samir mahroua trm

16
8/12/2019 Samir Mahroua TRM http://slidepdf.com/reader/full/samir-mahroua-trm 1/16  UNIVERSITY OF STRATHCLYDE Developing Photovoltaic Parasols: a Technology Roadmap Z1931: ENTREPRENEURSHIP, INNOVATION AND COMMERCIALIZATION Samir MAHROUA 12/02/2014

Upload: samir-mahroua

Post on 03-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 1/16

 

UNIVERSITY OF STRATHCLYDE

Developing Photovoltaic Parasols: a

Technology RoadmapZ1931: ENTREPRENEURSHIP, INNOVATION AND COMMERCIALIZATION

Samir MAHROUA

12/02/2014

Page 2: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 2/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

1

CONTENT

Introduction ......................................................................................................................................................................... 2 

Organic Photovoltaic ........................................................................................................................................................ 3 

Science and technology ............................................................................................................................................... 3 

Business opportunities and patent system ........................................................................................................ 5 

The Photovoltaic Parasol ................................................................................................................................................ 8 

Technology ....................................................................................................................................................................... 8 

Hydrogen fuel cell ......................................................................................................................................................... 9 

Applications .................................................................................................................................................................. 11 

Development & Commercialisation .................................................................................................................... 11 

Risks and alternatives .............................................................................................................................................. 11 

Technology Roadmap .................................................................................................................................................... 12 

References .......................................................................................................................................................................... 14 

Page 3: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 3/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

2

Introduction

In the race for producing renewable energies, photovoltaic is one of the most mature

technology. Based on the absorption of photons, semiconductor particles create an electrical

current by their displacement, due to the difference of electrical charge of materials. Since their

commercialisation at the end of the 20th century, performance has increased and solar panels have

become much more affordable. A market has emerged and although some will criticise its

justification (energy demanding manufacture to electrically charge the silicon, rare earth

materials unsustainable market, low performance panels), photovoltaic technologies have opened

the door to many future progresses and business opportunities.

A recent innovation in photovoltaic technologies is Organic Photovoltaic (OPV). Part of the

3rd generation of solar panels (together with Dye-sensitised cells, DSC), OPV is an emergent and

very promising technology (Cai, et al., 2009). It is a non-silicon based technology with easily

available raw material and low manufacture costs, therefore overcoming the main disadvantages

of classical solar panels. These OPV panels are made from polymers using organic electronics,

where particles are excited when absorbing photons (Gregg & Hanna, 2003). The polymer layer

is comprised between 2 electrodes, allowing the displacement of excited particles which create a

current. At this stage, common efficiencies of 8-10% are reached, but some panels attain an

efficiency of up to 20% (Adrian, 2011), efficiency higher than most of conventional solar panels.

The main advantages of OPV cells are their low thickness allowing a high flexibility, its low weight,

low cost, and easy manufacturing process, allowing eventual mass production (Kaltenbrunner, et

al., 2012).

From this innovation, this report presents the technology roadmap of my own innovation,

Photovoltaic parasols, usable on the beach to power electronic devices, but also in gardens, on

private or public terraces. This innovation is feasible with thin-film OPV technologies, at a

prospective affordable cost thanks to the available raw material, the low cost manufacturing

process, the high-flexibility and resistance of organic cells.

Page 4: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 4/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

3

Organic Photovoltaic

Science and technology

Current photovoltaic technologies are often discussed and controversial. Politicians praise

a green, renewable technology and create incentives for people to install these “very profitable”

panels; ecological associations yell to give up to oil, gas and nuclear energy. However, in our

consumerist short-term economy, solar panels will not solve problems linked to fossil fuels and

carbon emissions for they have a relatively low performance compared to fossil sources of energy

and do not provide a high Return-on-Investment, one of the most important factors for investors.

Those who claim the virtues of solar panels do not take into consideration that their “low” price

is possible only because of controversial practices of the main solar panel producer, China. Panels

are manufactured in an unsustainable way for most of Chinese manufacturers (UNEP, 2003;

Greenpeace, 2012) and the labor is underpaid.

Recent progresses in Organic Photovoltaic can bring a new vision of the solar market and new

opportunities to counter current bad practices. This technology could be ready in less than a

decade and could allow:

1.  The production of low cost solar cells

2. 

