satellite antenna testing

Upload: sailee-gharat

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Satellite Antenna Testing

    1/47

    11

    AMTA Europe Short Course 2004

    1

     AMTA Europe Short Course 2004

    Satellite Antenna Testing

     Presented by

    Dr. Jürgen Hartmann

    EADS Astrium

    Measurement Technology

    81663 Munich – Germany

    +49 89 607 22420

     [email protected]

  • 8/17/2019 Satellite Antenna Testing

    2/47

    22

    AMTA Europe Short Course 2004

    2

    Contents

    1. Introduction

    2. Test Facilities

    - Range Trade-Off - Range Comparison

    - Compact Test Range

    3. Description of EADS Astrium CCRs

    - Facility Heritage- Illumination System

    - Feeds

    - Instrumentation

    4. Measurement Applications

    - Antenna Pattern and Gain Measurement Setup

    - Intelsat-IX C-Band Antenna Testing

    - Payload Measurements

    5. Conclusion

  • 8/17/2019 Satellite Antenna Testing

    3/47

    33

    AMTA Europe Short Course 2004

    3

    Introduction

    State-of-the-Art Communication Satellite Antennas:

    Multiple Beams: Multi-Feed and/or Shaped Reflector Antennas

    Multiple Frequencies and Polarizations

    Requirements for Antenna Testing:

    Time Efficient Measurements

    Highly Accurate Measurements

    Examples: 1984 German TV-SAT: 1 Beam, 5 Frequencies, 2 Pol.

    6 Weeks

    1996 Intelsat 8: 8 Beams, 10 Frequencies, 2 Pol.

    2 Weeks

  • 8/17/2019 Satellite Antenna Testing

    4/47

    44

    AMTA Europe Short Course 2004

    4

    Test Facilities

    • Range Trade-Off 

     – Far-Field Range

     – Near-Field Range – Compact Test Range

    Range Comparison

    • Compact Test Range

     – Concepts

     – Limitations – Plane Wave Quality

    Compensated Compact Range (CCR)

  • 8/17/2019 Satellite Antenna Testing

    5/47

    55

    AMTA Europe Short Course 2004

    5

    Test Facilities

    Scenario for Communication Satellite Antennas

  • 8/17/2019 Satellite Antenna Testing

    6/47

    66

    AMTA Europe Short Course 2004

    6

    Range Trade-Off Range Comparison

    Far-Field Range

    Advantage

    • No data transformation required

    • Real time measurement

    • Easy operation

    Disadvantage

    • Large measurement distance required!

    • Ground reflections / interference!

    • Weather dependence!

    • Cleanroom requires Radom!

    • Gravity Compensation for DUT

    Dynamic range?

    Measurement Accuracy?

  • 8/17/2019 Satellite Antenna Testing

    7/47

    77

    AMTA Europe Short Course 2004

    7

    Range Trade-Off Range Comparison

    Near-Field Range

    Advantage• Accurate measurements (0.1 - 40 GHz)

    • Short measurement distance < 5 m:• Low free space losses

    • Low reflection sensitivity

    • Indoor measurement range:

    • Cleanroom conditions

    • 24 hours / day operations• Low reflectivity

    • Easy Gravity Compensation for DUT

    Limitation / Disadvantage

    • Near field measurements:• Fourier transformation required for 

    calculation of far field pattern

    • No real-time Measurements

    • Coupling between Probe and DUT

    • Usable frequency range:

    • Typically < 40 GHz limited byProbe Positioning Accuracy (Limits

    Phase Measurement accuracy)

  • 8/17/2019 Satellite Antenna Testing

    8/47

    88

    AMTA Europe Short Course 2004

    8

    Range Trade Off Range Comparison

    Compact Range

    Advantage• Direct far field measurement:

    • No data transformation required• Real-time measurements

    Easy operation

    • Short measurement distance < 20m:

    • Low free space losses

    • Accurate measurements (1.5-200 GHz)

    • Indoor measurement range:

    • Cleanroom conditions

    • 24 hours / day operations

    • Low reflectivity

    Limitation / Disadvantage• Usable frequency range:

