sda containerships procedure august 2017 final …...greater than 150 m and for other container...

108
ShipRight Design and Construction Structural Design Assessment Primary Structure of Container Ships August 2017 Working together for a safer world

Upload: others

Post on 15-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

ShipRight Design and Construction Structural Design Assessment Primary Structure of Container Ships August 2017

Working together for a safer world

Page 2: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

Document History

Document Date: Notes:

May 2000 Preliminary release.

November 2001 Preliminary editorial revisions.

July 2002 Final release.

October 2002 External revisions.

May 2004 Revisions as identified in Notice – ‘Changes incorporated in May 2004 version’.

May 2006 Revisions as identified in Notice – ‘Changes incorporated in May 2006 version’.

March 2016 Revisions as identified in ‘Notice 1 – SDA Primary Structure of Container Ships, March 2016 version’.

September 2016 Consolidated version incorporating: ‘Notice 1 – SDA Primary Structure of Container Ships, March 2016 version’, IACS Unified Requirement S34 (May 2015) and Corrigenda.

August 2017 Revisions as identified in ‘Notice 1 – SDA Primary Structure of Container Ships, August 2017 version’.

© Lloyd's Register Group Limited 2017. All rights reserved. Except as permitted under current legislation no part of this work may be photocopied, stored in a retrieval system, published, performed in public, adapted, broadcast, transmitted, recorded or reproduced in any form or by any means, without the prior permission of the copyright owner. Enquiries should be addressed to Lloyd's Register Group Limited, 71 Fenchurch Street, London, EC3M 4BS.

Page 3: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

  Primary Structure of Container Ship, August 2017 

CONTENTS 

INTRODUCTIONSection 1:  Application .................................................................................................................. 3 

Section 2:  Symbols ....................................................................................................................... 4 

Section 3:  Direct calculation procedures report .......................................................................... 6 

PART A: Global Model of Complete Ship ................................................................................................ 8 

Chapter 1: Analysis of Global Loads .................................................................................................... 8 

Section 1:  Application .................................................................................................................. 8 

Section 2:  Objectives .................................................................................................................... 8 

Section 3:  Structural modelling .................................................................................................... 9 

Section 4:  Loading conditions .................................................................................................... 13 

Section 5:  Boundary conditions ................................................................................................. 22 

Section 6:  Acceptance criteria ................................................................................................... 24 

PART B: Verification of Structural Components and Details ................................................................. 28 

Chapter 1: Analysis of Global Loads on Local Details........................................................................ 28 

Section 1:  Application ................................................................................................................ 28 

Section 2:  Objectives .................................................................................................................. 28 

Section 3:  Structural modelling .................................................................................................. 29 

Section 4:  Loading and boundary conditions ............................................................................. 33 

Section 5:  Acceptance criteria ................................................................................................... 34 

PART C: Verification of Primary Structure ............................................................................................ 39 

Chapter 1: Verification of Double Bottom and Transverse Strength ................................................ 39 

Section 1:  Application ................................................................................................................ 39 

Section 2:  Objectives .................................................................................................................. 39 

Section 3:  Structural modelling .................................................................................................. 40 

Section 4:  Loading conditions .................................................................................................... 43 

Section 5:  Boundary conditions ................................................................................................. 50 

Section 6:  Acceptance criteria ................................................................................................... 55 

PART C: Verification of Primary Structure ............................................................................................ 58 

Chapter 2: Transverse Bulkhead and Mid‐Hold Support Structures: Surge (Fore and Aft) Loading . 58 

Section 1:  Objectives .................................................................................................................. 58 

Section 2:  Structural modelling .................................................................................................. 58 

Section 3:  Loading conditions .................................................................................................... 59 

Page 4: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

  Primary Structure of Container Ship, August 2017 

Section 4:  Boundary conditions ................................................................................................. 60 

Section 5:  Acceptance criteria ................................................................................................... 60 

PART C: Verification of Primary Structure ............................................................................................ 61 

Chapter 3: Transverse Watertight Bulkhead Assessment in Damaged (Flooded Hold) Condition ... 61 

Section 1:  Objectives .................................................................................................................. 61 

Section 2:  Structural modelling .................................................................................................. 61 

Section 3:  Loading conditions .................................................................................................... 61 

Section 4:  Acceptance criteria ................................................................................................... 65 

PART C: Verification of Primary Structure ............................................................................................ 67 

Chapter 4: Transverse Bulkhead Structures: Additional Requirements for Fuel Oil Deep Tanks ...... 67 

Section 1:  Application ................................................................................................................ 67 

Section 2:  Objectives .................................................................................................................. 67 

Section 3:  Structural modelling .................................................................................................. 68 

Section 4:  Loading conditions .................................................................................................... 70 

Section 5:  Boundary conditions ................................................................................................. 87 

Section 6:  Acceptance criteria ................................................................................................... 87 

PART C: Verification of Primary Structure ............................................................................................ 89 

Chapter 5: Surge (Fore and Aft) Loading: Additional Requirements for Fuel Oil Deep Tanks ........... 89 

Section 1:  Application ................................................................................................................ 89 

Section 2:  Objectives .................................................................................................................. 89 

Section 3:  Loading condition ...................................................................................................... 89 

Appendix A: Procedure to Apply Transverse Asymmetric Loads to a Half‐Breadth Model……………….91 

Appendix B: Combined Stresses Analysis in Oblique Sea Based on Equivalent Design Waves………….93 

Appendix C: Rule Equivalent Design Wave Hydrodynamic Torque, Vertical and Horizontal Bending 

Moment Distributions...............................................................................………….....…...……………………97 

Appendix D: Combined Direct Stresses in Oblique Sea (Alternative Method)…………………………………103 

 

 

   

Page 5: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

Introduction  Primary Structure of Container Ship, August 2017 

INTRODUCTION 

Section 1: Application 

Section 2: Symbols 

Section 3: Direct calculation procedures report 

 

Section 1: Application

1.1.  TheShipRightStructuralDesignAssessment(SDA)andConstructionMonitoring(CM)proceduresaremandatoryforcontainershipswithabeamgreaterthan32moralengthgreaterthan150m andforothercontainershipsofabnormalhullform,orofunusualstructuralconfigurationorcomplexity,seePt4,Ch8,1.3ofLloyd’sRegister’sRulesandRegulationsfortheClassificationofShips(hereinafterreferredtoastheRulesforShips).

1.2. Forcontainershipsotherthanthosedefinedin1.1,theSDAandCMproceduresmaybeappliedonavoluntarybasis.

1.3. TheSDAprocedurerequiresthefollowing:

Adetailedanalysisoftheship’sstructuralresponsetospecifiedloadscenariosusingfiniteelementanalysis.

Otherdirectcalculationsasapplicable.

1.4. ContainershipsaredefinedasshipswhicharededicatedtothecarriageofcontainerswithincellularguidesystemsinstalledintheholdsandtowhichtherequirementsofPt4,Ch8ofLloyd’sRegister’sRulesandRegulationsfortheClassificationofShips(hereinafterreferredtoastheRulesforShips)apply.Theseproceduresarenotintendedforapplicationtomultipurposeorhybridshipdesigns.

1.5. Thedirectcalculationoftheship’sstructuralresponseistobebasedonathree‐dimensional(3‐D)shellfiniteelementanalysiscarriedoutinaccordancewiththeprocedurescontainedintheseguidancenotes.

1.6. Thefullfiniteelement(FE)analysisprocedurecomprisesthreeparts:

PARTA: verificationofglobalstrengthusingamathematicalmodeloftheentirehull.

PARTB: verificationofstructuralcomponentsanddetails,usingfollow‐upfinemeshmodels.

PARTC: verificationofthestrengthoftransverse,sideanddoublebottomstructuresusingamathematicalmodelofthecargoholdsamidships.

Page 6: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

Introduction  Primary Structure of Container Ship, August 2017 

1.7. PARTCproceduresarerequiredtobecarriedoutforallcontainershipsforwhichtheShipRightSDAclassnotationisrequired.Ingeneral,thewholeofPARTCistobeapplied.TheexceptiontothisisPARTC,Ch4whichisonlyrequiredwhentheshipconfigurationdictates.

1.8. PARTAandPARTBprocedures,inadditiontoPARTCprocedures,arerequiredtobecarriedoutforcontainershipswhich:

DonotcomplyfullywithPt4,Ch8oftheRulesforShips,especiallywithregardtocross‐deckdimensions,hatchwaydeckandcoamingcornerradiiandthicknessofplateinsertsinway.

Haveabeamgreaterthan32moralengthgreaterthan290m.

Havewing‐wallsidestructureswithawidthbetweensideshellandlongitudinalbulkheadlessthan1.6m.

Incorporatefeatures,scantlingsorconstructionarrangementsthatareconsideredtobesignificantlydifferentfromnormaldesign.

1.9. AdetailedreportofthecalculationsistobesubmittedandmustincludetheinformationdetailedinSection3.ThereportmustshowcompliancewiththespecifiedstructuraldesigncriteriadetailedintherelevantPARTSofthisprocedure.

1.10. IfthecomputerprogramsemployedarenotrecognisedbyLloyd’sRegister,fullparticularsoftheprogramswillalsoberequiredtobesubmitted,seePt3,Ch1,3.1oftheRulesforShips.

1.11. Lloyd’sRegistermay,incertaincircumstances,requirethesubmissionofcomputerinputandoutputtofurtherverifytheadequacyofthecalculationscarriedout.

1.12. Wherealternativeproceduresareproposed,thesearetobeagreedwithLloyd’sRegisterbeforecommencement.

1.13. Containershipsofunusualformorstructuralarrangementsmayneedspecialconsideration,andadditionalcalculationstothosecontainedinthisproceduremayberequired.

1.14. ItisrecommendedthatthedesignerdiscussestheSDAanalysisrequirementswithLloyd’sRegisterearlyoninthedesigncycle.

 

Section 2: Symbols

2.1. Thesymbolsusedintheseguidancenotesaredefinedasfollows:

L = Rulelength,asdefinedinPt3,Ch1,6oftheRulesforShips

B = mouldedbreadth,asdefinedinPt3,Ch1,6oftheRulesforShips

D = depthofship,asdefinedinPt3,Ch1,6oftheRulesforShips

Page 7: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

Introduction  Primary Structure of Container Ship, August 2017 

kL,k= highertensilesteelfactor,seePt3,Ch2,1oftheRulesforShips

SWBM= stillwaterbendingmoment

Mw(hog)= DesignhoggingverticalwavebendingmomentasdefinedinPt4,Ch8,16.6oftheRulesforShips.

Mw(sag) = DesignsaggingverticalwavebendingmomentasdefinedinPt4,Ch8,16.6oftheRulesforShips.

Qw+ = DesignpositiveverticalwaveshearforceasdefinedinPt4,Ch8,16.7oftheRulesforShips.

Qw‐ = DesignnegativeverticalwaveshearforceasdefinedinPt4,Ch8,16.7oftheRulesforShips.

MWC1,MWC2 = Ruledesignverticalwavebendingmoment,asdefinedinPt4,Ch8,15.3.1oftheRulesforShips

MHC1,MHC2 = Ruledesignhorizontalwavebendingmoment,asdefinedinPt4,Ch8,15.3.2oftheRulesforShips

MWTC1,MWTC2 = Ruledesignhydrodynamictorque,asdefinedinPt4,Ch8,15.3.3oftheRulesforShips

MSTC = Ruledesignstaticcargotorque,asdefinedinPt4,Ch8,15.3.4oftheRulesforShips

, = HoggingandsaggingverticalbendingmomentcorrectionfactorscalculatedinaccordancewithPt4,Ch8,16.6DesignverticalwavebendingmomentsoftheRulesforShips.

LPP = lengthbetweenperpendiculars

LCG = longitudinalcentreofgravity

TSC = scantlingdraught

g = accelerationduetogravity

ρ = densityofsea‐water

h = localheadforpressureevaluation

σo= specifiedminimumyieldstressofmaterial

σu = ultimatebucklingcapabilityofapanelofplating

Ω= bucklingfactorofsafety

σe= vonMisesorequivalentstress

= σ σ σ σ 3τ

σex= directstressinelementxdirection

σey= directstressinelementydirection

Page 8: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

Introduction  Primary Structure of Container Ship, August 2017 

σx = directstressinthegloballongitudinaldirection

σy = directstressmeasurednormaltothegloballongitudinaldirection

τ = shearstress

τexy= shearstressinelementx‐yplane

t = thicknessofplating

tc = thicknessdeductionforcorrosion.

2.2. Consistentunitsaretobeusedthroughouttheanalysis.

2.3. UnitsusedinallRuleequationsaretobeasdefinedintheRulesforShips.

Section 3: Directcalculationproceduresreport

3.1. AreportistobesubmittedtoLloyd’sRegisterfortheapprovaloftheprimarystructureoftheshipandistocontain:

listofplansused,includingdatesandversions;

detaileddescriptionofstructuralmodelling,includingallmodellingassumptions;

plotstodemonstratecorrectstructuralmodellingandassignedproperties;

detailsofmaterialpropertiesused;

detailsofdisplacementboundaryconditions;

detailsofallstillwateranddynamicloadingconditionsreviewedwithcalculatedshearforce(SF)andbendingmoment(BM)distributions;

detailsofthecalculationsforthewaterlinesusedforthedynamicloadingconditions;

detailsoftheaccelerationfactorsforeachloadingcondition;

detailsofappliedloadingsandconfirmationthatindividualandtotalappliedloadsarecorrect;

detailsofboundarysupportforcesandmoments;

plotsandresultsthatdemonstratethecorrectbehaviourofthestructuralmodelinresponsetotheappliedloads;

summariesandplotsofglobalandlocaldeflections;

summariesandsufficientplotsofvonMises,directionalandshearstressestodemonstratethatthedesigncriteriaarenotexceededinanymember;

bucklinganalysisandresults;

Page 9: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

Introduction  Primary Structure of Container Ship, August 2017 

tabulatedresultsshowingcompliance,orotherwise,withthedesigncriteria;and

proposedamendmentstostructurewherenecessary,includingrevisedassessmentofstressesandbucklingproperties.

 

   

Page 10: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

PART A:

Global Model of Complete Ship 

Chapter 1:

Analysis of Global Loads 

Section 1:  Application 

Section 2:  Objectives 

Section 3:  Structural modelling 

Section 4:  Loading conditions 

Section 5:  Boundary conditions 

Section 6:  Acceptance criteria 

 

Section 1: Application

1.1. FortheapplicationofPARTA,seeINTRODUCTION,1.8.

Section 2: Objectives

2.1. TheobjectivesofPARTAare

a) ToensurethattheglobalhullstressresponsewithparticularreferencetoitstorsionalcapabilitycomplieswithPt4,Ch8oftheRulesforShips.b) ToprovideboundaryconditionsforthefinemeshmodelsrequiredbyPARTBfortheinvestigationofthedetailedstressresponseofthefollowingimportantstructuraldetails:

Hatchcornerradiiattheconnectionofthecontainerholdareawiththeengineroomanddeckhousestructure,ifapplicable.

Hatchcornerradiiattheconnectionoftheupperdeckandhatchsidecoamingswiththetransversestructureofwatertightbulkheadsandopentransversebulkheads.

Scarphingandintegrationdetailsofthehatchsidecoamingswiththesuperstructureandengineroomconstruction

Hatchcornerarrangementsatfore‐endoftheship.

c)Toprovideboundaryconditionsforfinemeshmodelsofunusualstructuralarrangement.

 

Page 11: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

Section 3: Structuralmodelling

3.1. Thetorsionalresponseofacontainershipisgovernedbythestructuralarrangementsandloadingdistributionsoverthecompletelengthoftheship.Inparticular,thetorsionalstresslevelswithintheopenlengthofthehull(containerholdarea)aregreatlyinfluencedbythedegreeofwarpingconstraintprovidedbytheclosedengineroomanddeckhousestructure,ifapplicable,andtheclosedforwardandafterendsofthehull.

3.2. A3‐Dshellfiniteelementmodelofthecompleteshiplengthisrequired.Thismodelshouldextendoverthefullbreadthanddepthoftheshipandrepresent,withreasonableaccuracy,theactualgeometricshapeofthehull.Alleffectivelongitudinalmaterialistobeincluded.Similarly,alltransverseprimarystructures(i.e.watertightbulkheads,openbulkheads(mid‐holdsupportstructure),webframesandcross‐deckstructures)aretoberepresentedinthemodel.

3.3. TheFEmodelistoberepresentedusingaright‐handedCartesianco‐ordinatesystemwith:

Xmeasuredinthelongitudinaldirection,positiveforward;

Ymeasuredinthetransversedirection,positivetoportfromthecentreline;and

Zmeasuredintheverticaldirection,positiveupwardsfromthebaseline.

3.4. Thesizeandtypeofshellelementsselectedaretoprovideasatisfactoryrepresentationofthedeflectionsandstressdistributionswithintheship’sstructure.Ingeneral,theshellelementmeshistofollowtheprimarystiffeningarrangement.Hence,itisanticipatedthattherewillbe:

transversely,oneelementbetweenlongitudinalgirders;

longitudinally,oneelementbetweendoublebottomfloors;and

vertically,oneelementbetweenstringersordecks.

3.5. Forshipsinwhichanon‐standardspacingofprimarymembersisproposed,itmaybenecessarytorefinethismesharrangement,inordertoachievesatisfactoryelementaspectratios.

3.6. Theship’ssuperstructureordeckhouseistobeincludedinthemodel.Thisistoberepresentedusingshellelementswithamesharrangementsimilartothatusedforthehullinway,andwhichadequatelyrepresentthestructuralarrangementofthedeckhouse.However,fordeckhousetiershigherthantheseconddeckabovethelevelofthehatchcoamings,acoarsermeshidealisationmaybeused.