Fewer carbon emissions during the manufacturing process3.  The possibility of having a local market and thus local economic development

4.  High performance solar cells, alternative to current sources of energy

5.  The integration of solar cells on many surfaces, including curved ones

The heart of OPV cells is made of a polymer solar cell, a new class of material that has attracted

the attention of scientists due to their conductivity, light weight, low cost and flexible electronics

(Savenije, 2012). This material is created in a classical chemical process, and can be deposed in

the form of a film to create the solar cell (figure 1). Its manufacture is therefore simple, but mass

production benefits is still to be proved (Cai, et al., 2009).

From a technological point of view, OPV cells generate electricity through 4 different mechanisms:

absorption of photons by a pair of electron and electron hole, formation of exciton and

dissociation, charge transport and charge collection (Kim, 2009) (figure 2).

Page 5: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 5/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

4

Figure 1. Manufacturing process of OPV cells (Cai, et al., 2009)

Figure 2. Principle of polymer solar cells. (a) Absorption of photons, (b) charge separation and transport; and

(c) charge collection (Cai, et al., 2009), hv: photon energy

Page 6: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 6/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

5

Business opportunities and patent system

The photovoltaic market has strongly grown in the last decade. The demand of renewable

energy has increased while prices have diminished. This trend is to be continued in the coming

years, as foreseen by “Renewable 2012, Global Status Report”  (Renewable Energy Policy Network

for the 21st Century, 2012) and “Global Market Outlook for Photovoltaics Until 2016” (European

Photovoltaic Industry Association, 2012):

Figure 3. Solar PV total world capacity, 1995–2011 (Renewable Energy Policy Network for the 21st Century,

2012)

Figure 4. Global annual market scenarios until 2016, Moderate and Policy-Driven (European Photovoltaic

Industry Association, 2012)

Page 7: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 7/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

6

The previous figures show that world demand is expected to grow again in the following years

and this represents a good opportunity for photovoltaic businesses. Talking about polymer solar

cells, some companies have begun to develop it, but there is no established market. Most projects

are under developments and we might see first mass commercialisations in the coming years. The

company Konarka commercialised polymer solar cells since 2009 but went bankrupt because of

not being competitive enough (Fehrenbacher, 2012). It is thus primordial to analyse the actual

market and wait for research to improve before trying to develop a product, as foreseen in figure

5. However, this low competition is favourable for polymer solar cells businesses, not mentioning

the fact the patent system is not well defined yet, especially in Europe. If efficiencies over 10%

become common, the price of electricity could decrease and OPV cells could replace classical solar

cells, thus allowing new opportunities for low risks investments (Nielsen, et al., 2010).

Figure 5. Polymer solar cell development scenario (Nielsen, et al., 2010)

Nielsen et al. (2010, chap. 4.8-4.10) also explore the state of the actual patent system of polymer

solar cells. Before 2003, relatively few patents have been published; since then, around 1000

patents were identified in 2010 (for which 50% for materials and 25% for device structure). This

reveals the state at which the technology is, that is to say at a pre-commercialisation phase.

Konarka was the first company in terms of published patents (13% in 2010) but is now bankrupt.

It is a very different matter in Europe, where only 150 patents were published by 2010, and these

patents were registered only in their original country (probably for economic reasons), which

leaves a wide open door to any business willing to develop and patent technologies in other

countries (figure 6).

Page 8: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 8/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

7

Figure 6. Number of patents in Europe and number of registered patents in the Cintelliq polymer solar cell

Dataset (Nielsen, et al., 2010)

Page 9: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 9/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

8

The Photovoltaic Parasol

Technology

What if it was possible to generate electricity anywhere, with enough voltage to power

small devices but also maybe bigger?

The Photovoltaic Parasol looks like a classical parasol, used on the beach or on terraces to protect

from the sun, except that instead of having a classical canvas, it is made with thin-film polymer

solar cells and is equipped with a high-tech hydrogen fuel cell. It is a transportable mini-

powerplant possible thanks to progresses made in OPV cells technologies and electricity storage

technologies. At the bottom of the parasol, the user has access to different connections, like

classical plugs or USB ports. It is possible to use a universal adaptor and thus use any other

electrical device.

Figure 7. Schematic of the Photovoltaic Parasol

Page 10: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 10/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

9

Figure 8. Global insertion of the Photovoltaic Parasol in the ‘sustainability market’ 

Hydrogen fuel cell

Storing electricity is one of the main problem of actual science. Electricity in itself is not

storable and through the centuries, scientists came with alternatives to bypass this problem.

