab.gatech.edu/pubs/reports/EL004/

Categories of Gap Costs• Associativity time & labor - Manual maintenance - Little re-use - Lost knowledge• Inconsistencies• Limited analysis usage - Fewer parts analyzed - Fewer iterations per part• “Wrong” values - Too conservative: Extra part costs and performance inefficiencies - Too loose: Re-work, failures, law suits

e

setr

Pf02

21

e

behtPCf

),,( 13 hbrfK

Analysis Model(with Idealized Features)

Detailed Design Model

Channel Fitting Analysisidealizations

No explicitfine-grainedCAD-CAE

associativity

000,000,10$gap$10 gaps000,000,1

gaps000,000,1analysisvariables 10

partanalyses 10parts 000,10

OOO

OOOO

Initial Cost Estimate per Complex Product (only for manual maintenance costs of structural analysis problems)

Page 48: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

48

Cost Estimate per Complex Product p.1/2 Manual Maintenance of Associativity Gaps in Structural Analysis Problems

000,000,10$gap$10 gaps000,000,1

gaps000,000,1analysisvariables 10

partanalyses 10parts 000,10

OOO

OOOO

Reference: http://eislab.gatech.edu/pubs/reports/EL004/

Page 49: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

49

Cost Estimate per Complex Product p.2/2Manual Maintenance of Associativity Gaps in Structural Analysis Problems

000,000,10$gap$10 gaps000,000,1

gaps000,000,1analysisvariables 10

partanalyses 10parts 000,10

OOO

OOOO

Reference: http://eislab.gatech.edu/pubs/reports/EL004/

Page 50: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

50

“Bike Frame” Bulkhead Fitting Analysis TemplateUsing Constrained Object (COB) Knowledge/Info Representation

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, ethickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,max allowable yield stress,

max allowable long transverse stress,max allowable shear stress,plastic ultimate strain,

plastic ultimate strain long transverse,young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

e

setr

Pf02

21

e

behtPCf

),,( 13 hbrfK

18 associativity relations

Page 51: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

51

Contents Background

– Example Airframe Structural Analysis Needs (Boeing)– Example CAD/E/X Toolset (JPL)– Multi-Representation Architecture

» Conceptual framework for complex model interoperability» Quantity estimates by representation type

Characterization of CAD-CAE Associativity Gaps Summary

Page 52: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

52

Complex System Representation & Simulation InteroperabilityBuilding Emergency Response Scenarios (Homeland Security)

M a t e r ia l M o d e l A B B :

C o n t in u u m A B B s :

E

O n e D L i n e a rE l a s t i c M o d e l

T

G

e

t

m a t e r i a l m o d e l

p o l a r m o m e n t o f i n e r t i a , Jr a d iu s , r

u n d e fo r m e d l e n g t h , L o

t w i s t ,

t h e ta s ta r t , 1

t h e ta e n d , 2

r 1

12

r 3

0Lr

JrT r

t o r q u e , T r

xTT

G , r , , ,J

L o

y

m a te r i a l m o d e l

te m p e r a tu r e , T

re fe r e n c e te m p e r a tu r e , T o

f o r c e , F

a r e a , A

u n d e fo r m e d le n g th , L o

t o ta l e l o n g a ti o n , L

le n g th , Ls ta r t , x 1

e n d , x 2

E

O n e D L in e a rE l a s t i c M o d e l

( n o s h e a r )

T

e

t

r 1

12 xxL

r 2

oLLL

r 4

AF

e d b .r 1

oTTT

r 3

LL

xFF

E , A ,

LL o

T , ,

yL

T o r s io n a l R o d

E x t e n s io n a l R o d

t e m p e r a tu r e c h a n g e , T

c te ,

y o u n g s m o d u l u s , E

s t r e s s ,

s h e a r m o d u lu s , G

p o is s o n s r a t i o ,

s h e a r s t r e s s , s h e a r s t r a i n ,

t h e r m a l s t r a i n , t

e l a s t i c s t r a i n , e

s t r a in ,

r 2

r 1)1(2

EG

r 3

r 4Tt

Ee

r5

G

te

1 D L in e a r E la s t i c M o d e l

m a t e r ia l

e f f e c t i v e l e n g t h , L e f f

l in e a r e l a s t ic m o d e l

L o

E x te n s i o n a l R o d( is o t h e r m a l)

F

L

A

L

E

x 2

x 1

y o u n g s m o d u lu s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l3

a l 2

l in k a g e

m o d e : s h a f t t e n s io n

c o n d it io n r e a c t io n

a l lo w a b le s t r e s s

s tr e s s m o s m o d e l

M a r g i n o f S a f e ty( > c a s e )

a l l o w a b l ea c t u a l

M S

S i m u l a t i o n T e m p l a t e so f D i v e r s e B e h a v i o r & F i d e l i t y

C A D T o o l s

L i b r a r i e s & D a t a b a s e sM a t e r ia ls , E q u ip m e n t ,

P e r s o n n e l , P r o c e d u r e s , …

C F DF l o t h e r m , …

G e n e r a l M a t hM a t h e m a t i c a ,

M a t l a b , …

I n t e g r a t e d S y s t e m M o d e l

E v a c u a t i o nM g t .

