s. ghosh (1), a. samaddar (2), c. r. s. kumar (2), and a. rap (3) 1 senior professor, school of...

39
S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS Associate, School of Earth and Environment, University of Leeds, U.K. 2 Research Student, School of Mechanical and Building Sciences, VIT University, Vellore, India 3 Research Fellow, School of Earth and Environment, University of Leeds, U.K. MODELLING SHORT-LIVED CLIMATE MODELLING SHORT-LIVED CLIMATE FORCERS OVER PENINSULAR INDIA: FORCERS OVER PENINSULAR INDIA: THE BIOMASS AND BLACK CARBON STORY THE BIOMASS AND BLACK CARBON STORY

Upload: isabella-obrien

Post on 04-Jan-2016

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3)

 

1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS Associate, School of Earth and Environment, University of Leeds, U.K. 

2 Research Student, School of Mechanical and Building Sciences, VIT University, Vellore, India 

3 Research Fellow, School of Earth and Environment, University of Leeds, U.K.

MODELLING SHORT-LIVED CLIMATE FORCERS MODELLING SHORT-LIVED CLIMATE FORCERS OVER PENINSULAR INDIA: OVER PENINSULAR INDIA:

THE BIOMASS AND BLACK CARBON STORYTHE BIOMASS AND BLACK CARBON STORY

Page 2: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

TALK OUTLINE TALK OUTLINE • Biomass burning and black carbon emissions • Multi-component aerosol processes • Climate modelling challenges• Interfacing research results in decision making processes

Page 3: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

• Biomass-material from living, or recently living organisms, such as wood, waste, and alcohol fuels. 

More than 70% of India’s population depends on biomass and about 32% of the total primary energy use in the country mainly in rural areas is still derived from biomass. 

In 1999 to 2000, more than 85 percent of India’s rural population was dependent on traditional fuels (biomass and cow dung-cake) for their basic energy needs.

India’s goal is to provide cleaner fuels or other means of cooking to the entire population by 2012. 

Page 4: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Cooking energy consumption was estimated separately for rural and urban regions. The total cooking energy consumption for India for 2000 was 6325 PJ with rural population using about 84%. (Habib et al. 2004)

Page 5: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

• Black carbon has contributed the second largest globally averaged radiative forcing after carbon dioxide (CO2), and that the radiative forcing of black carbon is “as much as 55% of the CO2 forcing and is larger than the forcing due to the other greenhouse gasses (GHGs) such as CH4, CFCs, N2O, or tropospheric ozone.”

Page 6: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

China and India together account for 25-35% of global black carbon emissions.  Black carbon emissions from China doubled from 2000 to 2006. 

Page 7: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Stratocumulus Clouds

(photo courtesy: UKMO)

Direct Effect

Indirect Effect : Cloud processing

Aerosol particles

Semi-direct Effect : BC, + Feedback

Page 8: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

DISTRIBUTION OF PM10 ChennaiDISTRIBUTION OF PM10 Chennai

Percentage of total population(per division) living in slums in Chennai

 Highest Three hour average PM10 concentration over the study area (µg/m3)

Sathishkumar et al (2011)

Srimuruganandan and Nagendra (2010)

Particles from Traffic

Page 9: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

NATURAL SOURCES OF ATMOSPHERIC AEROSOLVolcanic Gas PlumeVolcanic Gas Plume

(Courtesy : S.R. Brantly)

Sulfate aerosol

Sea Spray

Courtesy : Google Image

Page 10: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

BIOMASS AEROSOLBIOMASS AEROSOL

Vegetation Fires Source of gases and AP.Fire emissions are transported by convection into the FT and lower stratosphere and are distributed from local to the meso-scale and even to the global scale

(Courtesy : Dr S. Wurzler)

Page 11: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS
Page 12: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Q. How to  model aerosol effects in climate models  Develop Process Models –Parameterize?

AEROSOL PARTICLES AS CCN : COMPLEXITIES AND CHALLENGESAEROSOL PARTICLES AS CCN : COMPLEXITIES AND CHALLENGES

• Atmospheric aerosol particles : hydrophobic, water-insoluble but possess hydrophilic sites

• Some water-soluble component (when we consider biomass aerosol internally mixed with sulphate aerosol)

• Soluble gases : dissolve into a growing solution droplet prior to activation in cloud. This can decrease the critical super-saturation for activation

• In-cloud oxidation of SO2

Page 13: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

AEROSOL MICROSTRUCTUREAEROSOL MICROSTRUCTURE

NaCl 80 μm

(NH4)2SO4

Sub-micron

(NH4)2SO4 80 µm

Diverse Size RangesDiverse Size Ranges

SEM IMAGE : SEA SALTSEM IMAGE : SEA SALT

Page 14: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

BIOMASS AND SOOT AEROSOL : MICROSTRUCTUREBIOMASS AND SOOT AEROSOL : MICROSTRUCTURE

Biomass Aerosol : Leaf debris

Soot Aerosol

Chains of spherules with diameters ~ 10 nm

(Courtesy : Dr Gunter Helas)

Varghese et. al.(2011)  VIT University

Page 15: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

THE MODELTHE MODEL

• Adiabatic parcel model, fully interactive chemistry, treats non-ideal behaviour of solution droplets (Pitzer calculations) (O’Dowd et al 1999)

• Micro-physics : dynamic growth equations for the growth of aerosol solution droplets by condensation of water vapour on a size resolved droplet spectrum

• Mass transport limitations based on Schwartz (1986).