Classical batteries work by chemical reactions, but contain elements that are polluting (Nickel,

Cadmium, and Lithium). An alternative to these batteries are fuel cells. It is a device that converts

hydrogen (fuel) into electricity (figure 9). It is particularly adapted to the parasol for its ability to

store energy efficiently and its portability (figure 10) (Cook, 2002).

Figure 9. Conversion cycle (renewbl.com, 2009)

Page 11: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 11/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

10

Figure 10. Example of fuel cell (Cardinal, 2013)

Among its advantages, we can cite:

  High energy density (Figure 11)

  Transportability

  Low CO2 emissions

  Reduced air pollution

  Fuel flexibility

Figure 11. Comparison of energy density of compressed hydrogen, lithium-ion battery and lead-acid battery

(Cook, 2002)

Page 12: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 12/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

11

Applications

Equipped with a high-tech hydrogen battery, this off-grid device is particularly useful

during the summer, when people on the beach need electricity for their small devices, but also to

freely charge the battery and use it later for other purposes, for example in the camping. Its off-

grid capabilities makes it also very attractive in developing countries (i.e. Africa or South America)

where access to electricity is sometimes complicated. If needs are not as high as in developed

countries, maybe a family could use several of these parasols to have electricity and/or use it as a

backup resource.

Development Commercialisation

Before developing the project and proposing it to banks or other investors, a business planhas to be realised, mentioning in which context the product will be developed and commercialised,

expected needs and demands, potential sales and revenues, cost-benefit analysis, marketing

strategy, production plan and improvements. It is also a matter of choosing the best timing and

identifying when possible which material offers the best cost/performance ratio, taking into

account not only the efficiency of the solar cell, but also the availability of the raw material, the

manufacturing process, and the final cost. The commercialisation of the Photovoltaic Parasols

should be effective by 2015-2018, leaving 2-5 years for the business analysis and the product

development.

Risks and alternatives

Although the concept of a Photovoltaic Parasol can be very promising, it is not without

difficulties. The development could be risky and see major technological obstacles. First, even

though high efficiencies have been reached it is only speculative that highly efficient polymer solar

cell would be cost-effective enough for mass production. Other solar technologies are available

but still at early developments. Perovskite is one of these promising materials that can be used insolar cells. Recent developments (from 2011) have shown efficiencies over 10%, thus showing the

opportunities of business development in less than 10 years (Lee, et al., 2012; Snaith, 2013; Park,

2013; Liu, et al., 2013). It would be thus interesting to study commercial applications of

Perovskites solar cells in parallel of the development of the Photovoltaic Parasol. Then, hydrogen

fuel cells are too expensive now and 3 years might be too short to see low cost fuel cells. Thus, it

is necessary to evaluate the market need and maybe plan to have a niche market at the early

commercialisation and upgrading to mass production when better technologies are available.

Page 13: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 13/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

12

Technology Roadmap

The Technology Roadmap is a useful tool to prepare a technological development, being

able to see different components of a business plan to reduce risks and being more competitive. It

also adds a value to R&D processes, by helping the identification of key developments and critical

stages. It is also a support to show to investors, to prove that the needs are understood and the

business plan is justified (Garcia & Bray, 1997). To anticipate with future technologies and

innovations, the Photovoltaic Parasol will be upgrading several times. This will allow to stay in

the market and continue making profits (figure 12).

Figure 12. Revenue-time curve (Suong, 2009)

The Technology Roadmap (TRM) is presented under 4 principal points, Market , Product ,

Technology & R&D, and Economic Analysis. This TRM is very succinct for real ones are realised

during months and with the participation of several persons from a company. However, this TRM

shows clearly how, when and for who the Photovoltaic Parasol will be developed. The

development of the Photovoltaic Parasol will begin in 2014 and is foreseen to be commercialised

until early 2021 (for now), with a major upgrading of Perovskite solar cells.

Fuel cells progresses are still to be made but it is highly possible that new ways of storage will be

found soon (with recent advancements). The Economic Analysis shows what are the cash flows

and in which scale the investments will be done (Bank and investors vs company investments). It

is not possible to say what are the value of cash flows but if 1 million Photovoltaic Parasols are

sold after 3 years, we can expect several millions of benefits.