    • Typical < 500 MHz limited by

    diffraction

    • Typical > 200 GHz limited by

    reflector surface accuracy• Feed / test-object direct coupling

    • Gravity Compensation for DUT

  • 8/17/2019 Satellite Antenna Testing

    9/47

    99

    AMTA Europe Short Course 2004

    9

    Range Trade-Off Compact Range Principles

    Goal:• Test zone with constant amplitude

    and phase behavior (plane wave)

    Starting Point:• Source feed generating spherical

    wave

    Parabolic Reflector:• transforms phase front,

    spherical wave => plane wave

    (equal distances between source

    feed and test zone results inconstant phase front)

    • Amplitude remains almost

    unchanged

    Requirement:• Source generates uniform

    amplitude

       P   l  a

      n  e   W  a  v  e

     

       &

        T  e  s   t   Z  o  n  e

    Source Feed

    (Spherical wave)

    Offset Reflector System

  • 8/17/2019 Satellite Antenna Testing

    10/47

    1010

    AMTA Europe Short Course 2004

    10

    Range Trade-Off Compact Range Principles

    Single Reflector (Paraboloid)

    Double Reflector (2 Cylinder Paraboloids)

    Double Reflector (Hyperboloid + Paraboloid)

    Comparison of Complexity:

    1 reflector 2 reflectors 2 reflectors

    double curvature single curvature double curvature

  • 8/17/2019 Satellite Antenna Testing

    11/47

    1111

    AMTA Europe Short Course 2004

    11

    Range Trade-Off Compact Range Principles

    Comparison of Compression Factors for comparable Test Zones:

    1 : 1 1 : 2 1 : 4

    Plane Wave Uniformity:Phase ++ Phase + Phase +

    Amplitude -- / Asymm. Amplitude - / Asymm. Amplitude ++ / Symm.

     

    Transforming Geometries of different Compact Range

    Concepts

  • 8/17/2019 Satellite Antenna Testing

    12/47

    1212

    AMTA Europe Short Course 2004

    12

    Range Trade-Off Compact Range Principles

    Co-Polar  

     No

    Cross-Polarization

    -0.1 dB 

    -0.5 

    -0.1 

    -0.3 

    -0.2 

    -0.2 -0.1 

    -30 

    -30 

    -25

    -25 

    -30 dB

     -30 

    -27 

    -27

    Cross-Polar 

    Single Reflector Dual Reflector (Single Curved) Dual Reflector (Double Curved)

  • 8/17/2019 Satellite Antenna Testing

    13/47

    1313

    AMTA Europe Short Course 2004

    13

    Range Trade-Off Compact Range Principles

    Conclusions:

    1) Diffraction reduces Quiet Zone Size to approx. 80% of Main Reflector Dimensions2) Good Performance at 1.5 GHz requires at least 1.5m Serration Length

    Two concepts

    “Rolled

    Edges”

    “Serrated

    Edges”21 21 2114 21

    Case a) Case b) Case c)

    Influence of Serrationlength on Plane Wave Performance

       R  e   l .   A

      m  p   l   i   t  u   d  e ,

       d   B

    Width in Wavelength 

    Width in Wavelength

    Case a)

    b)

    c)

       P   h  a  s  e   i  n   °

  • 8/17/2019 Satellite Antenna Testing

    14/47

    1414

    AMTA Europe Short Course 2004

    14

    Description of the Astrium CCRsFacility Heritage

    CCR 75/60 CCR 75/60

    CCR 75/60

    CNTF: Cylindrical Near-Field Test Facility

    CCR: Compensated Compact Range

    SCR: Single Reflector Compact Range

    BAeSystems

    CNTF - 8

    Turn Key

    CCR 75/60

    Turn Key

    Alcatel

    LMAS(closed)Astrium

    EADS

    Military

    Aircraft

    Astrium

    EMSSSL

    CNES

    CCR 20/17

    CNTF - 30Turn Key

    CCR 75 /60

    Munich

    University

    (FH)