3.7. Theproposedscantlings,excludingOwner’sextrasandanyadditionalthicknessesfittedtocomplywiththeoptionalShipRightEnhancedScantlingsdescriptivenote,ES,aretobeincorporatedinthemodel.Allprimarystructureistoberepresentedbyplateelements.Thisincludesthedeckplating,bottomandsideshellplating,longitudinalgirders,longitudinalandtransversebulkheadplating,transversefloors,sidewebplating,stringerplates,etc.

3.8. Secondarystiffeningmembersmaybemodelledusinglineelements,groupedatplateboundaries,positionedintheplaneoftheplatinghavinganaxialproperty.Whereappropriate,asinglelineelementmayrepresentmorethanonesecondarystiffener.Thelineelementsaretohaveacross‐sectionalarearepresentingthestiffenerarea.

3.9. Faceplateandplatepanelstiffenersofprimarymembersmayberepresentedbylineelementshavinganaxialproperty.

Page 12: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

10 

3.10. Figs.1.3.1to1.3.5indicateacceptablemesharrangementsforthevariousstructuralcomponentsofatypicalgirderlesscontainership.

3.11. Themodelling,loadcasesandboundaryconditionsofPARTAarebasedontheassumptionofafull‐breadthmodel.

3.12. Ifthedesignerdoesnothavesufficientresourcestoundertakeafull‐breadthFEanalysis,thenahalf‐breadthshipmodel,usingasymmetricloadingtechniques,isacceptable.

 

   

Page 13: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

11 

 

Fig.1.3.1

3‐Dfiniteelem

entm

odelofcom

pletecontainership

Fig.1.3.2

3‐Dfiniteelem

entm

odelshow

ingtheportsideoftheship

   

Page 14: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

12 

Fig.1.3.3

TypicalFEmodelofatransversewebframe

 

Fig.1.3.4

TypicalFEmodelofanopenbulkheadframe

   

Page 15: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

13 

 

Fig.1.3.5

TypicalFEmodelofawatertightorclosedbulkheadframe

 

Section 4: Loadingconditions

4.1. Anumberofstandardloadcasesaretobeconsidered.ThepurposeoftheseloadcasesistoensurethatthelongitudinalstrengthofthehullstructurecomplieswiththeloadingcombinationsspecifiedinPt4,Ch8oftheRulesforShips.

4.2. WhererequiredbyPt4,Ch8,14.1.2oftheRulesforShips,non‐linearshipmotionanalysisistobeusedtocalculatethevertical,horizontalandtorsionalloadsinobliqueseaconditions.Thesevertical,horizontalandtorsionalloadsobtainedaretobeusedfortheanalysisinPARTAandPARTB.GuidancefortheapplicationofthedirectcalculatedloadsisdescribedinAppendixB.

4.3. ThesignconventionsadoptedfortheanalysisinPARTAandPARTBareshowninFig.1.4.1.Loadcasesrepresentingthefollowingloadcomponentsarerequiredtobeanalysedfortheconstructionofthecombinedloadcases:

4.3.1.  Hoggingstillwaterbendingmoment Aspecialloadcaseistobepreparedwhichfulfilsthefollowingcriteria:

Shiptobeuprightatorneartothescantlingdraught.

Allbaysaretobefilledwithcontainers.

Fueloildeeptanksconstructedintransversebulkheadstructuresorfueloildeeptanksconstructedincontainercargohold,wherefitted,aretobefilled.

 

Page 16: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

14 

Aconditionwhichresultsinthestillwaterbendingmomentdistributionappliedtothemodelbeingapproximatelythesameastheassigned,orspecified,permissiblehoggingstillwaterbendingmomentdistribution.Themaximumpermissiblestillwaterbendingmomentwithin0.4Lamidshipsistobeachieved.

IncrementalverticalforcesmaybeappliedtothesideshelloftheFEmodelforadjustingthebendingmomenttomeettherequireddistributionalongtheshiplength.Alternatively,thestressesmaybeadjustedusingthemethoddescribedin6.4.

4.3.2.  Saggingstillwaterbendingmoment Aspecialloadcaseistobepreparedwhichfulfilsthefollowingcriteria: 

Shiptobeuprightatlightdraughtwhichresultsinamaximumsaggingorminimumhoggingstillwaterbendingmoment.

Fueloildeeptanksconstructedintransversebulkheadstructuresorfueloildeeptanksconstructedincontainercargohold,wherefitted,aretobefilled.

Allbaysaretobefilledwithcontainers.

Aconditionwhichresultsinthestillwaterbendingmomentdistributionappliedtothemodelbeingapproximatelythesameastheassigned,orspecified,permissiblesaggingorminimumhoggingstillwaterbendingmomentdistribution.Themaximumpermissiblesaggingorminimumhoggingstillwaterbendingmomentwithin0.4Lamidshipsistobeachieved.

IncrementalverticalforcesmaybeappliedtothesideshelloftheFEmodelforadjustingthebendingmomenttomeettherequireddistributionalongtheshiplength.Alternatively,thestressesmaybeadjustedusingthemethoddescribedin6.4.

4.3.3.  Headsea(Hog)Thisloadcaseisintendedtorepresentthedesignhoggingverticalbendingcondition. Thisistocomprisethefollowing:

a) Thehoggingstillwaterloadcaseasspecifiedin4.3.1.

b) Adistributionofforcesorpressureswhichinducethehoggingdesignverticalwavebendingmoment,Mw(hog)asdefinedin2.1ofINTRODUCTION,alongthemodellength.Therequiredwavebendingmomentmaybegeneratedbyuseofahoggingwavewiththefollowingcharacteristics:

awavelengthequaltoLPP;

thewavecrestamidships;

asinusoidalwaveprofile;and

aheightsufficienttoinducetherequiredhoggingdesignverticalwavebendingmoment(VWBM)amidships.

Thewaveheightrequiredtoinducetherequiredbendingmomentwillneedtobederivedbytrialanderrorusingasuitablestillwaterloadsprogram.Theshipistobebalancedonthewaveandtheresultingdraft,trimandwaveparametersaretobeusedfordeterminationoftheexternalpressuredistribution.Thewavebendingmomentachievedinthemodelusingthistechniquewillonlybecorrectatthemidshiplocation.Hence,itwillbenecessarytoadjusttheverticalbendingtomeettherequireddistributionalongtheshiplength.ThismaybeachievedbyapplyingincrementalverticalforcestothesideshelloftheFEmodel.Alternately,asindicatedin6.4,thelongitudinalstressresultsateachframelocationmaybe

Page 17: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

15 

factoredpriortocomparingwiththeacceptancecriteria.Alternativemethodsofgeneratingthewavebendingmomentdistributionwillbeconsidered.

4.3.4.  Headsea(Sag)Thisloadcaseisintendedtorepresentthedesignsaggingverticalbendingcondition. Thisistocomprisethefollowing:

a) Thesagging(orminimumhogging)stillwaterloadcaseasspecifiedin4.3.2.

b) Adistributionofforcesorpressureswhichinducethesaggingdesignverticalwavebendingmoment,Mw(sag)asdefinedin2.1ofINTRODUCTION,alongthemodellength.Therequiredwavebendingmomentmaybegeneratedbyuseofasaggingwavewiththefollowingcharacteristics:

awavelengthequaltoLPP;

thewavetroughamidships;

asinusoidalwaveprofile;and

aheightsufficienttoinducetherequiredsaggingdesignverticalwavebendingmoment(VWBM)amidships.

Thewaveheightrequiredtoinducetherequiredbendingmomentwillneedtobederivedbyatrialanderrorproceduredescribedin4.3.3. 

4.3.5.  Headseaverticalwavebendingmoment(Mw(hog))The ship is subjected only to wave pressure loads which generate the hogging design vertical wavebendingmoment,Mw(hog) asdefined in2.1of INTRODUCTION, along themodel length.This load casemay be constructed by subtracting the stillwater load case (4.3.1) from the head sea (hog) load case(4.3.3).ThisloadcaseisusedforPARTB’sanalysisonly.

4.3.6.  Headseaverticalwavebendingmoment(Mw(sag))Theshipissubjectedonlytowavepressureloadswhichgeneratethesaggingdesignverticalwavebendingmoment,Mw(sag)asdefinedin2.1ofINTRODUCTION,alongthemodellength.Thisloadcasemaybeconstructedbysubtractingthestillwaterloadcase(4.3.2)fromtheheadsea(sag)loadcase(4.3.4).ThisloadcaseisusedforPARTB’sanalysisonly. 

4.3.7.  Obliqueseaverticalwavebendingmoments(MVWi)TheverticalwavebendingmomentloadcasesspecifiedinAppendixCarerequired.Theshipissubjectedonly to the vertical wave bending moments which generate the required vertical wave bendingdistributions.

4.3.8.  Obliqueseahydrodynamictorques(MTWi) ThehydrodynamictorqueloadcasesspecifiedinAppendixCarerequired.Theshipissubjectedtopuretorsionalmomentswhichgeneratetherequiredhydrodynamictorquedistributions.

4.3.9.  Cargotorque(MSTC)TheshipissubjectedtopuretorsionalmomentswhichgeneratetheRulecargotorquedistributiongiveninPt4,Ch8,15.3.4oftheRulesforShips,orthespecifiedcargotorque,ifthisislarger.

4.3.10.  Obliqueseahorizontalwavebendingmoments(MHWi)The horizontalwave bendingmoment load cases as specified in Appendix C are required. The ship issubjected to pure bending moments which generate the required horizontal bending momentdistributions.

Page 18: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

16 

4.3.11.  Longitudinal(surge)accelerationThefollowingInertialoadsduetolongitudinalaccelerationaretobeconsidered:

Containers:Longitudinalcomponentofcontainerloads,arisingfromtheeffectofshipmotions,actingonthetransversebulkheadsandcrossdeckstructure.SeePARTC,Ch2,fordefinitionofthisloadcomponent.

FuelOil(orotherliquids):Longitudinalcomponentoffueloil(orotherliquid)loads,arisingfromtheeffectofshipmotions,actingonthetransversebulkheads.Iftheshipcarriesfueloil(orotherliquids)indeeptanksconstructedinthetransversebulkheadstructuresordeeptankswithinthecontainercargoholdsthentheseadditionalloadcomponentsarerequiredtobeincludedintheanalysisofthesestructures.Similarly,ifanalysingthearrangementsforwardandaftoftheengineroomforashipwhichcarriesfueloil(orotherliquids)indeeptanksconstructedwithinthecontainercargoholdsimmediatelyaftorforwardoftheengineroom,thentheseadditionalloadcomponentsarerequiredtobeincludedintheanalysis.HydrostaticloadingisalsotobeincludedifthiscomponentwasomittedfromthestillwaterloadcaseofPARTA.SeePARTC,Ch5fordefinitionofthisloadcomponent.

Thislongitudinalloadisrequiredfortheassessmentofcrossdeckboxandtransversebulkheadstructures,seeTable1.6.1,andPARTB’sanalysis. 

4.4. Inconstructingtheloadcasesreferredtoin4.3,theloadcomponentsgiveninTable1.4.1aretobeincluded.Alternativemethodsofachievingtheloadcasesdescribedin4.3willbeconsidered.

4.5. Forahalf‐breadthmodel,onlytheloadsapplicabletoonehalfofthemodelaretobeapplied.Theseloadsaretobederivedinthesamemannerasthatrequiredforafull‐breadthmodel.

   

Page 19: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

17 

 

NOTES

1. Verticalbendingmoment–hoggingverticalbendingmomentispositiveandproducestensilestressesatthedeck.

2. Horizontalbendingmoment‐positivehorizontalbendingmomentproducestensilestressesatstarboardsideoftheship.

3. Hydrodynamicandcargotorquesaretobeappliedsothatthewarpingstressesontheportsidedeckinwayoftheengineroomareincompression,seeFig.1.4.2.

Fig.1.4.1

ThesignconventionsadoptedfortheanalysisinPARTAandPART

   

Page 20: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

18 

InphasehydrodynamictorqueMTW1

OutofphasehydrodynamictorqueMTW6

Fig.1.4.2

Applicationofincrementaltorsionalmomentstogeneratehydrodynamictorquedistributions

NOTE:Theinphaseandoutofphasehydrodynamictorquedistributions,  and ,giveninAppendixC,arethesamedistributionsas and inPt4,Ch8,15.3.3oftheRulesforShips.

 

   

Page 21: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

19 

Table1.4.1 SummaryofloadcomponentsforthefullshipFEmodel

Loadcase Loadcomponent Remarks

Hoggingstillwater

See4.3.1

Saggingstillwater

See4.3.2

Headsea(Hog)

See4.3.3

Headsea(Sag)

See4.3.4

Steelweight

Asgeneratedfromthemodelledhullstructure,suitablyfactoredtoachievethespecifiedsteelweight,includingthepositionoftheLCG.Inthisrespect,itmaybeusefultodividethemodellongitudinallyintoanumberofmaterialzones,eachofwhichcanhaveaseparatefactoredvalueforthesteeldensity.

MachineryandoutfitAllmajoritemstobeappliedaspointloadsorpressureloadsattheircorrectlocations.Minororunknownitemsmaybeincludedinthesteelweight.

Containersabovedeck(onhatches)

Verticalloadstobeappliedtothehatchcoamingsofcross‐deckstructureinwayofthestackcorners.

Containersinholdsandabovedeckinopenhatch(hatchcoverless)ships

Verticalloadstobeappliedtolongitudinalstructureatthestackbase.

Buoyancyloads

Tobeappliedaspressureloads,ρgh,onwettedshellelements,wherehisthedistanceoftheelementcentroidbelowthestillwaterlineorwaveprofileasappropriate.

Additionalforcesorpressures

Asnecessarytoachievetherequiredstillwaterandwavebendingmomentdistributions.

BallastandfueloilTobeappliedaspressureloadsornodalforcesontankboundaries,basedontheactualliquidhead.Anyover‐pressurisationofthetankistobeomitted.

Headseaverticalwavebendingmoment(Mw(hog))See4.3.5

Hoggingdesignverticalwavebendingmomentdistribution,asdefinedin2.1ofINTRODUCTION.

Combinedloadcaseasfollows:Headsea(Hog)–Hoggingstillwater

Headseaverticalwavebendingmoment(Mw(sag))See4.3.6

Saggingdesignverticalwavebendingmomentdistribution,asdefinedin2.1ofINTRODUCTION.

Combinedloadcaseasfollows:Headsea(Sag)–Saggingorminimumhoggingstillwater

Obliqueseaverticalwavebendingmoment(MVWi)See4.3.7

Verticalwavebendingmoment,MVWi,asspecifiedinAppendixC

Incrementalverticalforcesaretobeappliedtothesideshell(portandstarboard)ateachframepositiontogeneratetherequiredverticalwavebendingmomentdistribution.Nootherloadcomponentsaretobeincluded.

Obliqueseahydrodynamictorque(MTWi)See4.3.8

Hydrodynamictorquedistribution,MTWi,asspecifiedinAppendixC

Incrementaltorsionalmomentsaretobeappliedalongthelengthoftheshipasforcesactingintheplaneofthesideshell.Whenintegratedalongtheshiplength,theincrementaltorsionalmomentsaretogeneratetheRulehydrodynamictorquedistribution.Nootherloadcomponentsaretobeincluded.

Cargotorque(MSTC)See4.3.9

Cargotorquedistribution,MSTC,asgiveninPt4,Ch8,15.3.4oftheRulesforShips

Incrementaltorsionalmomentsaretobeappliedalongthelengthoftheshipasforcesactingintheplaneofthesideshell.Whenintegratedalongtheshiplength,theincrementaltorsionalmomentsaretogeneratetheRulecargotorquedistribution.Nootherloadcomponentsaretobeincluded.

Obliqueseahorizontalwavebendingmoment(MHWi)See4.3.10

Horizontalwavebendingmomentdistribution,MHWi,asspecifiedinAppendixC

Incrementallongitudinalforcesaretobeappliedtothesideshellportandstarboardatthebulkheadpositionstogenerateamomentcoupleateachbulkhead.Whenintegratedalongtheshiplength,theincrementalmomentcouplesaretogeneratetheRulehorizontalwavebendingmomentdistribution.Nootherloadcomponentsaretobeincluded.

Page 22: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

20 

4.6. ThefollowingloadcasesaretobecomparedwiththeassessmentcriteriaspecifiedinSection6:

Headsealoadcases(seeTable1.4.2);

Obliquesealoadcases(seeTable1.4.3).Alternatively,thestresscombinationsgiveninAppendixDmaybeusedtoobtainthemaximumandminimumlongitudinaldirectstressesifthehydrodynamicloadsspecifiedinAppendixCareapplied.However,ifnon‐linearshipmotionanalysisisusedtodeterminethehydrodynamicloads,see4.2,theloadcombinationsgiveninTable1.4.3mustbeused.

Table1.4.2 Loadcombinationsforheadseacondition

 

   

Loadcase Wavedirection WaveStillwaterloadcase

(seeNote4)

LongitudinalAcceleration,seeNote1

(Containers,seeNote2

and/orFO,seeNote3)

Stillwaterhoggingcondition

H1a HeadSea Hog 1(seeNote5)H1b(seeNote6) HeadSea Hog 1(seeNote5)

H2a HeadSea Hog ‐1(seeNote5)H2b(seeNote6) HeadSea Hog ‐1(seeNote5)

Stillwatersaggingcondition

H3a HeadSea Sag 1(seeNote5)H3b(seeNote6) HeadSea Sag 1(seeNote5)

H4a HeadSea Sag ‐1(seeNote5)H4b(seeNote6) HeadSea Sag ‐1(seeNote5)

Symbols

Stillwater(Hog) Stillwaterloadcasewithrequiredhoggingpermissiblestillwaterbendingmomentasdescribedin4.3.1.

