s-domain circuit analysisnodes.ucsd.edu/.../140_linearcircuits/data/6sdomain.pdfmae140 linear...

25
MAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors, inductors and resistors Key feature – linearity – is preserved Ccts described by ODEs and their ICs Order equals number of C plus number of L Element-by-element and source transformation Nodal or mesh analysis for s-domain cct variables Solution via Inverse Laplace Transform Why? Easier than ODEs Easier to perform engineering design Frequency response ideas - filtering

Upload: others

Post on 18-Aug-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 132

s-Domain Circuit Analysis

Operate directly in the s-domain with capacitors, inductors and resistors Key feature – linearity – is preserved Ccts described by ODEs and their ICs

Order equals number of C plus number of L

Element-by-element and source transformation Nodal or mesh analysis for s-domain cct variables Solution via Inverse Laplace Transform

Why? Easier than ODEs

Easier to perform engineering design Frequency response ideas - filtering

Page 2: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 133

Element Transformations

Voltage source Time domain

v(t) =vS(t) i(t) = depends on cct Transform domain

V(s) =VS(s)=L(vS(t)) I(s) = L(i(t)) depends on cct

Current source

I(s) =L(iS(t)) V(s) = L(v(t)) depends on cct

+ _

i(t)

vS

iS

v(t)

Page 3: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 134

Element Transformations contd

Controlled sources

Short cct, open cct, OpAmp relations

Sources and active devices behave identically Constraints expressed between transformed variables

This all hinges on uniqueness of Laplace Transforms and linearity

)()()()()()()()()()()()()()()()(

2121

2121

2121

2121

sgVsItgvtisrIsVtritvsIsItitisVsVtvtv

=⇔=

=⇔=

=⇔=

=⇔=

ββ

µµ

)()()()(0)(0)(0)(0)(

sVsVtvtvsItisVtv

PNPN

OCOC

SCSC

=⇔=

=⇔=

=⇔=

Page 4: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 135

Element Transformations contd

Resistors

Capacitors

Inductors

)()()()()()()()(sGVsIsRIsVtGvtitRitv

RRRR

RRRR==

==

iR

vR

sisV

sLsILissLIsV

idvL

tidttdiLtv

LLLLLL

tLLL

LL

)0()(1)()0()()(

)0()(1)()()(0

+=−=

+== ∫ ττ

R s Y R s Z R R 1 ) ( ) ( = =

sC s Y sC s Z C C = = ) ( 1 ) (

sL s Y sL s Z L L 1 ) ( ) ( = =

vC

iC

vL

iL + + +

svsI

sCsVCvssCVsI

vdiC

tvdttdvCti

CCCCCC

CtCC

CC

)0()(1)()0()()(

)0()(1)()()(0

+=−−=

+== ∫ ττ

Page 5: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 136

Element Transformations contd Resistor

Capacitor

Note the source transformation rules apply!

IR(s)

VR(s)

+

-

vR(t)

+

-

vC(t)

+

-

iR(t)

iC(t)

R R

C sC1

)0(CCvVC(s)

+

-

IC(s)

VC(s)

+

-

IC(s)

+ _ s

vC )0(

sC1

) ( ) ( s RI s V R R =

s v s I

sC s V Cv s sCV s I C C C C C C

) 0 ( ) ( 1 ) ( ) 0 ( ) ( ) ( + = - - =

Page 6: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 137

Element Transformations contd

Inductors s

i s V sL s I Li s sLI s V L

L L L L L ) 0 ( ) ( 1 ) ( ) 0 ( ) ( ) ( + = - =

iL(t) + _ vL(t)

-

+ sL

LiL(0)

IL(s) +

VL(s)

-

IL(s)

VL(s) +

-

sL siL )0(

Page 7: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 138

Example 10-1 T&R p 456

RC cct behavior Switch in place since t=-∞, closed at t=0. Solve for vC(t).

R

VA

t=0

C

R

sC1

)0(CCv

I2(s)

I1(s)

vC +

-

Page 8: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 139

Example 10-1 T&R p 456

RC cct behavior Switch in place since t=-∞, closed at t=0. Solve for vC(t).