    CCR 20/17INTESPACE

    CCR 75/60

    Turn Key

       P   h  o   t  o  :

       D   S   S

       P   h

      o   t  o  :   D   S   S

       P   h  o   t  o  :   D   S   S

       P   h  o   t  o  :   S   P   A   R

       P   h  o   t  o  :   S   S   L

       P   h  o   t  o  :   C   N   E   S

       P   h  o   t  o  :   S   i  e  m  e  n  s

       P   h  o   t  o  :   A  e  r  o  s  p  a   t   i  a   l  e

       P   h  o   t  o  :   D   A   S   A   /   D   S   S

    MELCO

    CCR 75/60

    1985

    1992

    2004

       P   h  o   t  o  :   K   H   I

    KHI

    SCR 50E

       P   h  o   t  o  :   L   M   A   S

       P   h  o   t  o  :   D   S   S

       P   h  o   t  o  :   D   S   S

    ISRO

    A/B

    CCR 75/60

    Turn Key

    SCR 60

    Measurement

    Facility

    Heritage

    1995

       P   h  o   t  o

      :   D   S   S

    CCR 120/100

    Turn Key

    CAST

       P   h  o   t  o  :   M   E   L   C   O

       P   h  o   t  o  :   I   N   T   E   S   P   A   C   E

  • 8/17/2019 Satellite Antenna Testing

    15/47

    1515

    AMTA Europe Short Course 2004

    15

    Description of the Astrium CCRsCCR 75/60

    Highly Accurate Antenna Testing required

    EADS Astrium CCRs: CCR 75/60 (5 m QZ)

    CCR 120/100 (8 m QZ)

    Main Characteristics:

    Dual Reflector System (Top Fed Cassegrain)

    Double Curved Reflectors (Hyperboloid, Paraboloid)

    Large equivalent Focallength (130 m, 237 m)

    Low differential Pathloss

    Fully Cross-Polar Compensated System

  • 8/17/2019 Satellite Antenna Testing

    16/47

    1616

    AMTA Europe Short Course 2004

    16

    Description of the Astrium CCRsCCR 75/60 at Astrium in Munich

  • 8/17/2019 Satellite Antenna Testing

    17/47

    1717

    AMTA Europe Short Course 2004

    17

    Description of the Astrium CCRsCCR 120/100 of EADS Astrium GmbH

  • 8/17/2019 Satellite Antenna Testing

    18/47

    1818

    AMTA Europe Short Course 2004

    18

    Description of the Astrium CCRsCCR 75/60

    Geometrical Data of Reflectors

    ReflectorParameter

    Sub Main

    Dimension (W x H) 5.6 x 5.3 m 7.5 + 1 x 6.0 m

    excl. Serration,

    BillboardFocal Length 30 m 40 m

    Surface Accuracy 35µm RMS 

    35µm RMS

    Serration Length 1.5 m 1.5 m

    Number of Segments 2 4

    Back Structure Depth 1.1 m 1.1 m

    Mass 44 000 kg 77 000 kg

  • 8/17/2019 Satellite Antenna Testing

    19/47

    1919

    AMTA Europe Short Course 2004

    19

    Description of the Astrium CCRsCCR 75/60

    Reflector Technology

    Spherical Cast Iron Material

    Milled by a 5-Axes Laser Controlled Milling Machine

    Milling Steps and Tracks ~ 2 .. 3 µm

    Few monolithic Segments enabling

    Easy and fast Installation

    Easy and high accurate Alignment

    Highly Stiffened Supporting Structure

    Good Thermal Conductivity of Segments

    Long Term Mechanical Stability

  • 8/17/2019 Satellite Antenna Testing

    20/47

    2020

    AMTA Europe Short Course 2004

    20

    Description of the Astrium CCRsCCR 75/60

    Technical Data CCR 75/60

    Typical Data

    Frequency Range 1.5 – 200 GHz

    Quiet Zone Size (W x H x D) 5.5 x 5.0 x 8.0Quiet Zone Performance

    Amlitude Ripple±

     0.5 dB

      Phase Ripple±

     6 deg

      Cross-Polar Level < - 40 dB

    Measurement Errors

    Sidelobes±

     1 dB @ 35 dB

      Gain±

     0.25 dB  Bore-Sight Accuracy

    ±

     0.014 deg

    Scanning Capability 10 deg

    Scan Angle Accuracy±

     0.0003 deg

     