Stillwater(Sag)Stillwaterloadcasewithrequiredsaggingorminimumhoggingpermissiblestillwaterbendingmomentasdescribedin4.3.2.

(hog) HeadSeahoggingverticalwavebendingmoment(Mw(hog))loadcaseasdescribedin4.3.5.Notethatthehoggingverticalbendingmomentistobeinaccordancewiththatspecifiedin2.1ofINTRODUCTION.

(sag) HeadSeasaggingverticalwavebendingmoment(Mw(sag))loadcaseasdescribedin4.3.6.Notethatthesaggingverticalbendingmomentistobeinaccordancewiththatspecifiedin2.1ofINTRODUCTION.

NOTES1. Longitudinalaccelerationloadcomponentisrequiredtobeappliedin theassessmentoftransversebulkheadandcrossdeck

structures,seeTable1.6.1,andtheanalysisinPARTB.2. Containers‐longitudinalcomponentofcontainerloads,arisingfromtheeffectofshipmotions,actingonthetransverse

bulkheadsandcrossdeckstructure.See4.1andPARTC,Ch2,fordefinitionofthisloadcomponent.3. FO‐longitudinalcomponentoffueloil(orotherliquid)loads,arisingfromtheeffectofshipmotions,actingonthetransverse

bulkheads.See4.1andPARTC,Ch5,fordefinitionofthisloadcomponent.4. Hoggingandsagging(orminimumhogging)stillwaterloadcasesasspecifiedin4.3.1and4.3.2aretobeconsidered.5. Inertiaforceduetolongitudinalaccelerationofcontainersand/orfueloil,see4.3.11.

1:applicationofheadseapositivepitchaccelerationcaseMC1(HS_1)‐1:applicationofheadseanegativepitchaccelerationcaseMC1(HS_2)

6. ThiscaseisonlyrequiredforPARTB’sanalysis.

Page 23: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

21 

Table1.4.3 Loadcombinationsforobliqueseacondition

Loadcase Wavedirection

LoadCombination(atstepi)

ID

Wave Static

Containerand/orFO

(seeNotes6&7)

Stillwaterloadcase(seeNote4)

(seeNote5)

Stillwaterhogging

OS1

Starboard

OS1i 1 1 1 1 Hog 1

OS2 OS2i 1 1 1 1 Hog ‐1

OS3 OS3i 1 1 1 ‐1 Hog 1

OS4 OS4i 1 1 1 ‐1 Hog ‐1

OP1

Port

OP1i 1 ‐1 ‐1 1 Hog 1

OP2 OP2i 1 ‐1 ‐1 1 Hog ‐1

OP3 OP3i 1 ‐1 ‐1 ‐1 Hog 1

OP4 OP4i 1 ‐1 ‐1 ‐1 Hog ‐1

Stillwatersagging

OS5

Starboard

OS5i 1 1 1 1 Sag 1

OS6 OS6i 1 1 1 1 Sag ‐1

OS7 OS7i 1 1 1 ‐1 Sag 1

OS8 OS8i 1 1 1 ‐1 Sag ‐1

OP5

Port

OP5i 1 ‐1 ‐1 1 Sag 1

OP6 OP6i 1 ‐1 ‐1 1 Sag ‐1

OP7 OP7i 1 ‐1 ‐1 ‐1 Sag 1

OP8 OP8i 1 ‐1 ‐1 ‐1 Sag ‐1

NOTES1. Themaximumandminimumdirect(tangential)stressesoveracompletewavecycle(i.e.forallstepsi)areobtainedas

followsforcomparisonagainsttheacceptancecriteria:σ OSna Max σ OSn σ OSnb Min σ OSn σ OPna Max σ OPn σ OPnb Min σ OPn where, 1, 2, 3, 4, 5, 6, 7and8

2. TheelementvonMisesstressistobecalculatedindividuallyateachstepusingthecorrespondingdirectandshearstressesatthesamestep.ThemaximumvonMisesstressesoveracompletewavecycle(i.e.forallstepsi)areobtainedasfollowsforcomparisonagainsttheacceptancecriteria:σ OSn Max σ OSn σ OPn Max σ OPn where, 1, 2, 3, 4, 5, 6, 7and8

3. Thebucklingfactorofsafetyistobecalculatedindividuallyateachstepusingthecorrespondingdirectandshearstressesatthesamestep.Theminimumbucklingfactorofsafetyoveracompletewavecycle(i.e.forallstepsi)aretobelessthantherequiredcriteria:λ OSn Min λ OSn λ OPn Min λ OPn where, 1, 2, 3, 4, 5, 6, 7and8

4. Hoggingandsagging(orminimumhogging)stillwaterloadcasesasspecifiedin4.3.1and4.3.2aretobeconsidered.Thestressofeachstillwaterloadcaseistobecombinedwiththestressesduetocargotorqueandwaveloads(includinglongitudinalaccelerationinertialoadwhererequired,seeNote6forassessingagainsttheacceptancecriteria).

5. Cargotorqueloadcase,see4.3.9.

6. Longitudinalaccelerationloadcomponentisrequiredtobeappliedfortheassessmentoftransversebulkheadandcrossdeckstructures,seeTable1.6.1,andPARTB’sanalysis.

7. Inertialforceduetolongitudinalaccelerationofcontainersand/orfueloil,see4.3.11. 1indicatesapplicationofobliqueseapositivepitchaccelerationcaseMC3(OS1_1) ‐1indicatesapplicationofobliqueseanegativepitchaccelerationcaseMC3(OS1_2)Forcontainers,seePARTC,Ch2,fordefinitionofthisloadcomponent.ForFO,seePARTC,Ch5,fordefinitionofthisloadcomponent.

 

Page 24: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

22 

Section 5: Boundaryconditions

5.1. Theloadcasesspecifiedin4.3requiredifferentboundaryconditionsasgiveninTable1.5.1.TheseboundaryconditionsareillustratedinFig.1.5.1.

5.2. TheboundaryconditionsspecifiedinTable1.5.2combinedwiththoseinTable1.5.1areappropriateforahalf‐breadthmodel

5.3. Theboundaryconditionsdescribedinthissectionarepreferred.However,alternativeequivalentboundaryconditionsmaybeused.

5.4. InTable1.5.1,‘openlength’referstothecontainerholdareaoftheshipwhichliesforwardofthe‘closed’engineroomsection.

Table1.5.1 Boundaryconditionsforafull‐breadthmodel

LoadcaseSee

Paragraph Boundaryconditions

Hoggingstillwater

Saggingstillwater

Headsea(Hog)

Headsea(Sag)

Obliqueseaverticalwavebendingmoments

4.3.14.3.2

4.3.34.3.4

4.3.7

(a)Themodelistobefreeofimposedconstraints,exceptforthosenecessarytopreventrigidbodymotion.Rigidbodymotionsmaybepreventedbytheuseoffree‐bodyconstraints(e.g.theInertiaRelieffacilityinNastranterminology).

(b)Alternatively,modelmaybeconstrainedasfollows:

AttheF.P.onthecentreline:δy=δz=0

AttheA.P.onthecentreline:δx=δy=δz=0

AtthedeckonthecentrelineattheAP:

δy=0

(c) SeeNotes1and3.

Hydrodynamictorques

Cargotorque

4.3.8

4.3.9

(a)Atabulkheadneartomid‐lengthoftheopenlength:

•verticalconstraint(δz=0)atthesideshellatmid‐depth,portandstarboard

•longitudinalconstraint(δx=0)atthekeelonthecentreline

•transverseconstraint(δy=0)atthekeelonthecentreline.

(b)Attheaftendofthekeelortransom,whereappropriate,andattheforwardendofthekeelonthecentreline:

•groundedvertical(Z)springs,seeNote2.(c) AtthedeckneartheF.P.andA.P.onthecentreline:

•groundedtransverse(Y)springs,seeNote2.(d)SeeNote1.

Horizontalwavebendingmoments

4.3.10

(a)Atabulkheadneartomid‐lengthoftheopenlength:

• verticalconstraint(δz=0)atthekeelonthecentreline

•longitudinalconstraint(δx=0)atthedeckedge,portandstarboard

• transverseconstraint(δy=0)atthedeckandkeelonthecentreline.

(b)Attheaftendofthekeelortransom,whereappropriate,andattheforwardendofthekeelonthecentreline:

• groundedvertical(Z)springs,seeNote2.

(c) SeeNote1.

NOTES1. Careistobetakentoensurethat,withinpracticablelimits,thereisnonetimbalanceofloadormomentinanyofthesix

degreesoffreedom.2. Springstiffnessistobesmall,equivalentto1kgf/m.Theresultantloadinthespringsistobecheckedtoensuretheseloads

arenotsignificant.3. CareistobetakentoensurethattheFEmodelisnotoverconstrained.

 

Page 25: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

23 

Table1.5.2 Additionalboundaryconditionsforahalf‐breadthmodel

LoadcaseSee

ParagraphBoundaryconditions

Stillwater

Headsea

Obliqueseaverticalwavebendingmoments

4.3.1and4.3.2

4.3.3and4.3.4

4.3.7

Centrelineplane:Symmetryconstraints,i.e.δy=θx=θz=0

Hydrodynamictorque

Cargotorque

4.3.8

4.3.9Centrelineplane:Anti‐symmetryconstraints,i.e.δx=δz =θy=0

Horizontalwavebendingmoment 4.3.10 Centrelineplane:Anti‐symmetryconstraints,i.e.δx=δz =θy=0

NOTE

TheseboundaryconditionsareadditionaltothosegiveninTable1.5.1andtakeprecedenceovertherequirementsofTable1.5.1whennecessary.

 

   

Page 26: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

24 

 

(1) Still water, head sea and oblique sea cases

Fig.1.5.1

BoundaryconditionsfortheglobalshipFEmodel:locationsoffreebodyconstraints

 

Section 6: Acceptancecriteria

6.1. InaccordancewiththeproceduressetoutinPt4,Ch8oftheRulesforShips,thelongitudinaldirectstressvaluesalongthecompleteshiplengtharenottobegreaterthanthevaluesindicatedinTable1.6.1atthefollowingpositions:

a) theinboardedgeofthestrengthdeck;

b) thepointonthebilgewherethecombinedstressisgreatest;and

c) thetopofcontinuoushatchcoaming.

Page 27: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

25 

6.2. Atthehatchsidecoamingandupperdeckintersections,stressconcentrationsarisefromtheinter‐connectionofthesuperstructure/closedengineroomsectionandthecross‐deckstrips.Theseareasaretobesubjecttothefollow‐upanalysesindicatedinPARTB.

6.3. ThestressesinthetransversebulkheadandcrossdeckstructuresarenottobegreaterthanthevaluesindicatedinTable1.6.1

6.4. ThedistributionofactualSWBM,Mw(hog)andMw(sag),obtainedoverthelengthofthemodelaretobecomparedwiththerequiredbendingmomentdistributions.ThelongitudinalstressvaluederivedfromtheFEmodelforeachlongitudinallocationistobefactoredbytheratioofthelocallyrequiredbendingmomenttothelocallyachievedmomentpriortocombiningwithstressesfromotherloadcases,forcomparisonwiththeacceptancecriteriaspecifiedinTable1.6.1.

6.5. Figuresshowingtheresultinglongitudinalstressdistributionsaretobeproduced.AnexamplestressdistributionplotisshowninFig.1.6.1.

6.6. Structuresinwayofhighstressgradientsaretobesubjecttofurtherinvestigation.

6.7. ThebucklingstrengthofthelongitudinalandtransversemembersasindicatedinTable1.6.1istobeinvestigatedusingtheproceduredescribedinShipRightADP(AdditionalDesignandConstructionProcedures)–GuidanceNotesforShipRightSDABucklingAssessment.AminimumfactorofsafetyasgiveninTable1.6.1istobeachieved.

6.8. ThebucklingcapabilityofhullstructuresistobeassessedusingaplatethicknessreducedbythestandardthicknessdeductionvaluesgiveninPARTC,Ch1,Table1.6.2.

6.9. SubjecttoLloyd’sRegister’sagreement,alternativemethodsforbucklingassessmentsmaybespeciallyconsidered.

   

Page 28: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

26 

 

Table1.6.1 Maximumpermissiblemembranestresses

Maximumpermissiblemembranestresses(N/mm2)

SeeNote1 MinimumBucklingFactorofSafety

ΩLoadcase Structuralitem Von‐MisesstressDirectstress

(SeeNote2)Shearstress

Headsea(Hog)See4.3.3Headsea(Sag)See4.3.4

LongitudinalhatchcoamingUpperdeckplating

‐ 0,745σL ‐ ‐

BottomshellTurnofbilgeInnerbottom

‐ 0,92σL ‐1,2

SeeNote5

Crossdeckbox(SeeNote3) 0,750 ‐ ‐ 1,2

Longitudinalstructuralmemberselsewhere

‐ 0,745σL ‐1,2

SeeNote5

Obliquesea

See6.4

Longitudinalhatchcoaming ‐ 0,745σL ‐ 1,2

Upperdeckplating ‐ 0,67σL ‐ 1,2

BottomshellTurnofbilgeInnerbottom

‐ 0,845σL ‐ 1,2

Crossdeckbox(SeeNote3) 0,750 ‐ ‐ 1,2

Transversebulkheadstructure(SeeNote3) 0,750 ‐ 0,350 1,2

Longitudinalstructuralmemberselsewhere(SeeNote6)

‐ 0,67σL ‐ 1,2

where

σL=235/kLN/mm2

NOTES

1. Seealso6.4.2. Themagnitudeofthedirectstressistobelessthanthepermissiblevalue.3. Fortheassessmentofcrossdeckboxandtransversebulkheadstructure,inertialloadsduetolongitudinalaccelerationare

tobeconsidered,see4.3.11.4. See4.6forloadcasesforassessment5. Thebucklingstrengthofthelongitudinalmembers,outsidetheextentcoveredorassessedbyPARTC,aretobe

investigated.6. Includingplatformsinengineroomthatareconsideredtobeeffectivelongitudinalstrengthmembers.

 

 

 

Page 29: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part A, Chapter 1  Primary Structure of Container Ship, August 2017 

27 

Fig.1.6.1

Longitudinaldistributionofstressinahatchsidecoam

ing(Forillustrativepurposes)

 

 

Page 30: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

28 

PART B:

Verification of Structural Components and 

Details 

Chapter 1:

Analysis of Global Loads on Local Details 

Section 1:  Application 

Section 2:  Objectives 

Section 3:  Structural modelling 

Section 4:  Loading and boundary conditions 

Section 5:  Acceptance criteria 

 

Section 1: Application

1.1. FortheapplicationofPARTB,seeINTRODUCTION,1.8.

Section 2: Objectives

2.1. TheobjectiveofPARTBistoensurethatthestructuralresponsesofthefollowingstructuraldetailsarewithinacceptablelimits:

a) Hatchcornerradiiattheconnectionofthecontainerholdareawiththeengineroomanddeckhousestructure,ifapplicable(see3.4and3.5).

b) Hatchcornerradiiattheconnectionofthelowerdecks,upperdeckandhatchsidecoamingswiththetransversestructureofthewatertightbulkheadsandopentransversebulkheads(see3.3).

c) Forcontainershipswithfueloildeeptankslocatedinboardoftheinnerskinandabovethedoublebottom:thearrangementsoftheconnectionofthecrownofthefueloildeeptankstothesidestructure(see3.7).

d) Scarphingandintegrationdetailsofthehatchsidecoamingswiththesuperstructureandengineroomconstruction(see3.4and3.5).

e) Connectionoftheforwardopenlengthwiththeforwardendoftheship(see3.6).

f) StructureinwayofhighstressgradientsorareasexceedingthestresscriteriaspecifiedinPARTA.

g) Anyotherunusualfeature. 

Page 31: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

29 

Section 3: Structuralmodelling

3.1. Thestructuraldetailsspecifiedin2.1aretoberepresentedbyfinemeshinthePARTAglobalmodel.Alternatively,separatedetailedfinemeshmodelscoveringthestructuraldetailsaretobepreparedandloadedwithenforceddisplacementsobtainedfromthefullshipglobalanalysis.

3.2. Finemeshmodelswillberequiredfortheareasdetailedbelow.TypicalmodelsareindicatedinFigs.1.3.1and1.3.2.

3.3. Midshipcross‐deckstripandhatchcornerdetail

3.3.1.  A model of the midship cross‐deck strip at approximately the position of maximum warpingdisplacement.AtypicalmodelisshowninFig.1.3.1andmodellingguidanceisgivenin3.8. 

3.3.2.  Ifthescantlingsand/orstructuralarrangementofthehatchcornercross‐deckstructureandthehatch coaming arrangement differ between the watertight bulkheads and the open bulkheads, thenmodelsofbothbulkheadarrangementswillberequired.Similarly,iftherearedifferentbulkheaddesignarrangements,thenamodelistobemadeofeachdesignvariant. 

3.3.3.  For container ships with fuel oil deep tanks arranged between the inner skin and above thedoublebottom,afinemeshmodeloftheconnectionofthecross‐deckarrangementstothesidestructurewillberequiredinwayofthehatchcoamingandupperdecklevelsandalsoatthetankcrownlevel.Thismodelisadditionaltothatdescribedin3.3.1and3.3.2.

3.4. Connectionoftheforwardopenlengthwiththeforwardendoftheengineroom

3.4.1.  A model of the integration of the open length with the forward end of the engine roomencompassing the hatchway radius at upper deck level, the hatch corner radius at hatch coaming topleveland,ifapplicable,theintegrationofthehatchsidecoamingswiththesuperstructureside.AtypicalmodelisshowninFig.1.3.2andmodellingguidanceisgivenin3.8.