Page 14: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 14/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

13

Figure 13. Technology Roadmap of the Photovoltaic Parasol

   t

    l   t   i

   r   s    l

   M   a   r    k   e   t

   T    h   i   s   s   e   c   t   i   o   n   e   x   a   m   i   n   e   s    h   o   w   a   n    d   w    h   e   n   t    h   e

   t   e   c    h   n   o    l   o   g   y   w   i    l    l    b   e   i   n   t   r   o    d   u   c   e    d   i   n   t    h   e   m   a   r    k   e   t

   P   r   o    d   u   c   t

   T    h   i   s   s   e   c   t   i   o   n   s   p   r   e   s   e   n   t   s    h   o   w   a   n    d   w    h   e   n   t    h   e

   p   r   o    d   u   c   t   w   i    l    l    b   e    d   e   v   e    l   o   p   e    d   a   n    d

   m   a   n   u    f   a   c   t   u   r   e    d

   T   e   c    h   n   o    l   o   g   y   a   n    d   R   &   D

   T    h   i   s   s   e   c   t   i   o   n   p   r   e   s   e   n   t   s   t    h   e   t   e   c    h   n   o    l   o   g   i   c   a    l

   a    d   v   a   n   c   e   m   e   n   t   s   a   n    d   R   &   D   p   r   o   g   r   e   s   s   e   s

   E   c   o   n   o   m   i   c   a   n   a    l   y   s   i   s

   T    h   i   s   s   e   c   t   i   o   n   p   r   e   s   e   n   t   s   t    h   e   c   a   s    h    f    l   o   w   s   a   n    d   t    h   e

   r   e   v   e   n   u   e   s   o    f   t    h   e   p   r   o    d   u   c   t   s

   2   0   1   7

   2   0   1   8

   2   0   1   9

   2   0   2   0

   2   0   2   1

   2   0   1   5

   2   0   1   6

   2   0   1   4

   M   a   r    k   e   t   i   n   g

   O   P

   V   c   e    l    l   s    d   e   v   e    l   o   p   m   e   n   t

   P    h   o   t   o

   v   o    l   t   a   i   c   P   a   r   a   s   o    l   p   r   o    d   u   c   t   i   o   n   a   s   a   n   i   c    h   e   m   a   r    k   e   t

   1   s   t   g   e   n   e   r   a   t   i   o   n   o    f   P    h   o   t   o   v   o    l   t   a   i   c   c   o   m   m   e   r   c   i   a    l   i   s   a   t   i   o   n

   2   n    d   g   e   n   e   r   a   t   i   o   n   o    f   p   a   r   a   s   o    l   s   c   o   m   m   e   r   c   i   a    l   i   s   a   t   i   o   n

   F   u   e    l   c   e    l    l   i   n   t   e   g   r   a   t   i   o   n

   T   r   i   a    l   s   a   n    d   v   a    l   i    d   a   t   i   o   n

   P   a   t   e   n   t   i   n   g   i   n   n   o   v   a   t   i   o   n

   M   a   r    k   e

   t   a   n   a    l   y   s   i   s    f   o   r

   O

   P   V   c   e    l    l   s

   D   e   v   e    l   o   p   m   e   n   t   P   e   r   o   v   s    k   i   t   e   s   o    l   a   r   c   e    l    l

   P   a   t   e   n   t   i   n   g   i   n   n   o   v   a   t   i   o   n

   P    h   o   t   o   v   o    l   t   a   i   c   P   a   r   a   s   o    l   w   i   t    h   P   e   r   o   v   s    k

   i   t   e

   N   e   w   t   e   c    h   n   o    l   o   g   y    b   a   t   t   e   r   i   e   s   i   n   t   e   g   r   a   t   i   o   n

   M   a   r    k

   e   t   a   n   a    l   y   s   i   s    f   o   r   P   e   r   o   v   s    k   i   t   e   s   c   e    l    l   s

   B   a   n    k   s   a   n    d   s    h   a   r   e    h   o    l    d   e   r   s   i   n   v   e   s   t   m   e   n   t   s

   B   a   n    k   s   a   n    d   s    h   a   r   e    h   o    l    d   e   r   s   i   n   v   e   s

   t   m   e   n   t   s

   B   a   n    k   s   a   n    d   s    h   a   r   e    h   o    l    d   e   r   s   i   n   v   e   s   t   m   e   n   t   s

   F   i   r   s   t   y   e   a   r   r   e   v   e   n   u   e   s   a   n    d   i   n   v   e   s   t   m   e   n   t   s

   2   n    d   y   e   a   r   r   e   v   e   n   u   e   s   a   n    d

   i   n   v   e   s   t   m   e   n   t   s

    f   o    l    l   o   w   i   n   g   y   e   a   r   r   e   v   e   n   u   e   s   a   n    d   c   o   m   p   a   n   y

   i   n   v   e   s   t   m   e   n   t   s

   P   u    b    l   i   c    /   P   r   i   v   a   t   e   P   a   r   t   n   e   r   s    h   i   p   s

   P    h   o   t   o   v   o    l   t   a   i   c   P   a   r   a

   s   o    l   p   r   o    d   u   c   t   i   o   n   a   s   a   m   a   s   s   m   a   r    k   e   t

Page 15: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 15/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

14

References

Adrian, e. a., 2011. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature

Materials, Volume 10, pp. 857-861. 