    f CC

  • 8/17/2019 Satellite Antenna Testing

    21/47

    2121

    AMTA Europe Short Course 2004

    21

    Description of the Astrium CCRsCCR 75/60

    D i ti f th A t i CCR

  • 8/17/2019 Satellite Antenna Testing

    22/47

    2222

    AMTA Europe Short Course 2004

    22

    Description of the Astrium CCRsCCR 75/60

    D i ti f th A t i CCR

  • 8/17/2019 Satellite Antenna Testing

    23/47

    2323

    AMTA Europe Short Course 2004

    23

    Description of the Astrium CCRsCCR 75/60

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    -20 -15 -10 -5 0 5 10 15 20

       R  e   l .   F   i  e   l   d   A  m  p   l   i   t  u   d  e   [   d   B   ]

    Azimuth Angle [deg.]

    Comparison of Antenna PatternCustomer Test Facility Astrium CCR (Ottobrunn)

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    -20 -15 -10 -5 0 5 10 15 20

       R  e   l .   F   i  e   l   d   A  m  p   l   i   t  u   d  e   [   d   B   ]

    Azimuth Angle [deg.]

    Co-Polar   Cross-Polar

    Test Antenna: Elliptical C-Band Offset Reflector Antenna (Rx: 5.854 – 6.298 GHz)

    D i ti f th A t i CCR

  • 8/17/2019 Satellite Antenna Testing

    24/47

    2424

    AMTA Europe Short Course 2004

    24

    Description of the Astrium CCRsFeeds

    CCR Feeds of EADS Astrium from 1.5 to 40 GHz

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    25/47

    2525

    AMTA Europe Short Course 2004

    25

    Description of the Astrium CCRsFeeds

    Performance Data

    • 7 Dual Linear Polarized Feeds (CCR 75/60): 1.47 .. 18 GHz

    • 2 Single Linear Polarized Feeds: 18 .. 40 GHz• Broadband Behavior: 27.. 40 % BW

    • Medium Gain Horns: typ. 13.4 dBi

    • Frequency Independent Radiation Pattern

    • Amplitude Taper*: < 0.75 dB

    • Phase Taper*: < 3.5 °

    • Cross-Polarization*: < - 38 .. - 42 dB

    • Return Loss: < - 15 .. - 18 dB

    • Port to Port Isolation (Dual Pol. Feeds): < - 35 .. - 40 dB

    • Insertion Loss: < 0.2 .. 0.5 dB

    *within FoV:±

    9 °

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    26/47

    2626

    AMTA Europe Short Course 2004

    26

    Description of the Astrium CCRsFeeds

    Performed Measurements:

    Co-Polar Pattern: 8 Cuts 

    Discrete Frequencies (3 / Band)

    Amplitude and Phase (S21): 4 Cuts 

    Swept Frequency Mode

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    27/47

    2727

    AMTA Europe Short Course 2004

    27

    Description of the Astrium CCRsFeeds

    Performed Measurements:

    Cross-Polar Pattern: 8 Cuts 

    Discrete Frequencies (3 / Band)