3.4.2.  Themodeldescriptionhasbeenframedonthebasisthatthelongitudinalhatchsidecoamingsareintegratedwith the superstructure. If, however, a separate deckhouse is proposedwith discontinuoushatch side coamings, then the model should permit examination, using a suitable fine mesh, of thediscontinuitiesintroducedbysuchanarrangement.

3.5. Connectionoftheaftopenlengthwiththeaftendoftheengineroom

3.5.1.  A model of the integration of the aft open length with the engine room/superstructurearrangement,similartothatdescribedin3.4,isalsotobemade.

3.5.2.  Thisrequirementwillbewaivedifthescantlingsandarrangementsoftheaftintegrationarethesame as the forward integration and the stress levels, obtained from PART A, of the full ship globalanalysesarelower.

3.6. Connectionoftheforwardopenlengthwiththeforwardendoftheship

3.6.1.  Amodeloftheintegrationoftheforwardopenlengthwiththefore‐shipisalsotobemade. 

3.6.2.  TheextentandpositionofthismodelistobedecidedonreviewofthePARTAresults.Agreementofthelocalplanapprovalofficetothemodellingproposalsshouldbeobtainedpriortocommencingtheanalysis.Generalmodellingguidanceisgivenin3.8.

3.7. Connectionofopenlengthswithfueloildeeptanksconstructedwithincontainerhold

Page 32: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

30 

3.7.1.  In caseswhere fuel oil deep tanks are arranged inboard of the inner skin and above the innerbottomandhavelengthexceedingfourtimesthewidthofthecross‐deckstripspecifiedinPt4,Ch8,4.3.1oftheRulesforShips,analysisoftheintegrationwiththeadjacenthullstructureistobecarriedout.

3.7.2.  Themodelsaretobeasdescribedin3.4,3.5,3.6and3.8.

3.7.3.  If the crownof the fuel oil tank is not in linewith the coaming top or upper deck, the verticalextentofthemodelistobeincreasedsothatthemodelextendsfromonestringerlevelbelowthecrownof the tank to the coaming top. The corner arrangements in adjacent container holds in linewith thecrownof the tankare tobemodelled in finemeshand resultsare to complywith the requirementsofSec5.

3.8. ModellingRequirements

3.8.1.  Thesemodelsaretoincludeafinemeshinwayofthehatchcornerradiiattheupperandlowerdecksandhatchcoamingtoplevels.Similarly,asuitablyfinemeshistobeincludedatthescarphingandintegrationdetailsofthehatchsidecoamingswiththesuperstructureandengineroomconstructions.

3.8.2.  The levelof refinement is tobe suchas toenable stress concentrations tobe identified.Wherefiniteelementanalysisprogramsdonotsupplynodalstresses,alineelementofsmall(nominal)areaistobeincorporatedtoobtainthepeakedgestressesatthefollowinglocations:

alongtheplateedgeofhatchcornersatthelowerdecks,upperdeckandhatchcoaming,

alongthesuperstructuretohatchsidecoamingscarphingbrackets.

3.8.3.  Theextentof thesemodels is tobesuch that theapplicationofboundarydisplacements (takenfromtheglobalanalysis)willnotaffecttheresponseattherelevantpointsofthelocalfinemeshmodel. Ingeneral,itisrecommendedthatthemodelextends:

transverselyoverthehalf‐breadthoftheship,

longitudinallyfromthemidpointofone40ftcontainerbaytothemidpointofthenext40ftcontainerbay,

verticallyfromthecoamingtopplatetothedeckorstringersbelowtheintersectionofthebottomofthecross‐deckstripwiththelongitudinalbulkhead.

3.8.4.  In respectof themodeldescribed in 3.4 and3.5, a similar extent shouldbe used, butwith theverticalextentencompassingthesuperstructuredeckabovethetopofanyscarphingbrackets.

3.8.5.  Theprimary structure and coamingstays are to be representedby shell finite elementshavingbothmembraneandbendingcapability.

3.8.6.  Thestructuralgeometry,particularlyinareasofconcern,istobeaccuratelyrepresented.Inthisrespect,aminimumof 15 elements in a 90 degree arc are to be used todescribe the curvature of thehatchwayradiusplating.However,theelementedgedimensionsalongthefreeedgeoftheradiusshouldnotbe less than the thicknessof theplatingbeing representedandalsoshouldnotbegreater than1.5times the thickness of the plating being represented. Except where necessary from practicalmeshingconsiderations,thislevelofidealisationistobemaintainedoverthebracketplatingandistoextendintothestringerplating,deckplatingandcoaming. Meshtransitionsshouldnotbearrangedclosetobrackettoes.

3.8.7.  Allcut‐outs(e.g.forventilationsystems,accessopenings)aretoberepresentedinthemodel.

Page 33: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

31 

3.8.8.  Secondary stiffeningmaybe represented by line elements having axial and bending properties(bars)representingthestiffenerwiththeeccentricityoftheneutralaxismodelled,except inwayoftheending of primary structure, e.g. longitudinal bulkhead longitudinal stiffener in way of cross‐deckboxbottomplating.

3.8.9.  The extent of models required for 2.1(e), (f) and (g) will be subject to special consideration.However,themodellingphilosophyoutlinedintheprecedingparagraphswillgenerallyapply. 

Fig.1.3.1

Cross‐deckstrip–Finemeshmodelshow

ingcornerdetails

 

   

Page 34: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

32 

 

Fig.1.3.2

Engineroom

bulkheadforward–Finemeshmodel

 

   

Page 35: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

33 

Section 4: Loadingandboundaryconditions

4.1. TheloadsspecifiedinPARTA,Ch1,4.3,includinginertialloadsduetolongitudinalacceleration,aretobeconsideredinPARTB’sanalysis.

4.2. Whereseparatefinemeshmodelsareusedtoderivethestressresponsesfortheloadcasesasdefinedin4.1andPARTA,Ch1,4.3,themodelsaretobeloadedattheirboundarieswithenforceddisplacementsobtainedfromtheresultsofthePARTAglobalmodel,togetherwithlocalloadswithintheregionofthefinemeshmodel,whereappropriate.Thetranslationalenforceddisplacementsaretobeadjustedasfollows:

a) Forthestillwatercases(seePARTA,Ch1,4.3.1and4.3.2)theenforceddisplacementsaretobecorrectedbytheratiooftherequiredpermissibleSWBMvaluetotheactualbendingmomentappliedtotheglobalmodelatthefinemeshmodellocation.

b) Fortheheadseacases(seePARTA,Ch1,4.3.3and4.3.4)andobliqueseacases(seePARTA,Ch1,4.3.7to4.3.10)theenforceddisplacementsaretobecorrectedbytheratiooftherequiredwavebendingmomenttotheactualbendingmomentappliedtotheglobalmodelatthefinemeshmodellocation.

4.3. Wherethestructuraldetailsarerepresentedbyembeddedfinemeshesintheglobalmodel,thestressresultfortheloadcasesdescribedin4.2(a)and4.2(b)istobecorrectedbytheratiooftherequiredwavebendingmomenttotheactualbendingmomentappliedtotheglobalmodelatthelocationoftheelementunderconsideration.

4.4. Ifthestructuralarrangementissymmetricalabouttheship’scentreline,thenitisonlynecessarytoanalysethestructuraldetailsoneithertheportorthestarboardsideoftheship.Theenforceddisplacementsshouldbetakenfromlocationsonthesideoftheglobalmodelwherethedetailsarerepresentedbythefinemeshmodels.

4.5. Fortheheadseacondition,theloadcombinationsgiveninPARTA,Ch1,Table1.4.2aretobeconsideredforPARTB’sanalysis.

4.6. Fortheobliqueseacondition,theloadcombinationsgiveninPARTA,Ch1,Table1.4.3aretobeconsideredforPARTB’sanalysis.

4.7. AlternativelythestresscombinationsgiveninAppendixDmaybeusedtoobtainthemaximumandminimumlongitudinaldirectstresses,suchasthetangentialstressesinwayofhatchcornerfreeedges,ifthehydrodynamicloadsspecifiedinAppendixCareapplied.However,ifnon‐linearshipmotionanalysisisusedtodeterminethehydrodynamicloads,seePARTA,Ch1,4.2,theloadcombinationsgiveninPARTA,Ch1,Table1.4.3mustbeused.

4.8. Theloadcasecombinationsmaybeobtainedby:

a) Extractingthestressresultsfromselectedfinemeshelementsforeachindividualloadcaseasdefinedin4.1andPARTA,Ch1,4.3.

b) Ifseparatefinemeshmodelsareused,unadjusteddisplacementresultsfromPARTAloadcasesdescribedin4.2(a)and4.2(b)maybeusedandthecorrectionappliedtothestressresult.

c) Useaspreadsheet,orequivalentmethod,tocombinethestressresultsofallspecifiedloadcomponents.

Page 36: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

34 

d) VonMisesstressesaretobecalculatedbasedonthesumofthedirectstressesandthesumoftheshearstressesfromallloadcomponentsspecified.

Section 5: Acceptancecriteria

5.1. Thedirect(tangential)stressesatthefollowinglocationsaretocomplywiththeacceptancecriteriainTable1.5.1:

atthefreeedgeofthehatchcornerradiiattheupperdeck,

atthefreeedgeofthehatchcoamingtop,

atthefreeedgeofscarphingbracketsbetweenthesuperstructuresideplatingandthetopofthehatchcoaming,

atothercriticallocationswithintheconnection.

5.2. Elsewhere,stresslevelsaretocomplywiththeacceptancecriteriadetailedinTable1.5.2.

5.3. ThefactorsjBOSna,jBOSnb,jBOPnaandjBOPnb,wheren=1to8,specifiedinthecombinationcasesinTable1.5.1aretobeindividuallydeterminedforeachelement.

5.4. Separatehatchcornerradiusplatesformedbyinsertbracketsweldedtothetransverseandlongitudinalstructuresarenotrecommended.Ifsuchbracketsareproposedintheselocations,acceptancewillbesubjecttospecialconsideration.Similarly,proposalstoomitcornerradiiwillbesubjecttospecialconsideration.

5.5. Inrespectofthesuperstructuretocoamingtopscarphingbrackets,itmaybenecessaryfortheweldatthetoeofthebracketatitsconnectionwiththecoamingtopplatetobegroundintoasuitableradiusandbeverifiedfreeofsurfaceimperfections.ThisisinadditiontotherequirementsspecifiedinNote1ofTable1.5.1.

 

Page 37: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

35 

 

Table1.5.1 Acceptancecriteriaforfreeedgesofhatchcornerradiiandscarphingbrackets

   

Wavedirection StressesforassessmentAllowableStress,N/mm2

(seeNotes1,2and4)

HeadSea

Peakstresses(seePARTA,Ch1,Table1.4.2)

|σ H1a ||σ H2a ||σ H3a ||σ H4a |

1.5 σ (Theoreticalpeakstress,

seeNote3)

Dynamicstressranges(seeNote6)

| σ H1a σ H2b || σ H2a σ H1b || σ H3a σ H4b || σ H4a σ H3b |

600 N/mm (seeNote1)

ObliqueSea

Peakstresses(seePARTA,Ch1,Table1.4.3)

|σ OSna ||σ OSnb ||σ OPna ||σ OPnb |

1, 2 ,3, 4, 5, 6, 7 and 8

1.5 σ (Theoreticalpeakstress,

seeNote3)

Dynamicstressranges(seeNote6)

| σ OS1a σ OS3b || σ OS3a σ OS1b || σ OS2a σ OS4b || σ OS4a σ OS2b || σ OP1a σ OP3b || σ OP3a σ OP1b || σ OP2a σ OP4b || σ OP4a σ OP2b |

| σ OS5a σ OS7b || σ OS7a σ OS5b || σ OS6a σ OS8b || σ OS8a σ OS6b || σ OP5a σ OP7b || σ OP7a σ OP5b || σ OP6a σ OP8b || σ OP8a σ OP6b |

600 N/mm (seeNote1)

where

Forheadseacondition:σ Hna andσ Hnb ,where canbe1, 2, 3or4,arethestressesobtainedfromloadcasesHnaandHnb.SeePARTA,Ch1,Table1.4.2.

istobetakenas1,0ingeneral.Forfreeedgesandplatingclearofwelds,ifthevalueofσ BHna isnegative(i.e.incompression)then maybetakenas0,6.

istobetakenas1,0ingeneral.Forfreeedgesandplatingclearofwelds,ifthevalueofσ BHnb isnegative(i.e.incompression)then maybetakenas0,6.

Forobliqueseacondition:σ OSna ,σ OSnb ,σ OPna andσ OPnb ,where canbe1to8,aredefinedinPARTA,Ch1,Table1.4.3.

istobetakenas1,0ingeneral.Forfreeedgesandplatingclearofwelds,ifthevalueofσ BOSna isnegative(i.e.incompression)then maybetakenas0,6.

istobetakenas1,0ingeneral.Forfreeedgesandplatingclearofwelds,ifthevalueofσ BOSnb isnegative(i.e.incompression)then maybetakenas0,6.

istobetakenas1,0ingeneral.Forfreeedgesandplatingclearofwelds,ifthevalueofσ BOPna isnegative(i.e.incompression)then maybetakenas0,6.

istobetakenas1,0ingeneral.Forfreeedgesandplatingclearofwelds,ifthevalueofσ BOPnb isnegative(i.e.incompression)then maybetakenas0,6.

Page 38: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

36 

 

   

where

j=

jsa=jdl=

jw=

σ =t==n=

=

0,9 forupperdeckhatchwaycornerforwardandaftoftheengineroom0,95 forupperdeckhatchwaycornerforwardandaftofcross‐deckstripswhichhaveawidth(dimensioninthe

longitudinaldirection)greaterthan6w,wherewisthewidthofcrossdeckstripspecifiedinPt4,Ch8,4.4.5oftheRulesforShips

1,0 elsewhere1,0Factorreflectingtherequireddesignfatiguelife= 25/FLY , where,FLYisspecifiedfatiguelifeinyearsbutnottobetakenlessthan25

forfreeedgesandplatinginaccordancewithNote10,7 inwayofweldofscarphingbrackettohatchcoamingtop0,6 inwayofweldendingsYieldstressofmaterialinN/mm2ThicknessofhatchcornerplateThicknesscorrection= 22/ butnottobetakengreaterthan1,00,1forfreeedgesofplating0,25inwayofweldsHightensilesteelcorrectionfactorforfreeedgesandplating:1,0forallsteelgradeshavinganominalyieldstressof235N/mm21,0forallsteelgradeshavinganominalyieldstressof270N/mm21,0forsteelgradesAandDforallnominalyieldstresses1,056forsteelgradesEH32andFH321,12forsteelgradesEH36andFH361,15forsteelgradesEH40andFH401,23forsteelgradesEH471,0forallsteelgradesinwayofwelds

NOTES1. Theallowablestressrangesgiveninthetableapplyto:

TheFREEEDGEofhatchcornerradiusplatingwhichisintegralwiththedeckorhatchcoamingtopplate.Seealso5.1.Thefreeedgeistobefreeofwelding(includingbutts&seams)andgroundsmoothforaminimumdistanceof500mmclearoftheradiustangentpoints.

TheFREEEDGEofscarphingbracketsbetweenthesuperstructuresideplatingandthetopofthehatchcoaming.Thefreeedgeistobefreeofwelding(includingbutts&seams)andgroundsmooth.Theweldconnectiontothehatchcoamingtopistobeofhighqualitydeeppenetrationtype,withsuitabledressingappliedtotheweldendingandsubjecttosuitableNDE.Ideallysuchbracketsshouldbeintegralwiththesuperstructuresideplating.

ForFREEEDGEthatisnotgroundsmoothasindicatedabovebutiscutbymachineflamecuttingwithacontrolledprocedureortheplatethicknessisabove100mm,theallowablestressrangeistobereducedbyafactorof0,89.

2. Seealso5.53. Relevanttotheuseoflinearelasticcodeonly.4. SeealsoFigure1.5.15. IfthestressesarederivedfromtheproceduredescribedinAppendixB,B.4.5.6. WhereaShipRightFDALevel3analysisiscarriedoutandverifiedsufficientfatigueperformanceofastructuraldetail,the

assessmentagainstthedynamicstressrangecriteriaforthestructuraldetailcanbewaived.

Page 39: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

37 

 

Table1.5.2 Acceptancecriteriaforprimarystructure

   

Structuralitems

Wavedirection

(seeNotes1and2)

Allowablestress,N/mm2

Von‐Misesstressσ

Directstressσ

Shearstress τ

Deckplatingoutboardofsidecoaming,seeFig.1.5.1

HeadseaPeakstressAveragestress

σ

0,75σ

ObliqueseaPeakstressAveragestress

σ

0,67σ

Longitudinalhatchcoamingtopplate

HeadseaObliquesea

PeakstressAveragestress

σ

0,75σ

Longitudinalhatchsidecoamingplating

HeadseaObliquesea

PeakstressAveragestress

σ

0,75σ

Superstructuresideplating

HeadseaObliquesea

PeakstressesinscarphingbracketClearofscarphingbracket

σ 0,8σ

where

σ235

N/mm

NOTES

1. SeePARTA,Ch1,Table1.4.2 forheadsealoadcases.2. Forobliqueseaconditions,thefollowingcasesaretobeassessed:

Peakandaveragedirectstresses,seePARTA,Ch1,Table1.4.3orAppendixB,B.4.5ifthestressesarederivedbyconsideringtheequivalentdesignwave(s).

MaximumvonMisesstressesaretobedeterminedbyconsideringtheequivalentdesignwave(s),see4.6andAppendixB,B.4.5.