Page 16: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Vapor pressure over an aqueous solution droplet :

(i) Kelvin effect –increases vapor pressure

(ii)Solute effect –decreases vapor pressure

S=(1-B/r3)exp(A/r)

  =1+A/r -B/r3

 A=4Mwσw/RTρw

   =0.66/T (μm)

 B=6nsMw/πρw

    =3.44x1013νms/Ms

     (μm3)

KOHLER THEORYKOHLER THEORY

Page 17: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

KOHLER THEORYKOHLER THEORY

The maxima occur at the critical radius

r*=(3B/A)1/2

At this size

S*=1+(4A3/27B)1/2

Rp=0.05μm

Rp=0.5μm

Page 18: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

MULTI-COMPONENT AEROSOL MULTI-COMPONENT AEROSOL PROCESSES : PENINSULAR INDIAPROCESSES : PENINSULAR INDIA

Ghanti and Ghosh (2010) ; Raj et.al. (2009)Ghanti and Ghosh (2010) ; Raj et.al. (2009)

Page 19: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

GROWTH PROFILE OF THE SMALLEST FINE GROWTH PROFILE OF THE SMALLEST FINE MODE SALT PARTICLES.MODE SALT PARTICLES.

Ghanti and Ghosh (2010)

Page 20: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Modelled optical properties over the three regions.Modelled optical properties over the three regions.

Ghanti and Ghosh (2010)

Page 21: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

CLIMATE MODELLING CHALLENGESCLIMATE MODELLING CHALLENGES

• Two aerosol components -straightforward to predict cloud droplet number concentrations.

• What happens when we sandwich a third mode corresponding to biomass burning between the sulfate and salt modes?

Page 22: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

20012001

Page 23: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

TRI-COMPONENT MODELTRI-COMPONENT MODEL

                    a       σ       ρ

                 (nm)        (kg/m3)

Sulphate    95    1.16  1769

Smoke      120   1.12  1350

Salt (film)  100   1.32 2160

Salt (jet)   1000  1.35 2160

(salt : wind speed dependent)

U=0.2 m/s

Sol.=0.25 (Yamasoe et al 2000)R(nm)

Initial Spectrum

Page 24: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

CURRENT MET OFFICE SIMULATIONS

Page 25: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

SENSITIVITY TO SALT LOADINGSSENSITIVITY TO SALT LOADINGSSalt mass : 10.3-27.6 Salt mass : 10.3-27.6 μgmμgm-3-3

Page 26: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

SENSITIVITY TO SMOKE LOADINGSSENSITIVITY TO SMOKE LOADINGSSmoke mass : 0.4-2.3 Smoke mass : 0.4-2.3 μgmμgm-3-3

Page 27: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

SENSITIVITY TO SULPHATE

Sulphate mass : 0.1-0.9μgm-3

Ghosh et al. (2007) Phil. Trans. Roy. Soc. A

Page 28: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

CDNC values (N cm3) before interpolation (top three panels), after modified Shepard interpolation (middle three panels) ,and after Hardy VMQ interpolation (bottom three panels).

Rap, Ghosh and Smith (2009). JAS

Page 29: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

SENSITIVITY STUDIES : AEROSOL AGEING (SOLUBILITY PARAMETER)

Page 30: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Amelioration: Policy, Planning, and Decision Making• Awareness : dissemination of knowledge-Aggressive media campaign

Date:16/06/2011

• Global warming could be slowed down if governments  cleaned up what's known as black carbon from industry and  cooking fires

• 50 of the world's leading atmospheric scientists confirmed that on June 14.

CALL FOR CRACKDOWN ON BLACK CARBONCALL FOR CRACKDOWN ON BLACK CARBON

Page 31: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

• The full impact of black carbon is still being assessed 

• Linked to the melting of the glaciers in the Himalayas,

• Disruption of traditional rainfall patterns in India and Africa, 

• Low yields of maize, rice, wheat and soya bean crops in Asia and elsewhere. 

• Black carbon affects climate by intercepting and absorbing sunlight, darkening snow and ice when deposited and helping to form clouds. 

• It is most noticeable at the poles, on glaciers and in mountain regions — all environments which are showing the greatest impact of climate change.

From the HinduFrom the Hindu

Page 32: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

• Another technology for reducing black carbon emissions from diesel engines is to shift fuels to compressed natural gas.

• According to a study examining these emissions reductions, “there is a significant potential for emissions reductions through the [UNFCCC] Clean Development for such fuel switching projects.”

• Existing and well-tested technologies used by developed countries, such as clean diesel and clean coal, could be transferred to developing countries to reduce their emissions.

Page 33: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS
Page 34: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

Phillips DesignNEERI-CSIR Design

Page 35: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

SEQUESTER BC : GREEN FACADES

Page 36: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS
Page 37: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS
Page 38: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS
Page 39: S. Ghosh (1), A. Samaddar (2), C. R. S. Kumar (2), and A. Rap (3) 1 Senior Professor, School of Mechanical and Building Sciences, VIT University and ICAS

SUMMARY : EVALUATION OF GLOBAL AEROSOL AND CLOUD MODELS-UPGRADE MODELS!

Increasing

complexityOff-line sulphur cycle

On-line sulphur cycle

Multi-component aerosol as an external mixture

Multi-component aerosol as an internal mixture

Size distributed internal mixture

Data assimilation

Role of observations vis -a- vis models is changing