Cai, W., Gong, X. & Cao, Y., 2009. Polymer solar cells: Recent development and possible routes for

improvement in the performance. Solar Energy Materials & Solar Cells, Volume 94, pp. 114-127.

Cardinal, D., 2013. Portable hydrogen fuel cell can recharge your phone, but it’s still too expensive

 for mass adoption. [Online]

Available at: http://www.extremetech.com/extreme/170846-portable-hydrogen-fuel-cell-can-

recharge-your-phone-but-its-still-too-expensive-for-mass-adoption

[Accessed 6 February 2014].

Cook, B., 2002. Introduction to fuel cell and hydrogen technology. Engineering Science and

Education Journal, Volume December.

European Photovoltaic Industry Association, 2012. Global Market Outlook for Photovoltaics until

 2016 , Brussels : EPIA.

Fehrenbacher, K., 2012. Report: Konarka's failure wasn't a solar market problem. [Online]

Available at: http://gigaom.com/2012/06/07/report-konarkas-failure-wasnt-a-solar-market-

problem/

[Accessed 04 February 2014].

Garcia, M. L. & Bray, O. H., 1997. Fundamentals of Technology Roadmapping, Albuquerque: Sandia

National Laboratories.

Greenpeace, 2012. Unraveling the Puzzle that is Solar PV Pollution. [Online]

Available at: http://www.greenpeace.org/eastasia/publications/reports/climate-

energy/2012/solar-pv-pollution-report/

[Accessed 03 02 2014].

Gregg, B. A. & Hanna, M. C., 2003. Comparing organic to inorganic photovoltaic cells: Theory,

experiment, and simulation. Journal of Applied Physics, 96(6), pp. 3605-3614.

Kaltenbrunner, M. et al., 2012. Ultrathin and lightweight organic solar cells with high flexibility.

Nature Communications. 

Kim, M.-S., 2009. Understanding Organic Photovoltaic Cells: Electrode, Nanostructure, Reliability,

and Performance. Ann Arbor: University of Michigan.

Page 16: Samir Mahroua TRM

8/12/2019 Samir Mahroua TRM

http://slidepdf.com/reader/full/samir-mahroua-trm 16/16

Developing Photovoltaic Parasols: a Technology Roadmap 12/02/2014 

15

Lee, M. M. et al., 2012. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal

Halide Perovskites. ScienceMag, 2 November, pp. 643-647.

Liu, M., Johnston, M. B. & Snaith, H. J., 2013. Efficient planar heterojunction perovskite solar cells

by vapour deposition. Nature, Volume 501, pp. 395-402.

Nielsen, T. D. et al., 2010. Business, market and intellectual property analysis of polymer solar

cells. Solar Energy Materials & Solar Cells, Volume 94, pp. 1553-1571.

Park, N.-G., 2013. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost

Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry, Volume 4, p. 2423−2429. 

Renewable Energy Policy Network for the 21st Century, 2012. Renewables 2012, Global Status

Report, Paris: REN21.

renewbl.com, 2009. Unexpected discovery will boost solar hydrogen generator technology. [Online]

Available at: http://www.renewbl.com/2009/04/27/unexpected-discovery-will-boost-solar-

hydrogen-generator-technology.html

[Accessed 7 February 2014].

Savenije, T. . J., 2012. Organic solar cells. Delft: Delft University of Technology.

Snaith, H. J., 2013. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar

Cells. The Journal of Physical Chemistry, Volume 4, p. 3623−3630. 

Suong, S., 2009. Business, Marketing and Technology. [Online]

Available at: http://danstoncloud.com/blogs/sori/archive/2009/06/14/business-marketing-

and-technology.aspx

[Accessed 9 February 2014].

UNEP, 2003. China's Green Long March: A Study of Renewable Energy, Environmental Industry and

Cement Sectors, Nairobi: United Nations Environment Programme.