    Amplitude and Phase (S21): 4 Cuts  Swept Frequency Mode

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    28/47

    2828

    AMTA Europe Short Course 2004

    28

    Description of the Astrium CCRsInstrumentation

    Agilent Measurement System HP85301B/C

     – Receiver HP8530A

     – Measurement Speed:400 µs per Data Point for Multiple Frequencies

     – Synthesized Sources

     – Distributed Frequency Converter 

    Fundamental Mixing up to 18 GHz Low Harmonic Mixing up to 40 GHz

     – PIN Switches with < 1 µs Switching Speed

    for Multiple Channel Measurement

    for Dual Polarization Measurement

    Improved System Dynamic

    More Data Sampling in Less Time

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    29/47

    2929

    AMTA Europe Short Course 2004

    29

    Description of the Astrium CCRsInstrumentation

    Frequency [GHz]   1,50 3,00 6,00 12,00 18,00 26,50 40,00

    System Dynamic [dB] 80 72 64 73 66 71 58

    (S/N=1, Avg=1)   Avg=128 Avg=128

    valid for a DUT Gain of 20.0 dBi

    Typical Dynamic Range

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    30/47

    3030

    AMTA Europe Short Course 2004

    30

    Description of the Astrium CCRsInstrumentation

    TTL Triggering Timing Diagram

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    31/47

    3131

    AMTA Europe Short Course 2004

    31

    Description of the Astrium CCRsInstrumentation for Antenna Pattern Measurements

    Receiver HP8530A

    Mult. Ch. Controller HP85330A

    HP85320B

    HP85320B

    LO/IF UnitHP85309A

    LO/IF UnitHP85309A

    HP85331A

    Sy nthesizer HP83640L

    Bus-Extender 

    HP37204A

    HP8348A

    RJ

    Feed

    HP87301D LNA Amplif ier 

    Feed - Room CCR

    Synthesizer HP83621B

    Cable

    Duct

    Operator - Room

    RF Signal

    LO Signal

    IF Signal

    1

    23

    4

    10

    118

    27

    22

    23

    24

    Bus-Extender HP37204A

    9

    Bus-Extender HP37204A

    25

    19

    2928 30

    2 x6 dB

    20 dB

    RJ

    65

    7

    12Power Ampl.Supply

    Rack

    20

    26Power Ampl.Supply

    Rack

    13

    14

    RJ

    18

    HP85332A

    DUT

    17

    15

    RJ

    21

    4 x6 dB

    16

    Description of the Astrium CCRs

  • 8/17/2019 Satellite Antenna Testing

    32/47

    3232

    AMTA Europe Short Course 2004

    32

    Description of the Astrium CCRsInstrumentation for Antenna Gain Measurements

    Receiver HP8530A

    Mult. Ch. Controller HP85330A

    HP85320B HP85320B

    LO/IF UnitHP85309A

    LO/IF UnitHP85309A

    HP85331A

    Sy nthesizer HP83640L

    Bus-Extender 

    HP37204A

    HP8348A

    RJ

    Feed

    HP87301D LNA Amplif ier 

    Feed - Room CCR

    Synthesizer HP83621B

    Cable

    Duct

    Operator - Room

    RF Signal

    LO Signal

    IF Signal

    1

    23

    4

    10

    118

    27

    22

    23

    24

    Bus-Extender HP37204A

    9

    Bus-Extender HP37204A

    25

    19

    3028 31

    2 x6 dB

    20 dB

    RJ

    65

    7

    12Power Ampl.Supply

    Rack

    20

    26Power Ampl.Supply

    Rack

    13

    14

    RJ

    18

    HP85332A

    DUT

    17

    15

    RJ

    21

    4 x6 dB

    16

    Power Head A

    Reference

    Power Head B1. Measurement

    Power Meter 

    Power Head B2. Measurement

    29

    30 m

    30 m

    60 m

    Power Measurement Method

    Intelsat IX C Band Antenna Testing

  • 8/17/2019 Satellite Antenna Testing

    33/47

    3333

    AMTA Europe Short Course 2004

    33

    Intelsat-IX C-Band Antenna Testing

    The INTELSAT-IX Scenario

     – 7 Satellites for

     Atlantic Ocean Region (AOR) Indian Ocean Region (IOR)