C o l u m nD e s t r u c t i o n

2 D

1 D

S i m u l a t i o n B u i l d i n g B l o c k s

C A T I A , . . .

S i m u l a t i o n T o o l sS y s t e m D e s c r i p t i o nT o o l s & R e s o u r c e s

3 Df l a p _ l i n k

c r it i c a l _ s e c t io n

c r it ic a l_ s im p le

t 2 f

w f

tw

h w

t 1 f

a r e a

e f fe c t i v e _ l e n g th

c r i t i c a l_ d e t a il e d

s t r e s s _ s t r a in _ m o d e l l in e a r _ e l a s t ic

E

c t e a r e a

w f

tw

h w

t f

s le e v e _ 1

b

h

t

b

h

t

s le e v e _ 2

s h a f t

r i b _ 1

m a te r i a l

r i b _ 2

w

t

r

x

n a m e

t 2 f

w f

t w

t 1 f

c r o s s _ s e c t io n

w

t

r

x

R 3

R 2

R 1

R 8

R 9

R 1 0

6R

R 7

R 1 2

1 1R

1R

2

3

4

5

R

R

R

R

n a m e

li n e a r _ e la s t ic _ m o d e l

w f

tw

tf

in t e r _ a x is _ le n g th

s le e v e _ 2

s h a f t

m a t e r i a l

l in k a g e

s le e v e _ 1

w

t

r

E

c ro s s _ s e c t io n : b a s i c

w

t

rLw s 1

ts 1

r s 2

w s 2

ts 2

r s 2

w f

tw

tf

E

d e fo r m a ti o n m o d e l

x , m a x

P a r a m e t e r iz e dF E A M o d e l

s tr e s s m o s m o d e l

M a r g in o f S a fe ty( > c a s e )

a l l o w a b l ea c t u a l

M S

u x m o s m o d e l

M a r g i n o f S a f e ty(> c a s e )

a l l o w a b l ea c t u a l

M S

m o d e : te n s i o nu x , m a x

Fc o n d i t i o n r e a c t i o n

a l lo w a b l e i n t e r a x is l e n g t h c h a n g e

a l l o w a b l e s t re s s

m a t e r ia l

e f f e c t iv e l e n g th , L e ff

d e f o r m a t io n m o d e l

l in e a r e la s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u lu s , G

c r o s s s e c t io n :e f f e c t i v e r in g p o la r m o m e n t o f in e r t ia , J

a l1

a l3

a l2 a

l i n k a g e

m o d e : s h a f t to r s i o n

c o n d it io n r e a c t io nT

o u t e r r a d iu s , r o a l2 b

s t r e s s m o s m o d e l

a llo w a b l e s t r e s s

tw is t m o s m o d e l

M a r g in o f S a f e t y( > c a s e )

a l l o w a b l ea c t u a l

M S

M a r g in o f S a f e t y(> c a s e )

a l l o w a b lea c t u a l

M S

a l lo w a b l et w is t

L e g e n dT o o l A s s o c i a t i v i t yO b j e c t R e - u s e

L e g e n dT o o l A s s o c i a t i v i t yO b j e c t R e - u s e

F E AM S C N a s t r a n , …

F a c i l i t i e s M g t . S y s t e m s…

A i r b o r n eH a z a r d F l o w

E v a c u a t i o n C o d e sE g r e s s , E x o d u s , …

0 .5 0 0 i n .0 .0 6 0 i n .

2 0 1 3 5 - 5 5 1 2 d ig i t a l o s c i ll a to rA B C _ 9 2 3 0 W a r n i n g M o d u l e P W B

c o m p o n e n t

l w

h

c o m p o n e n t , cr 2

s ocs r hhh

s ta n d o f f h e i g h t , h s o :

m a x . h e i g h t ( s u r fa c e r e la t iv e ) , h s rr1

pwbs ra thh m a x . h e ig h t ( a b s o l u t e ) , h a

p w b

l w

p w b

t

r3

p wbs o thz zo r i g in

0 .5 0 0 i n .0 .0 6 0 i n .