Initial conditions s-domain solution using nodal analysis

t-domain solution via inverse Laplace transform

R

VA

t=0

C

R

sC1

)0(CCv

I2(s)

I1(s)

vC +

-

)(1)()()()( 21 ssCV

sC

sVsIRsVsI C

CC ===

AC Vv =)0(

)()(1)( tueVtv

RCs

VsV RCt

AcA

C−

=+

=

Page 9: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 140

Example 10-2 T&R p 457

Solve for i(t)

+ _

R

VAu(t) L i(t) + _

+ _

R

sL I(s) sVA

LiL(0)

)(sVL

+

-

Page 10: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 141

Example 10-2 T&R p 457

Solve for i(t)

KVL around loop

Solve

Invert

+ _

R

VAu(t) L i(t) + _

+ _

R

sL I(s) sVA

LiL(0)

)(sVL

+

-

0)0()()( =++− LA LisIsLRsV

i(t) =VAR−VARe−RtL + iL (0)e

−Rt L

u(t) Amps

I(s) =VA

Ls s+ RL( )

+iL (0)s+ RL

=VA

Rs

+iL (0) −

VAR

s+ RL

Page 11: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 142

Impedance and Admittance

Impedance is the s-domain proportionality factor relating the transform of the voltage across a two-terminal element to the transform of the current through the element with all initial conditions zero

Admittance is the s-domain proportionality factor relating the transform of the current through a two-terminal element to the transform of the voltage across the element with initial conditions zero

Impedance is like resistance Admittance is like conductance

Page 12: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 143

Circuit Analysis in s-Domain

Basic rules The equivalent impedance Zeq(s) of two impedances Z1(s)

and Z2(s) in series is

Same current flows

The equivalent admittance Yeq(s) of two admittances Y1(s) and Y2(s) in parallel is

Same voltage

)()()( 21 sZsZsZeq +=

I(s)

V(s) Z2

Z1 +

-

( ) ( )sIsZsIsZsIsZsV eq )()()()()( 21 =+=

)()()( 21 sYsYsYeq +=

I(s)

V(s) Y1

+

- Y2 )()()()()()()( 21 sVsYsVsYsVsYsI eq=+=

Page 13: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 144

Example 10-3 T&R p 461

Find ZAB(s) and then find V2(s) by voltage division

+ _

L

v1(t) R C

A

B

v2(t) +

-

+ _

sL

V1(s) R

A

B

V2(s) +

- sC1

Ω +

+ + =

+ + = + =

1 1 1 1 ) (

2 RCs

R Ls RLCs sC

R

sL sC R sL s Z eq

)()()()()( 121

12 sV

RsLRLCsRsV

sZsZsV

eq

++=

=

Page 14: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 145

Superposition in s-domain ccts

The s-domain response of a cct can be found as the sum of two responses 1.  The zero-input response caused by initial condition

sources with all external inputs turned off 2.  The zero-state response caused by the external sources

with initial condition sources set to zero Linearity and superposition

Another subdivision of responses 1.  Natural response – the general solution

Response representing the natural modes (poles) of the cct

2.  Forced response – the particular solution Response containing modes due to the input

Page 15: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 146

Example 10-6 T&R p 466

The switch has been open for a long time and is closed at t=0.

Find the zero-state and zero-input components of V2(s) Find v(t) for IA=1mA, L=2H, R=1.5KΩ, C=1/6 µF

IA

v(t)

t=0

R C L

+

-

V(s) R sL

+

- sI A

sC1

RCIA

Page 16: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 147

Example 10-6 T&R p 466

The switch has been open for a long time and is closed at t=0.

Find the zero-state and zero-input components of V2(s) Find v(t) for IA=1mA, L=2H, R=1.5KΩ, C=1/6 µF

IA

v(t)

t=0

R C L

+

-

V(s) R sL

+

- sI A

sC1

RCIA

R Ls RLCs RLs

sC R sL

s Z eq + +

= + +

= 2 1 1

1 ) (

LCs

RCs

sRIRCIsZsV

LCs

RCs

CI

sIsZsV

AAeqzi

AA

eqzs

11)()(

11)()(

2

2

++==

++==

Page 17: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 148

Example 10-6 contd

Substitute values

LCs

RCs

sRIRCIsZsV

LCs

RCs

CI

sIsZsV

AAeqzi

AA

eqzs

11)()(

11)()(

2

2

++==

++==

Vzs(s) =6000

(s+1000)(s+ 3000)=

3s+1000

+−3

s+ 3000vzs(t) = 3e−1000t − 3e−3000t[ ]u(t)