     – EADS Astrium was awarded with the Contract for

    16 C-Band Hemi-/Zone-Beam Antennas

     – Separate C-Band Antennas for Transmit (TX) and

    Receive (RX) case; one Set of spare Antennas

     – Short Development Time

    21 months for the 1st Flight Model

    Delivery of one TX/RX antenna every 3 months

    Efficient RF Test and Analysis Capability Required

    Intelsat IX C Band Antenna Testing

  • 8/17/2019 Satellite Antenna Testing

    34/47

    3434

    AMTA Europe Short Course 2004

    34

    Intelsat-IX C-Band Antenna Testing

    TX Antenna @ Compact

    Range CCR75/60 of

    Astrium

    TX Feed Array

    Intelsat-IX C-Band Antenna Testing

  • 8/17/2019 Satellite Antenna Testing

    35/47

    3535

    AMTA Europe Short Course 2004

    35

    (Cont’d)

    • 8 Beams/Antenna with 7 fold frequency reuse require high

    cross-pol. / spatial isolation between Beams (> 29 .. 33 dB)

    • High Isolation (> 27 dB) and Gain Requirements (±

    0.25 dB)

    • Stringent EIRP (36 dBW) / G/T requirements

    • Beam Forming Network with 3 Wave Guide Switches & up to

    7 Coax Switches

    • Contact-less RF interfaces between different layers of BFN

    • Dual circular Polarisation: Each horn is individually tuned

    • Broad operating temperature Range

     – TX: -50°C to +90°C RX: -50°C to +78°C

    Intelsat-IX C-Band Antenna Testing

  • 8/17/2019 Satellite Antenna Testing

    36/47

    3636

    AMTA Europe Short Course 2004

    36

     Azimuth

    0°-10°

    10°

    10°

    -10°

       E   l  e  v  a   t   i  o  n

       E   l  e  v  a   t   i  o  n

     Azimuth

    0°-10° 10°

    10°

    3.629 GHz RHCP-10°

    Hemi Beams

     Azimuth

    0°-10°

    10°

    10°

    -10°

       E   l  e  v  a   t   i  o  n

    3.704 GHz LHCP

     Azimuth

    0°-10°

    10°

    10°

    -10°

       E   l  e  v  a   t   i  o  n

    Zone Beams

    P PPPPPPPPPPP P

    Hemi B Hemi A

    Zone G

    Zone D Zone B Zone C Zone F Zone A

    Hemi B Hemi AZone D Zone AZone B/E Zone C/F/G

    Zone E

    Block Diagram(six out of nine beams used simeltaneously)

    Transmit Beam Forming Network

    Six-Fold Frequency Re-use

    (Cont’d)

    Intelsat-IX C-Band Antenna Testing

  • 8/17/2019 Satellite Antenna Testing

    37/47

    3737

    AMTA Europe Short Course 2004

    37

    (Cont’d)

    Hemi Beams Zone Beams

    Coverage Design

    Intelsat-IX C-Band Antenna Testing

  • 8/17/2019 Satellite Antenna Testing

    38/47

    3838

    AMTA Europe Short Course 2004

    38

    (Cont’d)

    Test Drivers

     – Complex BFN structure with up to 145 SCRIMP horns

     – Short development time

     – Only one Protoflight Model (PFM) was foreseen

     – Strict performance monitoring to detect any malfunction

    at an early stage requires

    Different Measurement Techniques

    Intelsat-IX C-Band Antenna Testing

    (C t’d)

  • 8/17/2019 Satellite Antenna Testing

    39/47

    3939

    AMTA Europe Short Course 2004

    39

    (Cont’d)

    Test Flow

    Beam Forming Network

    Meas. @ BFN Level

    Near Field Testing

    @ Feed Level

    Compact Range Testing

    @ Antenna Level

    Compact Range Testing

    @ Spacecraft Level

    at ambient (+20°C) and

    extreme temperatures (+85°C,

    -50°C) prior to and after the

    environmental tests

    with Mock-Up

    structure

    Prior to the

    feed integration

    Intelsat-IX C-Band Antenna Testing

    (C t’d)

  • 8/17/2019 Satellite Antenna Testing

    40/47

    4040

    AMTA Europe Short Course 2004

    40

    (Cont’d)

    1. Measure excitation coefficientsof BFN and calculate the

    primary pattern

    2. Calculate the spherical wave

    expansion coefficients (SWE)

    for every horn pattern

    3. Calculate the secondary far field

    pattern using a synthetic

    reflector model

    4. Compare with other types of

    measurement and/or prediction

    Processing Steps BFN - Upper Layer 

    Intelsat-IX C-Band Antenna Testing

    (C t’d)