Page 40: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part B, Chapter 1  Primary Structure of Container Ship, August 2017 

38 

 

Fig.1.5.1

Acceptancecriteriaforhatchcorners

 

   

Page 41: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

39 

PART C:

Verification of Primary Structure 

Chapter 1:

Verification of Double Bottom and Transverse 

Strength 

Section 1:  Application 

Section 2:  Objectives 

Section 3:  Structural modelling 

Section 4:  Loading conditions 

Section 5:  Boundary conditions 

Section 5:  Acceptance criteria 

 

Section 1: Application

1.1. PARTCisapplicabletoallcontainershipsforwhichdirectcalculationsarerequired,seealsoINTRODUCTION.

1.2. ForshipswherethecalculationprocedureshavebeenperformedinaccordancewithPARTA,considerationwillbegiventousingasuitablelengthofthatmodel(4baysamidships)withsuitabledetailedfollow‐upmodels.

1.3. Forcontainershipswhichcarryfueloilindeeptanksconstructedintransversebulkheadstructuresorindeeptanksconstructedincontainercargoholds,i.e.fueltankslocatedinboardoftheinnerskinandbetweenadjacenttransversebulkheads,additionalrequirementsarespecifiedinPARTC,Ch4.

Section 2: Objectives

2.1. TheobjectiveofPARTC,Ch1istoensurethestructuraladequacyofthefollowingprimarystructurewithregardtolocalloadconsiderations:

doublebottomstructure,

transversestructure,

sidestructure.

 

Page 42: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

40 

2.2. TheglobalstrengthofcontainershipsforwhichtheproceduresinPARTAandPARTBhavenotbeencarriedoutistobeincompliancewiththerelevantsectionsoftheRulesforShips(e.g.Pt4,Ch8)andistobeverifiedbytheapplicationoftheappropriateShipRightprograms,contactLloyd’sRegisterlocalofficefordetails.

Section 3: Structuralmodelling

3.1. Amodeloffour40ftcontainerbays(½hold+1hold+½hold),locatedataboutamidships,istobeconsidered.Iftheshipincorporatesasubstantialfixedguidesystemtoaccommodate20ftcontainers,thenthemodelistoincludethesestructuralitems.

3.2. AtypicalFEmodelarrangementisindicatedinFigs.1.3.1to1.3.4.Thismodelisarrangedsuchthattheopenbulkheadislocatedatthemodelmid‐length.Thealternativearrangementwherebyawatertightbulkheadislocatedatthemodelmid‐lengthwillbeaccepted,buttherequirementsofCh3,3shouldbenoted.

3.3. Themodelistorepresentthefulldepthoftheshipanditisrecommendedthatthefullbreadthbemodelledtosimplifytheanalysisoftheheeledconditions.ItshouldbenotedthatFigs.1.3.1to1.3.4showonlythestarboardhalfofthemodelforclarity.

3.4. Alternatively,ahalf‐breadthmodelmaybeused.Symmetryboundaryconditionsattheship’scentrelinearetobeusedfortheuprightcases.Theheeledconditioncanbeconsideredbycombiningthesymmetricandanti‐symmetriccomponentsintowhichtheheeledconditioncanbeidealised,seeAppendixA.

3.5. TheFEmodelistoberepresentedusingaright‐handedCartesianco‐ordinatesystemwith:

Xmeasuredinthelongitudinaldirection,positiveforward,

Ymeasuredinthetransversedirection,positivetoportfromthecentreline,

Zmeasuredintheverticaldirection,positiveupwardsfromthebaseline.

3.6. Theproposedscantlings,excludingowner'sextrasandanyadditionalthicknessesfittedtocomplywiththeoptionalShipRightESdescriptivenote,aretobeincorporatedinthemodel.Allplatedareas,e.g.shell,innerskin,girders,horizontalstringersandverticalwebsoftransversebulkheads,aretoberepresentedwithplateelementshavingbothmembraneandbendingproperties.

3.7. Secondarystiffeningmembersmaybemodelledusinglineelementspositionedintheplaneoftheplatinghavingaxialandbendingproperties.Thebarelementsaretohave:

across‐sectionalarearepresentingthestiffenerarea;and

bendingpropertiesrepresentingthestiffenerwiththeeccentricityoftheneutralaxis.

3.8. Faceplatestoprimarystiffening(e.g.toverticalwebsoftransversebulkheads)mayberepresentedbylineelementshavingaxialstiffnessonly.Faceplateoftransversebulkheadverticalwebsandhorizontalstringersaretobemodelledasplateelementshavingbendingproperties.However,incorporatingbendingstiffnessinlineelementsmaybetheoptimalmethodofremovingsingularitiesatthefreeedgeofmembraneelements.

3.9. Therecommendedelementsizeisasfollows:

1elementbetweensideandbottomlongitudinalstiffeners,

Page 43: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

41 

2ormoreelementsbetweentransverseframestoachieveanaspectratiocloseto1.0,

3elementswithinthedepthofprimarystiffening.

3.10. Inprinciple,allopeningsaretoberepresented.Normalsizeaccessopeningsinplatedwebsmaybemodelledbydeletingtheappropriateelements.

 

Fig.1.3.1

3‐Dfiniteelem

entm

odelforassessmentoftransverseanddoublebottomstrength

(starboardhalfofthemodelisshow

nhereforclarity)

   

Page 44: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

42 

 

Fig.1.3.2

TypicalFEmodelofatransversewebframe

 

Fig.1.3.3

TypicalFEmodelofanopenbulkhead

 

Page 45: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

43 

Fig.1.3.4

TypicalFEmodelofawatertightorclosedbulkhead

 

Section 4: Loadingconditions

4.1. TheloadcasesgiveninTable1.4.1andillustratedinFig.1.4.1aretobeconsidered.

4.2. Theloadcomponentstobeincludedare:

staticanddynamicinertialloadsduetothelightshipmass,see4.5and4.6;

staticanddynamicinertialloadsduetocontainers,see4.5and4.6;

hydrostaticloadsduetoimmersiontothedraughtspecifiedinTable1.4.1.Thehydrostaticloadsaretobeappliedaspressureloadstotheshellenvelope,equivalentintheuprightconditiontoρgh,wherehisthedistanceoftheelementcentroidbelowthestillwaterline;

pressureloadsduetoalocalwavecrestortrough,see4.3;and

hullgirderbendingmomentasspecifiedinTable1.4.1.

4.3. TheadditionalpressureheadtoapplyasaconsequenceofalocalwavecrestortroughisgiveninFig.1.4.2.Thisadditionalpressureistobeappliedoverthefulllengthofthemodel.

4.4. Fortheheeledcases,theloadsaretobecalculatedassumingthattheshipisheldattherequiredstaticheelangle.Thetransverseloadcomponentsofcontainersinholdsaretobedistributedtosuitablelocationsonthetransversebulkheads.Theloadsfromcontainersabovedeckaretobedistributedasshearloadstothetopofthetransversecoaming.The‘overturningmoment’maybeignored.

Page 46: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

44 

4.5. ForloadcasesC1,C2a,C2b,C3aandC3b,theinertialforceofcontainersandshipmasses,includinggravitationaleffects,aretobecalculatedbasedonthefollowingverticalaccelerationinm/s2.Positiveaccelerationgeneratesanupwardactinginertiaforce.

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ cos ⋅ ψ

where

istheverticalaccelerationduetoheave,inm/s2,giveninPt3,Ch14,1.5.1oftheRulesfor

Ships istheaccelerationduetopitch,inrad/s2,formotioncaseMC1giveninPt3,Ch14,1.5.1of

theRulesforShipsψ isthemaximumpitchangle,indegrees,formotioncaseMC1giveninPt3,Ch14,1.5.1ofthe

RulesforShips isthelongitudinaldistanceofthecontainerunitfromthelongitudinalcentreofmotion,as

definedinPt3,Ch14,1.5.1oftheRulesforShips istheaccelerationduetogravityequalto9,81m/s2

isthehullformcoefficientformotioncaseMC1giveninPt3,Ch14,1.5.1oftheRulesfor

Ships

=‐0,18 =1,00 =‐0,85

=1forloadcaseC3a =‐1forloadcasesC1,C2a,C2bandC3b

4.6. Eachloadcasemaybeanalysedbasedonaconstantverticalaccelerationvalue.Thisaccelerationcanbederivedusingadistance atthelongitudinalcentreofgravityofthecontainerstackwithinthemodellengthwhere:

ThemagnitudeoftheverticalaccelerationismaximumforloadcaseC3a

ThemagnitudeoftheverticalaccelerationisminimumforloadcasesC1,C2a,C2bandC3b

4.7. InertialloadduetoverticalaccelerationneednotbeappliedtoloadcasesC4,C5,C6andC7.However,thegravitationaleffectistobeconsidered.LongitudinalloadscausedbyshiplongitudinalaccelerationistobeappliedforloadcaseC6,seeCh2.

4.8. Iftherequiredhullgirderbendingmomentisnotachievedbytheapplicationoftheship’sloadingconditionandwavepressure,whererequired,theFEstressesaretobeadjustedasfollows:

σ σ _ σ _ ∆BM

σ σ _ σ _ ∆BM

τ τ _ τ _ ∆BM

where

σx,σyandτxy aretheadjusteddirectstressesandshearstressatthecentreoftheelement

σx_FE,σy_FEandτxy_FE aretheFEdirectstressesandshearstressatthecentreoftheelement

σx_u,σy_uandτxy_u arethedirectstressesandshearstressatthecentreoftheelementduetotheunithullgirderbendingmomentloadcase.

ΔBM isthedifferencebetweentherequiredbendingmoment,asspecifiedinTable1.4.1, and resultant bendingmoment from the FEmodel at the longitudinalpositionoftheelement

Page 47: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

45 

Valuesofσx_u,σy_uandτxy_uaretobederivedbyapplyingaunitbendingmomenttothemodelusingtheboundaryconditionsdescribedinFig.1.5.2.

4.9. Openhatch(hatchcoverless)containerships

4.9.1  For thepurposeof this section, containers above theupperdeck are tobe treated in the samemannerascontainersbelowdeckwithinthehold.

4.9.2  CaseC2bisnotrelevantandistobeomitted.

4.9.3  The cell guide support structure above the upper deck is to be additionally considered, withrespecttoPt3,Ch14oftheRulesforShips. 

   

Page 48: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

46 

Table1.4.1 Standardloadcasestobeconsidered

Loadcase Description(see4.2)Loadcasetypeandboundary

conditionstoapply

C1

Shiploadingcondition (shipupright)

• Draughtequaltothescantlingdraught,Tsc• Allcontainerbaysandhatchcoversoverthebaysaretobefilledwith40ft

lightcontainers,seeNote1

• Allballastandfueloiltanksinwayofthecargoholdmodelaretobeempty

Wavepressure

• Pressureloadsduetoalocalwavecrest,see4.2

Bendingmoments

•PermissibleSWBM(hogging)

• DesignVWBM(hogging),seeNote3

Symmetric

C2a

Shiploadingcondition (shipupright),seeNote5

• Draughtequaltothescantlingdraught,Tsc

• One40ftcontainerbayandhatchcoversoverthebayaretobeemptyofcontainers

• Theremainingbaysandhatchcoversoverthebaysaretobefilledwith40ftheavycontainerstothemaximumpermittedweight,seeNote2

• Allballastandfueloiltanksinwayofthecargoholdmodelaretobeempty

Wavepressure

• Pressureloadsduetoalocalwavecrest,see4.2

Bendingmoments

• PermissibleSWBM(hogging)

• DesignVWBM(hogging),seeNote3

Symmetric

C2b

Shiploadingcondition (shipupright),seeNote5

AsforC2aexceptasfollows:

• Allhatchcoversoverthebaysaretobefilledwith40ftheavycontainerstothemaximumpermittedweight,seeNote2

Wavepressure

AsforC2a

Bendingmoments

AsforC2a

Symmetric

C3a

Shiploadingcondition (shipupright)

• Shipatlightdraught,seeNote4

• Allcontainerbaysandhatchcoversoverthebaysaretobefilledwith20ftheavycontainerstothemaximumpermittedweight,seeNote2.ForcontainersonhatchcoverwhereRussianStowArrangement(seePt3,Ch14,5.4.9oftheRulesforShips)isadopted,thegreaterofthestackweightsoftheRussianStowArrangementorcombinedweightoftwo20ftcontainerstacksistobeused.

• Allballastandfueloiltanksinwayofthecargoholdmodelaretobeempty

Wavepressure

• Pressureloadsduetoalocalwavetrough,see4.2

Bendingmoments

•PermissibleSWBM(saggingorminimumhogging)

• DesignVWBM(sagging),seeNote3

Symmetric

Page 49: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

47 

C3b

Shiploadingcondition (shipupright)

• Draughtequaltothescantlingdraught,Tsc

•Allcontainerbaysandhatchcoversoverthebaysaretobefilledwith40ftheavycontainerstothemaximumpermittedweight,seeNote2

• Allballastandfueloiltanksinwayofthecargoholdmodelaretobeempty

Wavepressure

• Pressureloadsduetoalocalwavecrest,see4.2

Bendingmoments

•PermissibleSWBM(hogging)

• DesignVWBM(hogging),seeNote3

Symmetric

C4

Shiploadingcondition(shipheeled)

AsC2aexceptasfollows:

• Meandraughtatcentrelineequaltothescantlingdraught,Tsc

• Staticheelangleequaltothelesserofφandtan‐1(2(D–Tsc)/B),whereφisthemaximumrollangledefinedinPt3,Ch14,1.5.1oftheRulesforShipsbutnottobetakenaslessthan22°.

Wavepressure

• Nowave

Bendingmoments

• AsactualinFEmodel(i.e.noadjustmentrequired)

Asymmetric

C5

Shiploadingcondition(shipheeled)

AsC3aexceptasfollows:

• Meandraughtatcentrelineequaltothescantlingdraught,Tsc

• Staticheelangleequaltothelesserofφandtan‐1(2(D–Tsc)/B),whereφisthemaximumrollangledefinedinPt3,Ch14,1.5.1oftheRulesforShipsbutnottobetakenaslessthan22°.

Wavepressure

• Nowave

Bendingmoments

• AsactualinFEmodel(i.e.noadjustmentrequired)

Asymmetric

C6 Longitudinalloadscausedbyshipaccelerationsactingoncontainers,seeCh2 Symmetric

C7 Damaged(floodedhold)conditions,seeCh3 Asymmetric

NOTES

1. Thecontainerunitweightmaybederivedbasedontheexpectedcargoweightwhenlightcontainersareloadedintheconsideredholdsandhatchcoversabove.Theweightoflightcontainerunitsisnottobemorethanthefollowing: Inhold:55%oftheweightofacorrespondingheavycontainerunitasdefinedinNote2, Ondeckandhatchcovers:90%oftheweightofacorrespondingheavycontainerunitasdefinedinNote2or17metric

tons,whicheveristhelesser.2. Theweightofheavycontainerunitsistobecalculatedasthepermissiblestackingweightdividedbythemaximumnumber

oftiersplanned.3. Thedesignverticalwavebendingmoments(VWBM)aretobeMw(hog)andMw(sag)asspecifiedin2.1ofINTRODUCTION.

Seealso4.8.4. Lightdraughtcorrespondstotheexpecteddraughtamidshipswhenheavycontainersareloadedintheconsideredholds

whilelightercontainersareloadedinotherholds.Thelightdraughtisnottobetakenasgreaterthan0.9Tsc.5. Foronebayemptycondition,ifthecargoholdconsistsoftwoormorebays,theneachbay,andthedeckandhatchcovers

abovewhererequired,aretobeconsideredentirelyemptyinturnasseparateloadcases.Thenumberofloadcasesmaybereducedifthestructuralarrangementissymmetricalaboutmid‐holdandthescantlingenhancementisappliedtoallcargobays.

 

   

Page 50: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

48 

 

Fig.1.4.1(seecontinuation)

Illustrationofloadingconditions(fordefinitionofwavecrestandtrough,seeFig.1.4.2)  

Page 51: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

49 

 

Fig.1.4.1(conclusion)

Illustrationofloadingconditions(fordefinitionofwavecrestandtrough,seeFig.1.4.2)

 

   

Page 52: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

50 

Fig.1.4.2

PressureheaddistributionPWforlocalwavecrestandtrough

Section 5: Boundaryconditions

5.1. TheboundaryconditionstobeappliedtotheFEmodelaredependentontheloadcaseandstructuralcomponenttobeanalysed.Differentboundaryconditionsneedtobeappliedforthesymmetricandasymmetricloadcases.

5.2. TheboundaryconditionsdescribedinthisSectionarepreferred.Alternativeequivalentboundaryconditionsmaybeused.

5.3. Thefollowingboundaryconditionsaretobeappliedtoanalysedifferentstructuralcomponents(seeTable1.5.1):

Set1istobeusedtoanalyseloadcasesC1,C2a,C2b,C3a,C3bandC6.

Set2istobeusedfortheapplicationofhullgirderbendingmoment,see4.8.

Set3istobeusedtoanalysetheheeledconditionloadcasesC4andC5,andthedamaged(floodedhold)loadcaseC7.

5.4. Theboundaryconditionsetstobeusedforfull‐breadthandhalf‐breadthFEmodelsaresummarisedinTable1.5.1andillustratedinFigs.1.5.1to1.5.3.

Page 53: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

51 

5.5. Fortheheeledloadcases,C4andC5,andthedamaged(floodedhold)loadcase,C7,groundedspringsaretobeappliedtothenodesoftheelementsinthesideshell,innerskin,innerandouterbottom,andtheupperdeckoutsidethelineofhatchesateachendofthemodeltorepresenttheshearstiffnessinducedbytheunmodelledcontainerbays,seeFig.1.5.3.Thespringstiffness,ks,canbecalculatedas:

 

where 

G  =  modulus of rigidity 

l  =  distance from the bulkhead at the end of the model to the next unmodelled bulkhead 

A  =  average cross‐sectional area of side shell, inner skin, inner bottom, outer bottom or upper deck 

outside the line of hatches, as appropriate 

N  =  number of nodes to which the springs are applied. 