Vzi (s) =1.5s

(s+1000)(s+ 3000)=

−0.75s+1000

+2.25

s+ 3000vzi (t) = −0.75e−1000t + 2.25e−3000t[ ]u(t)

V(s) R sL

+

- sI A

sC1

RCIA

Page 18: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 149

Example

Formulate node voltage equations in s-domain

+ _

R1

v1(t) + -

R2 C2

C1 R3 vx(t) +

- µvx(t) v2(t)

+

-

Page 19: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 150

Example

Formulate node voltage equations in s-domain

+ _

R1

v1(t) + -

R2 C2

C1 R3 vx(t) +

- µvx(t) v2(t)

+

-

+ _

R1

V1(s) + -

R2

C2vC2(0)

R3 Vx(s) +

- µVx(s) V2(s)

+

- 1

1sC

C1vC1(0) 2

1sC

A B C D

Page 20: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 151

Example contd

Node A: Node D:

Node B:

Node C:

+ _

R1

V1(s) + -

R2

C2vC2(0)

R3 Vx(s) +

- µVx(s) V2(s)

+

- 1

1sC

C1vC1(0) 2

1sC

A B C D

VB (s) −VA (s)R1

+VB (s) −VD (s)

R2+VB (s)1sC1

+VB (s) −VC (s)

1sC2

−C1vC1(0) −C2vC2(0) = 0

)()( 1 sVsVA = )()()( sVsVsV CxD µµ ==

−sC2VB (s) + sC2 +G3[ ]VC (s) = −C2vC2(0)

Page 21: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 152

Example

Find vO(t) when vS(t) is a unit step u(t) and vC(0)=0

Convert to s-domain

+ _ R1

vS(t) + - C R2 vO(t) +

A B C D

Page 22: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 153

Example

Find vO(t) when vS(t) is a unit step u(t) and vC(0)=0

Convert to s-domain

+ _ R1

vS(t) + - C R2 vO(t) +

A B C D

+ _

R1

VS(s) + -

R2

VO(s) +

sC1

CvC(0)

VA(s) VB(s) VC(s) VD(s)

Page 23: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 154

Example

Nodal Analysis Node A: Node D: Node C: Node B: Node C KCL: Solve for VO(s)

Invert LT

+ _

R1

VS(s) + -

R2

VO(s) +

sC1

CvC(0)

VA(s) VB(s) VC(s) VD(s)

)()( sVsV SA =

)()( sVsV OD =

)0()()()( 11 CSB CvsVGsVsCG =−+

0)( =sVC

)0()()( 2 COB CvsVGssCV −=−−

VO(s) = −

sG1CG2

G1 + sC

VS (s) = −

R2R1×

ss+ 1

R1C

VS (s)

= −R2R1×

ss+ 1

R1C

1s

=−R2R1

×1

s+ 1R1C

) ( ) ( 1 1 2 t u e

R R t v C R

t O

- -

=

Page 24: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 155

Features of s-domain cct analysis

The response transform of a finite-dimensional, lumped-parameter linear cct with input being a sum of exponentials is a rational function and its inverse Laplace Transform is a sum of exponentials

The exponential modes are given by the poles of the response transform

Because the response is real, the poles are either real or occur in complex conjugate pairs

The natural modes are the zeros of the cct determinant and lead to the natural response

The forced poles are the poles of the input transform and lead to the forced response

Page 25: s-Domain Circuit Analysisnodes.ucsd.edu/.../140_LinearCircuits/data/6sdomain.pdfMAE140 Linear Circuits 132 s-Domain Circuit Analysis Operate directly in the s-domain with capacitors,

MAE140 Linear Circuits 156

Features of s-domain cct analysis

A cct is stable if all of its poles are located in the open left half of the complex s-plane A key property of a system Stability: the natural response dies away as t→∞ Bounded inputs yield bounded outputs

A cct composed of Rs, Cs and Ls will be at worst marginally stable With Rs in the right place it will be stable

Z(s) and Y(s) both have no poles in Re(s)>0

Impedances/admittances of RLC ccts are “Positive Real” or energy dissipating