  • 8/17/2019 Satellite Antenna Testing

    41/47

    4141

    AMTA Europe Short Course 2004

    41

    (Cont’d)

    -10.0 Azimuth 10.0

    10.0

       E   l  e  v  a

       t   i  o  n

    -10.0

     

    Copolar Gain Zone_3 at 3.625 GHz

    O dB corr. to Spec.= 25.30 dBi, Max.: 5.98 dB

    Comparison: BFN – Compact Range

    Far Field Pattern of Zone 3, TX

    Black: BFN

    Red: Compact Range

    Intelsat-IX C-Band Antenna Testing

    (C t’d)

  • 8/17/2019 Satellite Antenna Testing

    42/47

    4242

    AMTA Europe Short Course 2004

    42

    (Cont’d)

    1. Measure cylindrical near field of feed

    array (BFN with mounted SCRIMPhorns) and calculate the primary

    pattern

    2. Calculate the spherical wave

    expansion coefficients (SWE)

    3. Calculate the secondary far field

    pattern with a synthetic reflector

    model

    4. Compare results from different near

    field measurements (ambient, hot(+85°C), cold (-50°C), prior to and after

    environmental testing)

    5. Compare with other types of

    measurement and/or prediction

    Processing Steps Cylindrical Near Field Range

    Intelsat-IX C-Band Antenna Testing

    (Cont’d)

  • 8/17/2019 Satellite Antenna Testing

    43/47

    4343

    AMTA Europe Short Course 2004

    43

    (Cont’d)

    Comparison: Near Field – Compact Range

    Far Field Pattern of Hemi 1, TX

    Dotted: Near Field @ AmbientSolid: Compact Range

    Intelsat-IX C-Band Antenna Testing

    (Cont’d)

  • 8/17/2019 Satellite Antenna Testing

    44/47

    4444

    AMTA Europe Short Course 2004

    44

    (Cont’d)

    1. Measure directly the secondary far

    field pattern

    2. Compare with other types ofmeasurement and/or prediction

    Processing Steps

    Spacecraft at CompactRange CCR 75/60 of

    Space Systems/Loral

    Intelsat-IX C-Band Antenna Testing

    (Cont’d)

  • 8/17/2019 Satellite Antenna Testing

    45/47

    4545

    AMTA Europe Short Course 2004

    45

    (Cont d)

    Comparison: Compact Range @ Unit Level – System Level

    Far Field Pattern of Hemi 1, TX

    Dotted: Unit Level TestingSolid: System Level Testing

    Intelsat-IX C-Band Antenna Testing

    (Conclusion)

  • 8/17/2019 Satellite Antenna Testing

    46/47

    4646

    AMTA Europe Short Course 2004

    46

    (Conclusion)

    • Key Factors for Design and Manufacturing of Multiple

    Beam Antennas

     – Accurate Antenna Design and Modeling Software

     – Precise Antenna Measurement Techniques

    • Results

     – Knowledge of Complex Excitation Coefficients sufficient for

    Calculation of Secondary Far field Pattern – Highly Accurate Near Field Testing at extreme Temperatures

    possible

     – Monitoring and Performance Tracing along Manufacturing Process

    possible

    • Conclusion for INTELSAT-IX Project

     – Successful time delivery of all C-Band Antennas

     – All Satellites launched with successful In-Orbit Test performed

    Conclusion

  • 8/17/2019 Satellite Antenna Testing

    47/47

    4747

    AMTA Europe Short Course 2004

    47

    Antenna Testing of State-of-the-Art Communication Satellites

    requires

    Highly Accurate Time Efficient

    Key Factors:

    Test Facility

    Test Equipment & Instrumentation

    Test Philosophy

    Test Procedure

    Test Personnel

    Exemplary Test Campaign shown with INTALSAT-IX Antenna Testing

    performed at EADS Astrium in Ottobrunn

    Measurement Techniques