5.6. Asymmetricboundaryconditionsforhalf‐breadthFEmodels

5.6.1  Forasymmetricloadcasesappliedtohalf‐breadthFEmodels,thesymmetricandanti‐symmetricload components need to be run as separate load cases and then combined to generate the totalasymmetricloadcase.Differentboundaryconditionsarerequiredforthesymmetricandanti‐symmetricloadcomponents.

5.6.2  Thestructural responseofbothsidesof theship forasymmetric loadcaseswillbeobtainedbycombiningtheresultsfromthesymmetricandanti‐symmetricloadcasesasdescribedinAppendixA.

Table1.5.1 Summaryofboundaryconditionstoapply

Load case type  Boundary conditions 

Half‐breadth FE model 

Symmetric load cases  Load cases C1, C2a, C2b, C3a, C3b, C6 

     All load components  Set 1  see Fig. 1.5.1 

Asymmetric load cases  Load cases C4, C5, C7 

     Symmetric load components 

     Anti‐symmetric load components 

Set 1 

Set 3 

see Fig. 1.5.1 

see Fig. 1.5.3 

Symmetric load cases  Hull girder bending moment 

     Bending moment  Set 2  see Fig. 1.5.2 

Full‐breadth FE model 

Symmetric load cases  Load cases C1, C2a, C2b, C3a, C3b, C6 

     All load components  Set 1  see Fig. 1.5.1 

Asymmetric load cases  Load cases C4, C5, C7 

     All load components  Set 3  see Fig. 1.5.3 

Symmetric load cases  Hull girder bending moment 

     Bending moment  Set 2  see Fig. 1.5.2 

   

Page 54: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

52 

 

Fig.1.5.1

Set1boundaryconditionsforloadcasesC1,C2a,C2b,C3a,C3bandC6

Boundaryconditionsfortheapplicationofsym

metricloads

 

   

Page 55: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

53 

 

Fig.1.5.2

Set2boundaryconditionsforapplicationofhullgirderbendingmom

ent

 

   

Page 56: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

54 

 

Fig.1.5.3

Set3boundaryconditionsforloadcasesC4,C5andC7

Boundaryconditionsfortheapplicationofanti‐sym

metricloadsandboundaryconditionsfortheapplicationofasymmetricloads(full‐breadthmodel)

 

Page 57: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

55 

Section 6: Acceptancecriteria

6.1. ThestructureistocomplywiththeacceptancecriteriagiveninTable1.6.1.

6.2. Thebucklingcapabilityofhullstructuresistobeassessedusingaplatethicknessreducedbythecorrosionaddition, tc,inTable1.6.2.

6.3. ThebucklingfactorsofsafetyofhullstructuresaretobederivedaccordingtotheproceduredescribedinShipRightADP(AdditionalDesignandConstructionProcedures)–GuidanceNotesforShipRightSDABucklingAssessment.

6.4. SubjecttoLloyd’sRegister’sagreement,alternativemethodsforbucklingassessmentsmaybespeciallyconsidered.

 

   

Page 58: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

56 

Table1.6.1 Acceptancecriteriaforprimarystructure

StructuralitemLoadcase

Allowablestress,N/mm2(seeNotes2and3) BucklingFactorofsafety

Ω(seeNote1)

VonMisesσe

Longitudinalσx

Transverseσy

(seeNote4)

Shearstressτ

(seeNote5)

Bottomshell

C1C2aC3aC3b

— 0,92σL 0,63σ0 — 1,1

Doublebottomgirders

C1C2aC2bC3aC3b

σL 0,92σL — 0,46σL 1,1

Innerbottom

C1C2aC3aC3b

σL 0,92σL 0,63σ0 — 1,1

Doublebottomfloors

C1C2aC4C5

0,75σ0 — 0,63σ0 0,35σ0 1,2

SideshellLongitudinalbulkhead

C1C2aC3aC3bC4C5

σL 0,92σL 0,63σ0 0,46σL 1,1

Sidestringers

C1C2aC4C5

σL 0,92σL — 0,46σL 1.1

Sidetransverses

C1C2aC4C5

0,75σ0 — 0,63σ0 0,35σ0 1,2

Transversebulkheadsallstructures

C6C7

seeCh2seeCh3

Transversebulkheadplating

C1C2aC2bC4C5

0,75σ0 — 0,63σ0 0,35σ0

1,1

Transversebulkheads:•verticalwebplating•verticalfacebars•horizontalwebplating•horizontalfacebars

C1C2aC2bC4C5

0,75σ0 — 0,63σ0 — 1,1

Cross‐deckboxtransverses

C4C5

0,75σ0 — 0,63σ0 0,35σ0 1,2

 

   

Page 59: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 1  Primary Structure of Container Ship, August 2017 

57 

 

Table1.6.1 (Continuation):Acceptancecriteriaforprimarystructure

where σL=235/kL

NOTES

1. Thepanelthicknessistobereducedbytheamounttc indicatedinTable1.6.2.Thelocalstressesaretobeincreasedin the ratio of t/(t – tc), where t is the thickness used in the FEmodel. These local stressesmay be obtained bydeducingthestressesduetoglobalbendingmomentgeneratedintheFEmodelfromtheFEstresses.

2. Forshellelements,thespecifiedallowablestressesaretobecomparedwiththemembranestressintherelevantstructuralitem.

3. Inareaswheretheopeningshavenotbeenmodelled,theresultingshearstressandvonMisesstressaretobecorrectedaccordingtotheratiooftheactualtothemodelledsheararea.Iftheresultingstresslevelexceeds90%ofthespecifiedallowablevalue,furtherstudybymeansoffinemeshfollow‐upmodelsmayberequired.

4. Forbottomshell,innerbottomandtransversebulkheadplating,σyisthestressintheplaneoftheplatinginthetransversedirection.Forsideshellandlongitudinalbulkhead,σyisthestressintheplaneoftheplatingparalleltothespanofthesidetransverse.Forallothermembers,σyisthedirectstressinthedirectionofthemember’sspan.

5. Thespecifiedvaluesrelatetothemeanshearstressoverthedepthofthemember.Thepeakstressisnottoexceed1.1×allowablevalue.

 

Table1.6.2 Standardthicknessdeductionstobeusedtoderivecriticalbucklingstresses

Structuralitem Thicknessdeduction,tcinmm

Deckplating 1,0

Shellplating 1,0

Innerbottomplating 1,0

Longitudinalbulkhead(innerskin) 1,0

Crownofsidetanks(e.g.2ndDeck) 1,0

Internalstructureofdoublebottomandsidetanks 1,0

Transversebulkheads,watertightandopen 0,0

Cross‐deckstructure(e.g.topboxsidesandbottom) 0,0

 

 

 

   

Page 60: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 2  Primary Structure of Container Ship, August 2017 

58 

PART C:

Verification of Primary Structure 

Chapter 2:

Transverse Bulkhead and Mid‐Hold Support 

Structures: Surge (Fore and Aft) Loading 

Section 1:  Objectives 

Section 2:  Structural modelling 

Section 3:  Loading conditions 

Section 4:  Boundary conditions 

Section 5:  Acceptance criteria 

 

Section 1: Objectives

1.1. TheobjectiveofPARTC,Ch2istoensuretheadequacyoftransversewatertightbulkheadsandmid‐holdsupportstructures(openbulkheads)undertheeffectoflongitudinalloadsarisingfromlongitudinalaccelerationsactingonthecontainers.Theacceptancecriteriaaregivenin5.2.

1.2. ThisassessmentandtheinclusionofthisloadcomponentintheproceduresofPARTAandPARTBarenotrequiredforcontainershipsthathavecontinuouslongitudinaldeckgirdersarrangedsuchthatthespanofthecross‐deckboxesdoesnotexceed13.0m.Thespanofthecross‐deckboxistobecalculatedtakingintoaccountthepresenceofthecontinuouslongitudinaldeckgirders,butignoringendbrackets,etc.Longitudinaldeckgirdersorbulkheadsarenottobeconsideredcontinuousiftheircontinuouslongitudinalextentislessthanalengthequivalenttofour(4)40ftcontainerbays.

1.3. IftheproceduresinPARTAandPARTBarenotrequired,thentheanalysisindicatedinthischapteristobecarriedout,withtheexceptionofshipsthathaveastructuralarrangementwhichsatisfiesthedescriptionin1.2.

1.4. WherethisanalysisiscarriedoutinPARTAusingafullshipFEmodel,theanalysisinthischaptercanbewaived.

Section 2: Structuralmodelling

2.1. ThemodeldescribedinPARTC,Ch1maybeused.IfPARTA’sanalysisiscarriedoutusingafullshipmodelthentheloadscanbeapplieddirectlytothefullshipmodel.

 

Page 61: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 2  Primary Structure of Container Ship, August 2017 

59 

Section 3: Loadingconditions

3.1. Thisloadingassessestheeffectsoflongitudinalloadscausedbyshipaccelerationsactingoncontainers,onthetransversebulkheadandcross‐deckstructures.Thelongitudinalacceleration,ax,attherequiredlocationsistobecalculatedusingthelongitudinalaccelerationformulaegiveninPt3,Ch14,8.2.5oftheRulesforShips.Thefollowingmotioncases,definedinPt3,Ch14,Table14.8.4oftheRulesforShips,aretobeapplied:

Headsea: MC1(HS_1) Positivepitchaccelerationcase

    MC1 (HS_2)  Negative pitch acceleration case 

Obliquesea: MC3(OS1_1) Positivepitchaccelerationcase

    MC3 (OS1_2)  Negative pitch acceleration case 

NotethatlongitudinalaccelerationduetoMC1(HS_2)isequalinmagnitudetoMC1(HS_1)buttheyareinoppositedirections.Likewise,longitudinalaccelerationsduetoMC3(OS1_1)andMC3(OS1_2)areequalinmagnitudebutoppositeindirection.

3.2. IfthelongitudinalloadsarenotrequiredtobeconsideredintheanalysisinPARTAandPARTB,see1.3,thentheloadingconditionC6(seeCh1,Table1.4.1)maybebasedonthelargestaccelerationoftheheadseaandobliqueseaconditions.

3.3. Nootherloadsaretobeapplied.

 

   

Page 62: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 2  Primary Structure of Container Ship, August 2017 

60 

 

Table2.3.1 Assumptionsregardinglongitudinalloadsandtheirapplication

Locationofcontainers Assumptions

Containersinholdforallcontainerships

Thelongitudinalforceistobecalculatedatthecentreofeachcontainerandistobesuitablydistributedtothebulkheadprimarymembersinwayofthecellguides.

Containersonhatchcovers

Thelongitudinalforceistobecalculatedatthemid‐heightofthestack.

Thefollowingassumptionsaretobemade:

• windloadsmaybeneglected

• self‐weightofthehatchcoveristobetakenintoaccount

• thestackistocontainthemaximumnumberofloadedtiers,asspecifiedintheLoadingManual(LM)orCargoSecuringManual(CSM)

• theweightofcontainersistobetakenasthemaximumpermittedbytheLoadingManual

• allloadsarisingfromcontainersonthehatchcoversaretobeappliedasforcestothehatchcoamingtop

• themomentaboutthestackbasecausedbythelongitudinalforcemaybeignored

• longitudinalforcesfromcontainerssitedbetweentheship'ssideandthelongitudinalcoaming(i.e.notsitedonthehatchcovers)maybeignored

• 15%ofthetotalforceactingonthehatchcoveristobedistributedasalineloadtothetopofthehatchcoamings(transverseandlongitudinal)onwhichthecoverrests.Thisrepresentstheloadwhichcouldbeassumedtobetakenbyfrictionatbearingpadsand/orsealingarrangements

• theremaininglongitudinalforcesactingonthehatchcoveraretobetakenasactingatthehatchcoverlongitudinalstopperpositions.Ifthestopperpositionsareunknown,thentheyaretobelocatedatthemid‐breadthoftheaftendofthecovers.3coversaretobeassumedifthenumberofcoversisnotknown.

Containersabovedeckforhatchcoverlessships

Thelongitudinalforceistobecalculatedatthecentreofeachcontainerandistobesuitablydistributedtothecellguidesupportstructureandbulkheadprimarymembersasappropriate.

NOTES

1. Positivelongitudinalacceleration(forwardparalleltodeck)generateslongitudinalforceactingbackward.Negativelongitudinalaccelerationcreateslongitudinalactingforward.

2. ThecentreofgravitypositionanddistributionoflongitudinalforceofacontainerduetoshipmotionistobeinaccordancewithPt3,Ch14,9.2oftheRulesforShips.

 

Section 4: Boundaryconditions

4.1. BoundaryconditionSet1,seeCh1,Fig.1.5.1istobeused.

Section 5: Acceptancecriteria

5.1. WherethestructuralitemsareassessedusingPARTA’sprocedurewithafullshipFEmodel,see1.4,theacceptancecriteriasetoutinPARTAaretobecompliedwith.

5.2. WherePARTA’sprocedureisnotcarriedout,thevonMisesstressesinthebulkheadstructuresandthecross‐deckstructuresundertheloadingscenariosdefinedinthisSectionarenottoexceed0,25σo.Singleelementvaluesinwayoftheapplicationofloadsarisingfromthecontainersonhatchcoversmayexceedthisvalue,butarenottoexceed0,4σo.Aminimumbucklingfactorofsafety,Ω,of1,3istobeachieved.

 

   

Page 63: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

61 

PART C:

Verification of Primary Structure 

Chapter 3:

Transverse Watertight Bulkhead Assessment in 

Damaged (Flooded Hold) Condition 

Section 1:  Objectives 

Section 2:  Structural modelling 

Section 3:  Loading conditions 

Section 4:  Acceptance criteria 

 

Section 1: Objectives

1.1. ThepurposeofthisChapteristoensurethatthestructuralintegrityofthetransversewatertightbulkheadsisnotcompromisedifthecontainerholdisfloodedasaresultofcollisionorotheraccidentaloccurrence.

1.2. Thewatertightbulkheadsaretobecapableofresistingtheimposedloadscausedbyfloodwater,includingtheeffectofshipmotionsandaccelerationsinadditiontothenormaloperatingloads.

1.3. WatertightbulkheadstructureswhichcomplywiththesimplifiedloadingandacceptancecriteriasetoutinthisChapterareconsideredtosatisfytherequirementsof1.2.Proposalsforalternativeassessmentproceduresaretoincludeevidencethattherequirementsof1.2andtheacceptancecriteriainSection4aretobesatisfied.

Section 2: Structuralmodelling

2.1. ThemodeldescribedinCh1istobeused.Iftheverificationofbucklingfactorofsafetyofthefaceplateofthetransversewatertightbulkheadverticalwebsandthehorizontalstringersistobewaived,thefaceplatethicknessintheFEmodelistoberepresentedbyareducedthicknessequalto40percentoftheoriginalthickness.

2.2. BoundaryconditionSet3,asgiveninCh1,Fig.1.5.3,istobeused.

Section 3: Loadingconditions

3.1. Sufficientloadcasesaretobeconsideredtoenableassessmentoftheresponseoftypicaltransversewatertightbulkheadstofloodingandotherloads.

3.2. Formodelswhichhavebeenarrangedwithawatertighttransversebulkheadatthemid‐lengthoftheFEmodel,itwillbenecessarytoconsidertwoseparatefloodingscenarios:

Page 64: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

62 

a) theafterholdisflooded,

b) theforwardholdisflooded.

3.3. Formodelswhichhavebeenarrangedwithanopenbulkheadatthemid‐lengthoftheFEmodel,seeFig.1.3.1inCh1,onlythescenariowiththeholdatthemid‐lengthfloodedneedstobeconsidered.Theresponseofbothwatertightbulkheadsofthisholdistobecomparedwiththeacceptancecriteria.

3.4. Forthefloodingscenariosspecifiedin3.2and3.3,twobasicloadingconditionsaretobeanalysed:

a) ConditionC7a,whichassumesthatnocontainersarecarriedonhatchcovers,

b) ConditionC7b,whichassumesthatthehatchcoversarefullyloadedwithcontainerstothemaximumpermittedweightbytheship’sLoadingManual.

Theshipisassumedtobeinaheelcondition.TheloadstobeappliedareasspecifiedinTable3.3.1andshowninFigs.3.3.1and3.3.2.

3.5. ConditionC7bistobeomittedforhatchcoverlesscontainerships.

 

   

Page 65: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

63 

 

Table3.3.1 Summaryofloadingconditionswithoneholdflooded(alsoseeFig.3.3.2)

ItemLoadingcondition,C7

ConditionC7a ConditionC7b

Transversewatertightbulkheadsoffloodedhold

Pressurebasedonthesumof1)thepressureheadduetodamagedheelwaterlineand2)pitchmotion.

1) Thedamagedheelwaterlinemaybedeterminedbasedonthedamagestabilityinformation.Thefollowing2separateconditionsaretobeconsidered:- Maximumdraughtatcentrelineoftheforwardandaftbulkheads

ofthefloodedhold( - Maximumdraughtatinnerhulllongitudinalbulkheadofthe

forwardandaftbulkheadsofthefloodedhold(

Theabovefloodingconditionsmayberepresentedusingasingleloadcaseifthemaximumloadsresultingfromtheseconditionsareapplied.

2) Pressureheadduetoship’spitchmotion:

Thepressurehead isgivenby:

0,35 tan ψ

isthelengthofthefloodedhold

ψisthepitchanglecalculatedinaccordancewithPt3,Ch14,Table14.8.1oftheRulesforShips

Wherenodamagestabilityinformationisavailable, and canbeobtainedasfollows:

1,2 1,025

(inm)

tobetakenatfreeboarddeckatside(normally2nddeck)

where

isthevolumeofthefloodedcompartmentcorrespondingtothelevelofscantlingdraught(inm3)

TPCisthedisplacement(tonnes)immersionpercentimetreasgivenintheship’sLoadingManual

needsnottobetakengreaterthan .