2 0 1 3 5 - 5 5 1 2 d ig i t a l o s c i ll a to rA B C _ 9 2 3 0 W a r n i n g M o d u l e P W B

0 .5 0 0 i n .0 .0 6 0 i n .

2 0 1 3 5 - 5 5 1 2 d ig i t a l o s c i ll a to rA B C _ 9 2 3 0 W a r n i n g M o d u l e P W B

c o m p o n e n t

l w

h

c o m p o n e n t , cr 2

s ocs r hhh

s ta n d o f f h e i g h t , h s o :

m a x . h e i g h t ( s u r fa c e r e la t iv e ) , h s rr1

pwbs ra thh m a x . h e ig h t ( a b s o l u t e ) , h a

p w b

l w

p w b

t

r3

p wbs o thz zo r i g in

c o m p o n e n t

l w

hc o m p o n e n t

l w

h

c o m p o n e n t , cr 2

s ocs r hhh

s ta n d o f f h e i g h t , h s o :

m a x . h e i g h t ( s u r fa c e r e la t iv e ) , h s rr1

pwbs ra thh m a x . h e ig h t ( a b s o l u t e ) , h a

p w b

l w

p w b

t

r3

p wbs o thz zo r i g in

[email protected] 2003-02-28

Page 53: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

53

Characterizing Complex Model Interoperability Using the Multi-Representation Architecture (MRA)

MRA: Similar to “software design patterns” for CAD-CAE domain– Identifies patterns between CAD and CAE

(including new types of objects)– Captures multi-fidelity explicit associativity

Provides hybrid top-down & bottom-up methodology for characterizing problems & solutions – O(1,000,000) CAD-CAE gap estimate

Page 54: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

54

For Further Information ... Contact: [email protected]

Web site: http://eislab.gatech.edu/– Publications, project overviews, tools, etc.– See: X-Analysis Integration (XAI) Central

http://eislab.gatech.edu/research/XAI_Central.doc

XaiTools™ home page: http://eislab.gatech.edu/tools/XaiTools/

Pilot commercial ESB: http://www.u-engineer.com/– Internet-based self-serve analysis– Analysis module catalog for electronic packaging– Highly automated front-ends to general FEA & math tools

Page 55: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

Backup Slides

Page 56: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

56

Short Course: Using Standards-based Engineering Frameworks forElectronics Product Design and Life Cycle Support

Page 57: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

57

Constrained Object (COB) RepresentationCurrent Technical Capabilities - Generation 2

Capabilities & features:– Various forms: computable lexical forms, graphical forms, etc.

» Enables both computer automation and human comprehension– Sub/supertypes, basic aggregates, multi-fidelity objects– Multi-directionality (I/O changes)– Reuses external programs as white box relations– Advanced associativity added to COTS frameworks & wrappers

Analysis module/template applications (XAI/MRA): – Analysis template languages– Product model idealizations– Explicit associativity relations with design models & other analyses– White box reuse of existing tools (e.g., FEA, in-house codes)– Reusable, adaptable analysis building blocks– Synthesis (sizing) and verification (analysis)

Page 58: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

58

Constrained Objects (cont.) Representation Characteristics & Advantages - Gen. 2

Overall characteristics– Declarative knowledge representation (non-causal)– Combining object & constraint graph techniques– COBs = (STEP EXPRESS subset) +

(constraint graph concepts & views) Advantages over traditional analysis representations

– Greater solution control– Richer semantics

(e.g., equations wrapped in engineering context)– Unified views of diverse capabilities (tool-independent)– Capture of reusable knowledge – Enhanced development of complex analysis models

Toolkit status (XaiTools v0.4)– Basic framework, single user-oriented, file-based

See Advanced Topics

for Gen.3 Extensions

Page 59: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

59

Convergence of RepresentationsDatabase Techniques(data structure, storage …)

Software Development(algorithms …)

Artificial Intelligence& Knowledge-Based Techniques

(structure combined with algorithms/relations/behavior)

EERSTEP Express

ER

UML

Flow Charts

OMT

ObjectsRules

Constraint graphs

Constrained Object - likeRepresentations

COBs, OCL, ...

Page 60: Russell.Peak@marc.gatech itimes.marc.gatech/ eislab.gatech/projects

60

Technique Summary Tool independent model interoperability

– Application focus: analysis template methodology Multi-representation architecture (MRA)

& constrained objects (COBs):– Addresses fundamental gaps:

» Idealizations & CAD-CAE associativity: multi-fidelity, multi-directional, fine-grained

– Based on information & knowledge theory– Structured, flexible, and extensible

Improved quality, cost, time:– Capture engineering knowledge in a reusable form – Reduce information inconsistencies– Increase analysis intensity & effectiveness

» Reducing modeling cycle time by 75% (production usage)