Sideandbottomshell Pressurebasedonheeledwaterlinedefinedby and

Watertightlongitudinalbulkheads,decksandinnerbottomoffloodedhold Pressurebasedonheeledwaterlinedefinedby and

Containersinfloodedhold Emptyofcontainers

Containersinnon‐floodedhold Fullyloadedwithmaximumpermitted40ftcontainers

Ballasttanksinwayoffloodedhold Floodedtothelevelofwaterlinedefinedby and

Containersonhatchcovers NocontainersFullyloadedwithmaximumpermitted40ftcontainers

NOTE

Thepressureheadtobeappliedtotheexternalshellplatingandlongitudinalinternalplatingisdifferenttothatspecifiedforthebulkhead.Thepurposeoftheseloadcasesistoimposefloodwaterloads,includingtheeffectofshipmotionsandaccelerations,ontothebulkheadstructure;hencetheincreasedpressureheadappliedtothebulkhead.

 

   

Page 66: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

64 

 

Fig.3.3.1

Loadingconditionsforfloodedloadcases

 

   

Page 67: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

65 

 

Fig.3.3.2

Headsofwaterforfloodedloadingconditions

 

Section 4: Acceptancecriteria

4.1. ThetransversewatertightbulkheadsandtheirsupportingstructuresmustsatisfytheacceptancecriteriagiveninTable3.4.1whensubjectedtotheloadsspecifiedinSection3.

 

   

Page 68: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

66 

 

Table3.4.1 Acceptancecriteriaforloadingconditionswithoneholdflooded

Structuralmemberoftransversewatertightbulkhead

Allowablestress,N/mm2Bucklingfactor

ofsafety

Ω(seeNote1)VonMises

σe

Directstress

σ

Shearstressτ

(seeNote2)

Bulkheadplating σ0 0,95σ0 0,55σ0 1,1

Verticalwebsandhorizontalstringers:

(a)Webplating

(b)Faceplates

σ0 0,95σ0 0,55σ0 1,0

— σ0 —1,0

(seeNote3)

Cross‐deckboxstructure σ0 0,95σ0 0,55σ0 1,0

Doublebottomgirdersandsidestringersinwayofendconnectionsofbulkheadprimarymembers

σ0 0,95σ0 0,55σ0 1,0

NOTES

1.Thebucklingcapabilityofthestructuresistobeassessedusingaplatethicknessreducedbythecorrosionaddition,tc,inCh1,Table1.6.2.

2. Allowablestressrelatedtoelementshearstresses.

3. VerificationofbucklingfactorofsafetyoffaceplatemaybewaivedifthethicknessintheFEmodelisrepresentedbyareducedthicknessequalto40percentoftheoriginalthickness.

 

   

Page 69: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

67 

PART C:

Verification of Primary Structure 

Chapter 4:

Transverse Bulkhead Structures: Additional 

Requirements for Fuel Oil Deep Tanks 

Section 1:  Application 

Section 2:  Objectives 

Section 3:  Structural modelling 

Section 4:  Loading conditions 

Section 5:  Boundary conditions 

Section 6:  Acceptance criteria 

 

Section 1: Application

1.1. ThisChapterisapplicabletocontainershipswhichcarryFuelOil(FO)indeeptanks,constructedintransversebulkheadstructures,orincontainercargohold,i.e.fueltankslocatedinboardoftheinnerskin,abovetheinnerbottom,andbetweenadjacenttransversebulkheads.

1.2. ForshipswherethecalculationprocedureshavebeenperformedinaccordancewithPARTA,considerationwillbegiventousingasuitablelengthofthatmodelwithsuitabledetailedfollowupmodels.

1.3. TheanalysisspecifiedinthisChapterisadditionaltothatspecifiedinCh1.

1.4. Forcontainershipsintendedtooperateinareassubjecttolowairtemperatures,theremaybearequirementtoassesstheeffectoftheheatedcargooncritical.WhereFOiscarriedintransversedoubleplatedbulkheadsinwhichalltheprimarystructuresareconnectedtobothofthebulkheadplatings,thestructuralanalysisdescribedinSections2to6ofthisChaptermaybeomitted.

1.5. SeealsoCh5.

Section 2: Objectives

2.1. TheobjectiveofSections3to6istoverifythestructuralarrangementsoftheprimarystructureofthefueloildeeptanks.

2.2. ThelocalstrengthofthecontainerholdstructureistobeverifiedbyChapters1,2and3asapplicable.

Page 70: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

68 

2.3. TheglobalstrengthofacontainershipforwhichPARTSAandBhavenotbeenappliedmustcomplywiththerelevantSectionsoftheRulesforShips,(Pt4,Ch8)andthisistobeverifiedbytheapplicationoftheappropriateShipRightprogram.

2.4. TheobjectiveofCh5istoprovideloadcomponentsforPARTB’sanalysis.IfPARTB’sanalysisisnotrequiredthentheanalysisdescribedinCh5isalsonotrequired.

Section 3: Structuralmodelling

3.1. Amodelistobeconstructedextendingfromone40ftbayaftoftheaftmostfueloildeeptankbulkheadtoone40ftbayforwardoftheforemostfueloildeeptankbulkhead.

3.2. ThismodelistobedevelopedinaccordancewithCh1,3.3to3.10.

3.3. Thefaceplatesandplatestiffenersofprimarymembersaretoberepresentedbylineelementswiththecross‐sectionalareamodified,whereappropriate,inaccordancewithTable4.3.1andFig.4.3.1.

 Table4.3.1 Lineelementeffectivecross‐sectionalarea

Structurerepresentedbyelement Effectivearea,Ae

Primarymemberfacebars Symmetrical Asymmetrical

Ae = 100%AnAe = 100%An

Curvedbracketfacebars(continuous) Symmetrical Asymmetrical

seeFig.4.3.1

Straightbracketfacebars(discontinuous)

Symmetrical Asymmetrical

Ae = 100%AnAe = 60%An

Straightbracketfacebars(continuousaroundtoecurvature)

Straightportion Symmetrical Asymmetrical

Ae = 100%AnAe = 60%An

Curvedportion Symmetrical Asymmetrical

seeFig.4.3.1

Webstiffeners–snipedbothends

Flatbars Ae = 25%stiffenerarea

Othersections

Ae =p

o

A

r

YI

A–

2

Webstiffeners–snipedoneend,connectedotherend

Flatbars Ae = 75%stiffenerarea

Othersections

Ae =p

o

A

r

YI

A–

2

2

Symbols

A = cross‐sectionareaofstiffenerandassociatedplatingAn = averagefacebarareaoverlengthoflineelementAp = cross‐sectionareaofassociatedplatingI = momentofinertiaofstiffenerandassociatedplatingY0 = distanceofneutralaxisofstiffenerandassociatedplatingfrommedianplaneofplate

r = radiusofgyration=A

I

 

 

Page 71: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

69 

Fig.4.3.1

Effectiveareaofcurvedfacebars

 

   

Page 72: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

70 

Section 4: Loadingconditions

4.1. TheloadcasesrequiredareillustratedinFigs.4.4.1(a)to4.4.1(d)forarrangementofthree,four,fiveandsixabreastfueloiltanks.Iftheship’sLoadingManualconsistsofloadingconditionswithtwoormoreadjacentfueloiltanksfilledandotherfueloiltanksempty,theseconditionsarealsotobeinvestigatedinadditiontothoseshowninthefigure.Theloadcomponentstobeincludedare:

staticanddynamicinertialloadsduetothelightshipmass,see4.7and4.8;

staticanddynamicinertialloadsduetocontainersandfluidintanks,see4.7and4.8;

thehydrostaticloadsduetoimmersiontothedraughtspecified.Thehydrostaticloadsaretobeappliedaspressureloadstotheshellenvelope,equivalentintheuprightconditiontoρgh,wherehisthedistanceoftheelementcentroidbelowthestillwaterline;

pressureloadsduetoalocalwavecrestortrough,see4.4;

overpressureoftanks,see4.2;

hullgirderbendingmomentsasspecifiedinTable4.4.1;and

hullgirdershearforcesasspecifiedinTable4.4.1.

4.2. Theoverpressureheadiscalculatedasfollows:

ForloadcasesD1toD6 Max(hof,h/2)inmetres

ForloadcasesD7andD8 Max(2,4,h)inmetres

where

histheverticaldistancebetweenthecrownoftheFOtankandthetopoftheoverflow;and

hofistheheightoftheoverflowmeasuredfromthedeckonwhichitisfitted,seeFigs4.4.1(a)to4.4.1(d)

4.3. Fordesignpurposes,fueloilistobeassumedtohaveaspecificgravityof1,0.

4.4. Forcasesrequiringtheconsiderationofwavecrestandtroughconditions,thewavepressuredistributiontobeappliedisdescribedinCh1,Fig1.4.2,withthedraught,Tsc,takenasthescantlingdraughtorlightestloadeddraught,asappropriate.Theexternalpressuremaybetakenasuniformoverthemodellength.

4.5. Fortheheeledcases,D5andD6,thestaticheelangleistobetakenasthelesserofφandtan‐1(2(D–Tsc)/B),whereφisthemaximumrollangledefinedinPt3,Ch14,1.5.1oftheRulesforShipsbutnottobetakenaslessthan22○.Themeandraughtatcentrelineistobetakenasthescantlingdraught.

4.6. ForloadcasesD1toD8,theeffectofhullglobalbendingmomentandshearforcearetobeincludedasspecifiedinTable4.4.1.

4.7. ForloadcasesD1,D2,D3andD4,theinertialforceofcontainers,shipmassesandfluidintanksduetoverticalacceleration,includinggravitationaleffect,aretobecalculatedinaccordancewithCh1,4.5,withthefollowing factorapplied:

=1forloadcaseD4 =‐1forloadcasesD1,D2andD3

Page 73: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

71 

4.8. InertialloadduetoverticalaccelerationneednotbeappliedtoloadcasesD5,D6,D7andD8.However,thegravitationaleffectistobeconsidered.

4.9. WheretherequiredhullgirderbendingmomentspecifiedinTable4.4.1isnotachievedbytheapplicationoftheship’sloadingconditionandwavepressure,theFEstressesaretobeadjustedasfollows:

σ σ _ σ _ ∆BM

σ σ _ σ _ ∆BM

τ τ _ τ _ ∆BM

where

σx,σyandτxy aretheadjusteddirectstressesandshearstressatthecentreofanelement

σx_FE,σy_FEandτxy_FE arethefiniteelementdirectstressesandshearstressatthecentreoftheelement

σx_u,σy_uandτxy_u arethedirectstressesandshearstressatthecentreoftheelementduetotheunithullgirderbendingmomentloadcase

ΔBM isthedifferencebetweentherequiredbendingmoment,asspecifiedinTable4.4.1,andtheresultantbendingmomentfromtheFEmodelatthelongitudinalpositionoftheelement.

Valuesofσx_u,σy_uandτxy_uaretobederivedbyapplyingaunitbendingmomenttothemodelusingboundaryconditionsofloadcaseD9asdescribedinFigure4.4.2.

4.10. LoadcaseD10(seeFigure4.4.3)representstheloadingandboundaryconditionstobeadoptedfordeterminingthestresscomponentsduetoglobalshearforceforloadcasesD1toD4,seeTable4.4.1.ThedifferencebetweentherequiredshearforceinTable4.4.1andtheshearforceduetotheapplicationoftheship’sloadingconditionandwavepressureistobeappliedatthemodelend.

4.11. LoadingconditionsforcommonconfigurationsoffueloildeeptanksareillustratedinFigs.4.4.1(a)to(d).Loadingconditionsforotherconfigurationswillbeconsidered,suchthatsimilarloadingscenariosonthecontainmentstructureareachieved.

 

   

Page 74: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

72 

Table4.4.1 Applicationofglobalbendingmomentsandshearforcestoloadcases

LoadcaseCondition(seeNote3)

Wavepressure

Globalbendingmoment Globalshearforce

D1,D2andD3

Shipupright

•Scantlingdraught,Tsc•Containerbaysinholdsand

hatchcoversoverthebaysaretobefilledwith20ftheavycontainerstothemaximumpermittedweight,seeNote4.Containerbaysabovefueloiltanksaretobeempty.

Wavecrest

•PermissibleSWBM(seagoinghogging)

•DesignVWBM(hogging),seeNote1

•AsactualinFEmodel(i.e.noadjustmentrequired)

Atfwdoil‐tightbulkhead

•PermissibleSWSF(‐ve)•DesignVWSF(‐ve)

•AsactualinFEmodel(i.e.noadjustmentrequired)

Ataftoil‐tightbulkhead

•PermissibleSWSF(+ve)•DesignVWSF(+ve)

D4

Shipupright

•Lightdraught,seeNote6•Allcontainersabovefueloil

tanksandonhatchcoversaretobeloadedwith20ftheavycontainerstothemaximumpermittedweight,seeNotes4and5.Containersinholdsaretobeempty.

Wavetrough

•PermissibleSWBM(seagoingsaggingorminimumhogging)

•DesignVWBM(sagging),seeNote1

•AsactualinFEmodel(i.e.noadjustmentrequired)

Atfwdoil‐tightbulkhead

•PermissibleSWSF(+ve)•DesignVWSF(+ve)

•AsactualinFEmodel(i.e.noadjustmentrequired)

Ataftoil‐tightbulkhead

•PermissibleSWSF(‐ve)•DesignVWSF(‐ve)

D5andD6Shipheeled

•Scantlingdraught,Tsc•Nocontainers

— •AsactualinFEmodel(i.e.noadjustmentrequired)

D7andD8Shipupright(Testcondition)

•Draughtat0,25D•Nocontainers

— •PermissibleSWBM(harbourhogging)

NOTES

1. Thedesignverticalwavebendingmoments(VWBM)aretobeMw(hog)andMw(sag)asspecifiedin2.1ofINTRODUCTION.Seealso4.9.

2. Thedesignverticalwaveshearforces(VWSF)aretobeQw+andQw‐asspecifiedin2.1ofINTRODUCTION.3. AllballasttanksinwayofthecargoholdmodelforloadcasesD1,D2,D3,D5,D6,D7andD8aretobeempty.Fueloiltanks

aretobeloadedinaccordancewiththatindicatedinFig.4.4.1(a)to(d).4. Theweightofheavycontainerunitsistobecalculatedasthepermissiblestackingweightdividedbythemaximum

numberoftiersplanned.

5. ForcontainersonhatchcoverswheretheRussianStowArrangement(seePt3,Ch14,5.4.9oftheRulesforShips)isadopted,thegreaterofthestackweightsoftheRussianStowArrangement,orthecombinedweightoftwo20ftcontainerstacksistobeused.

6. Lightdraughtcorrespondstotheexpecteddraughtamidships,whenheavycontainersareloadedintheconsideredholds,whilelightercontainersareloadedinotherholds.Thelightdraughtisnottobetakenasgreaterthan0.9Tsc.

 

 

 

 

 

 

Page 75: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

73 

Typicalarrangement

LoadcaseD1—scantlingdraught+wavecrest

LoadcaseD2—scantlingdraught+wavecrest

Fig.4.4.1(a)(seecontinuation)

Loadingconditions—Fueloildeeptankswithtwolongitudinalbulkheads

Page 76: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

74 

LoadcaseD3—scantlingdraught+wavecrest

LoadcaseD4—lightestloadeddraught+wavetrough

LoadcaseD5—scantlingdraught+staticheel(see4.5)

Page 77: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

75 

LoadcaseD6—scantlingdraught+staticheel(see4.5)

LoadcaseD7—tanktestcondition(draught=0.25D)

LoadcaseD8—tanktestcondition(draught=0.25D)

Fig.4.4.1(a)(conclusion)

Loadingconditions—Fueloildeeptankswithtwolongitudinalbulkheads

Page 78: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

76 

Typicalarrangement

LoadcaseD1—scantlingdraught+wavecrest(seeNotes)

LoadcaseD2—scantlingdraught+wavecrest(seeNotes)

Fig.4.4.1(b)(seecontinuation)

Loadingconditions—Fueloildeeptankswiththreelongitudinalbulkheads

Page 79: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

77 

LoadcaseD3—scantlingdraught+wavecrest

LoadcaseD4—lightestloadeddraught+wavetrough

LoadcaseD5—scantlingdraught+staticheel(see4.5)

Page 80: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

78 

LoadcaseD6—scantlingdraught+staticheel(see4.5)

LoadcaseD7—tanktestcondition(draught=0.25D)

LoadcaseD8—tanktestcondition(draught=0.25D)

Fig.4.4.1(b)(conclusion)

Loadingconditions—Fueloildeeptankswiththreelongitudinalbulkheads

NOTES

1. Iftheship’sLoadingManualincludesloadingconditionswithtwoormoreadjacentfueloiltanksfilled,andotherfueloiltanksempty,theseconditionsarealsotobeinvestigated.

2. Theactualloadingconditionsdependonthestructuralarrangementandmaybedifferenttothatshowninthefigure.ItisrecommendedthatthedesignerdiscussestheanalysisrequirementswithLloyd’sRegisterearlyoninthedesigncycle.

 

Page 81: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

79 

Typicalarrangements

LoadcaseD1—scantlingdraught+wavecrest(seeNotes)

LoadcaseD2—scantlingdraught+wavecrest(seeNotes)

Fig.4.4.1(c)(seecontinuation)

Loadingconditions—Fueloildeeptankswithfourlongitudinalbulkheads

Page 82: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

80 

LoadcaseD3—scantlingdraught+wavecrest

LoadcaseD4—lightestloadeddraught+wavetrough

LoadcaseD5—scantlingdraught+staticheel(see4.5)

Page 83: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

81 

LoadcaseD6—scantlingdraught+staticheel(see4.5)

LoadcaseD7—tanktestcondition(draught=0.25D)

LoadcaseD8—tanktestcondition(draught=0.25D)

Fig.4.4.1(c)(conclusion)

Loadingconditions—Fueloildeeptankswithfourlongitudinalbulkheads

NOTES1. Iftheship’sLoadingManualincludesloadingconditionswithtwoormoreadjacentfueloiltanksfilled,andotherfueloiltanksempty,theseconditionsarealsotobeinvestigated.

2. Theactualloadingconditionsdependonthestructuralarrangementandmaybedifferenttothatshowninthefigure.ItisrecommendedthatthedesignerdiscussestheanalysisrequirementswithLloyd’sRegisterearlyoninthedesigncycle.

Page 84: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

82 

Typicalarrangements

LoadcaseD1—scantlingdraught+wavecrest(seeNotes)

LoadcaseD2—scantlingdraught+wavecrest(seeNotes)

Fig.4.4.1(d)(seecontinuation)

Loadingconditions—Fueloildeeptankswithfivelongitudinalbulkheads

Page 85: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

83 

LoadcaseD3—scantlingdraught+wavecrest

LoadcaseD4—lightestloadeddraught+wavetrough

LoadcaseD5—scantlingdraught+staticheel(see4.5)

Page 86: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

84 

LoadcaseD6—scantlingdraught+staticheel(see4.5)

LoadcaseD7—tanktestcondition(draught=0.25D)

LoadcaseD8—tanktestcondition(draught=0.25D)

Fig.4.4.1(d)(conclusion)

Loadingconditions—Fueloildeeptankswithfivelongitudinalbulkheads

NOTES1. Iftheship’sLoadingManualincludesloadingconditionswithtwoormoreadjacentfueloiltanksfilled,andotherfueloiltanksempty,theseconditionsarealsotobeinvestigated.

2. Theactualloadingconditionsdependonthestructuralarrangementandmaybedifferenttothatshowninthefigure.ItisrecommendedthatthedesignerdiscussestheanalysisrequirementswithLloyd’sRegisterearlyoninthedesigncycle.

Page 87: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

85 

Fig.4.4.2

LoadcaseD9:M

omentcase

ResultsofthiscasearetobeaddedtoresultsofloadcasesD1,D2,D3,D4,D7andD8

SeeTable4.4.1and4.6

 

 

 

Page 88: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

86 

Fig.4.4.3

LoadcaseD10:Shearcase

ForcombinationwithresultsofloadcasesD1toD4asspecifiedinTable4.4.1

   

Page 89: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

87 

Section 5: Boundaryconditions

5.1. TheboundaryconditionstobeappliedtoloadcasesD1toD8aredefinedinCh1,5.

5.2. BoundaryconditionsforloadcasesD9andD10aregiveninFigs.4.4.2and4.4.3respectively.TheseboundaryconditionstobeappliedaresummarisedinTable4.5.1.

Table4.5.1 Summaryofboundaryconditionstoapply

Loadcasetype Boundaryconditions

Half‐breadthFEmodel

Symmetricloadcases LoadcasesD1,D2,D3,D4,D7andD8

Allloadcomponents Set1 seeFig.1.5.1ofCh1,5

Asymmetricloadcases LoadcasesD5andD6

SymmetricloadcomponentsAnti‐symmetricloadcomponents

Set1Set3

seeFig.1.5.1ofCh1,5seeFig.1.5.3ofCh1,5

Symmetricloadcases Hullgirderloads

Bendingmoment D9 seeFig.4.4.2

Shearforce D10 seeFig.4.4.3

Symmetricloadcases Hullgirderbendingmoment

Bendingmoment Set2 seeFig.1.5.2ofCh1,5

Full‐breadthFEmodel

Symmetricloadcases LoadcasesD1,D2,D3,D4,D7andD8

Allloadcomponents Set1 seeFig.1.5.1ofCh1,5

Asymmetricloadcases LoadcasesD5andD6

Allloadcomponents Set3 seeFig.1.5.3ofCh1,5

Symmetricloadcases Hullgirderloads

Bendingmoment D9 seeFig.4.4.2

Shearforce D10 seeFig.4.4.3

 

Section 6: Acceptancecriteria

6.1. ThestructureofthefueloildeeptankistocomplywiththeacceptancecriteriagiveninTable4.6.1.

6.2. Thebucklingcapabilityofthestructuresistobeassessedusingaplatethicknessreducedbythecorrosionaddition,tc,seeCh1,Table1.6.2.

6.3. ThebucklingfactorsofsafetyofhullstructuresaretobederivedaccordingtotheproceduredescribedinShipRightADP(AdditionalDesignandConstructionProcedures)–GuidanceNotesforShipRightSDABucklingAssessment.

 

   

Page 90: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 4  Primary Structure of Container Ship, August 2017 

88 

Table4.6.1 Acceptancecriteriaforprimarystructureof,andinwayof,thefueloildeeptanks

Structuralitem Loadcase

Allowablestress,N/mm2(seeNotes2and3)

BucklingfactorofsafetyΩ

(seeNote1)VonMisesσe

Longitudinalσx

Transverseσy

(seeNote4)

Shearstressτ

(seeNote6)

BottomshellInnerbottomDoublebottomgirders

D1toD8 σL 0,92σL 0,63σo 0,46σL 1,1

Oil‐tightlongitudinalbulkhead

D1toD4,D7andD8

0,75σo — 0,63σo0,35σo

(seeNote7)1,2

D5andD6 — — 0,63σo 0,35σo 1,2

SideshellSidestringersInnerhulllongitudinalbulkhead

D1toD4,D7andD8

σL 0,92σL —0,46σL

(seeNote7)1,1

D5andD6 σL 0,92σL — 0,46σL 1,2

TransversestructureDoublebottomfloors

D1toD8 0,75σo — 0,63σo 0,35σo 1,2

Transversebulkheadstructures

D1toD4,D7andD8 0,75σo — 0,63σo 0,35σo 1,1

D5andD6 0,75σo — 0,63σo 0,35σo 1,2

Cross‐deckboxstructure

D1toD8 0,75σo — 0,63σo 0,35σo 1,2

Transversestructurefaceplate

D1toD8 — 0,75σo — — —

NOTES

1. ThepanelthicknessistobereducedbytheamounttcasindicatedinCh1,Table1.6.2.Thelocalstressesaretobeincreasedbytheratiooft/(t–tc),wheretisthethicknessusedintheFEmodel.TheselocalstressesmaybeobtainedbydeducingthestressesduetoglobalbendingmomentgeneratedintheFEmodelfromtheFEstresses.

2. Forshellelements,thespecifiedallowablestressesaretobecomparedwiththemembranestressesintherelevantstructuralitem.

3. Inareaswheretheopeningshavenotbeenmodelled,theresultingshearstressandvonMisesstressaretobecorrectedaccordingtotheratiooftheactualtothemodelledsheararea.Iftheresultingstresslevelexceeds90%ofthespecifiedallowablevalue,furtherstudybymeansoffinemeshfollow‐upmodelsmayberequired.

4. Forbottomshellandinnerbottomplating,σyisthestressintheplaneoftheplatinginthetransversedirection.Forsideshellandlongitudinalbulkhead,σyisthestressintheplaneoftheplatingparalleltothespanofthesidetransverse.Forthetransversebulkheadplating,σyisthestressintheplaneoftheplatinginthetransverseorverticaldirections.Forallothermembers,σyisthedirectstressinthedirectionofthemember’sspan.

5. Considerationistobegiventothecombinedlocalandglobalstressscenario,seeTable4.4.1.6. Thespecifiedvaluesrelatetothemeanshearstressoverthedepthofthemember.Thepeakstressisnottoexceed1.1×

allowablevalue.7. TheeffectofhullgirderstillwaterandwaveshearstressistobeconsideredandaddedtocasesD1toD4.Ingeneral,shear

stressisnottoexceed0,46σL.Forsideshellandlongitudinalbulkheadplatinginwayoftheendsoftransverseoil‐tightbulkheadstringers,theshearstressisnottoexceed0,57σL.

 

Page 91: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 5  Primary Structure of Container Ship, August 2017 

89 

PART C:

Verification of Primary Structure 

Chapter 5:

Surge (Fore and Aft) Loading:  

Additional Requirements for Fuel Oil Deep Tanks 

Section 1:  Application 

Section 2:  Objectives 

Section 3:  Loading conditions 

 

Section 1: Application

1.1. ThisChapterisapplicabletocontainershipswhichcarryfueloilindeeptanksconstructedintransversebulkheadstructuresorinacontainercargohold,i.e.fueltankslocatedinboardoftheinnerskin,abovetheinnerbottomandbetweenadjacenttransversebulkheads.

1.2. WherethisanalysisiscarriedoutinPARTAusingafullshipFEmodel,theanalysisinthischaptercanbewaived.

Section 2: Objectives

2.1. TheobjectiveofthisChapteristodefinetheloadtobeappliedtotheboundaryoffueloiltanksintheproceduresofPARTAandPARTBduetolongitudinal(surge)acceleration.

2.2. TheinclusionofthisloadcomponentintheproceduresofPARTAandPARTBarenotrequiredforcontainershipshavinglongitudinaldeckgirdersarrangedsuchthatthespanofthecross‐deckboxesdoesnotexceed13m.Thespanofthecross‐deckboxistobecalculatedtakingintoaccountthepresenceofcontinuouslongitudinaldeckgirdersorbulkheads,butignoringendbrackets,etc.Longitudinaldeckgirdersorbulkheadsarenottobeconsideredcontinuousiftheydonotextendoveralengthequivalenttofour40ftcontainerbays.

Section 3: Loadingcondition

3.1. Thisloadingconditionassessestheeffectsoflongitudinalloadscausedbyshipaccelerationsactingonthefueloilinthetank,onthetransversebulkheadandcross‐deckstructures.Thelongitudinalacceleration,ax,atthecentreofgravityofatankistobecalculatedusingthelongitudinalaccelerationformulaegiveninPt3,Ch14,8.2.5oftheRulesforShips.Thefollowingmotioncases,definedinPt3,Ch14,Table14.8.4oftheRulesforShips,aretobeapplied:

 

Page 92: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Part C, Chapter 5  Primary Structure of Container Ship, August 2017 

90 

Headsea: MC1(HS_1) Positivepitchaccelerationcase

MC1(HS_2) Negativepitchaccelerationcase

Obliquesea: MC3(OS1_1) Positivepitchaccelerationcase

MC3(OS1_2) Negativepitchaccelerationcase

NotethatlongitudinalaccelerationduetoMC1(HS_2)isequalinmagnitudetoMC1(HS_1)buttheyareinoppositedirections.Likewise,longitudinalaccelerationsduetoMC3(OS1_1)andMC3(OS1_2)areequalinmagnitudebutoppositeindirection.ThepressureloadatthetankboundaryduetolongitudinalaccelerationistobecalculatedinaccordancewithFig.5.3.1.

3.2. Nootherloadsaretobeapplied.However,ifthehydrostaticpressurecausedbythefueloilwasnotincorporatedintheanalysesofPARTAandPARTB,thiscomponentistobeincludedintheloadcasesdescribedinthisChapter.

3.3. Theeffectofcontainerstacksstowedalongside,inadjacentholdsto,oroverthefueloildeeptanks,aretobeconsideredintheanalysesofPARTAandPARTB.TheseeffectsaretobecalculatedasdescribedinCh2andinPARTB’sanalysis.

 

Pressureduetonegativelongitudinalacceleration

P=ρl│ax│(N/m2)whereρ=1000kg/m3l=distancefromaftbulkhead(m)

Pressureduetopositivelongitudinalacceleration

P=ρl│ax│(N/m2)whereρ=1000kg/m3l=distancefromfwdbulkhead(m)

Fig.5.3.1

Pressureontankboundariesforfueloildeeptanks

 

 

Page 93: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix A  Primary Structure of Container Ship, August 2017 

 

91 

APPENDIX A:  

Procedure to Apply Transverse Asymmetric 

Loads to a Half‐Breadth Model 

 

SectionA.1:Proceduretoapplytransverseasymmetricloadstoahalf‐breadthFEmodel

A.1.1 Inordertogenerateatransverseasymmetricloadcaseforahalf‐breadthmodel,itisnecessarytoapplythetransverseloadsbycombiningtwoseparateloadcases.Thesetwoloadcasesconsistof:

1. Thesymmetricloadcase.ThiscaseappliessymmetricloadingcomponentsandboundaryconditionstotheFEmodel,seeFig.A.1.1.

2. Theanti‐symmetricloadcase.Thiscaseappliesanti‐symmetricloadingcomponentsandboundaryconditionstotheFEmodel,seeFig.A.1.1.

A.1.2  Ifanyoftheloadsdonotconformtotheabovedescription,orifthestructureisnotsymmetricaboutthecentreline,thenthistechniqueisnotstrictlyvalidandafull‐breadthFEmodelisrequired.Inthiscase,itmaybenecessarytoconsiderindividualloadcasesforshipheeledinportdirectionandshipheeledinstarboarddirection.

A.1.3  Usingtheabovetwoloadcases,thedifferentstructuralresponseofbothsidesoftheshiptothetransverseloadscanbederivedasfollows:

Portasymmetric = symmetricplusanti‐symmetric

Starboardasymmetric = symmetricminusanti‐symmetric

ThisisillustratedinFig.A.1.1.

A.1.4  Applicationoftheexternalhydrostaticpressurecorrespondingtotheheeledwaterlineforsymmetricandanti‐symmetricloadcasesisillustratedinFig.A.1.1anddescribedasfollows:

1. Thesymmetricloadcomponentforthehydrostaticpressureisappliedashalfthesumofthepressuresontheportandstarboardsides.NoteitisnecessarytomodifythesideshellpressuredistributionasshowninFig.A.1.1tosatisfythesymmetricloaddefinitionstatedabove.

2. Theanti‐symmetricloadcomponentfortheexternalhydrostaticpressureisappliedashalfthedifferenceofpressureontheportandstarboardsides.

A.1.5  Theboundaryconditionsforthesymmetricloadcaseandtheanti‐symmetricloadareasfollows:

1. Symmetricloadcase:SeePARTC,Ch1,Fig.1.5.1.

2. Anti‐symmetricloadcase:SeePARTC,Ch1,Fig.1.5.3.

Page 94: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix A  Primary Structure of Container Ship, August 2017 

 

92 

Fig.A.1.1

Derivationoftheasym

metricloadcasesforahalf‐breadthmodelfrom

thesymmetricandanti‐sym

metricloadcases(shipheeledcondition)

   

Page 95: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix B  Primary Structure of Container Ship, August 2017 

93 

APPENDIX B: 

Combined Stresses Analysis in Oblique Sea 

based on Equivalent Design Waves 

 

SectionB.1 ApplicationB.1.1  WhererequiredbyPt4,Ch8,14.1oftheRulesforShips,thecombinedstressanalysisspecifiedinPARTAandPARTBinobliqueseaconditionistobeanalysedbasedonhydrodynamictorqueandverticalandhorizontalbendingmomentsobtainedbynon‐linearshipmotionanalysis.

B.1.2  IfthehydrodynamicprogramsemployedarenotrecognisedbyLloyd’sRegister,fullparticularsoftheprogramswillberequiredtobesubmittedforreview,seePt3,Ch1,3.1oftheRulesforShips.

B.1.3  InadditiontothecombinedstressanalysisdescribedinthisAppendix,theheadseaconditiondescribedinPARTAandPARTBistobeanalysed.

SectionB.2 LongtermstatisticalanalysisB.2.1 LongtermstatisticalanalysisistobeusedtodeterminethedesignprobabilityleveloftheloadsandtheEquivalentDesignWaves(EDWs)forthecombinedstressanalysis.Theshorttermprobabilityoftheloadresponsesinaparticularseaconditionistobederivedusingaspectralanalysis.Theresponsesinregularwavesmaybeobtainedusinglinearshipmotionanalysisbasedonpotentialflowtheory.

B.2.2  Thefollowingloadingconditionsaretobeanalysed:

afullyloadedconditionwithashipdraughtequalorclosetothescantlingdraught;and

aloadingconditionwithmaximumGM.

 

B.2.3  ThelongtermanalysisistobebasedontheassumptionsgiveninTableB.2.1andtheNorthAtlanticwaveenvironmentscatterdiagramspecifiedinIACSRec.34giveninTableB.2.2.TheRayleighprobabilitydensityfunctionistobeusedtorepresentthepeakdistribution.Otherprobabilitydensityfunctionsmaybeconsideredinspecialcases.

B.2.4  Thelongtermprobabilitydistributionoftheverticalwavebendingmomentamidshipistobecalculated.Thedesignprobabilityleveloftheloadsinobliqueseaconditionsistobetakenastheprobabilitylevelatwhichthelongtermverticalwavebendingmomentamidshipisequaltothewaveverticalbendingmoment,Mwo,giveninPt4,Ch2,2.4.1(referredtoinPt4,Ch8,3.2)oftheRulesforShips,seeFigureB.2.1.

B.2.5  Thelongtermhydrodynamictorqueattheshearcentrealongthelengthoftheship,at0,05Lppincrements,istobedeterminedattheprobabilitylevelestablishedinB.2.4.Aconstantshearcentreposition,basedontheshearcentreinthemidshipregionatamaximumdistancebelowthebaseline,maybeusedforthecalculationofhydrodynamictorques.

B.2.6  Theequivalentdesignregularwavestoachievethelongtermhydrodynamictorqueatthefollowinglongitudinalpositionsshouldbeconsideredfornon‐linearshipmotionanalysis:

Page 96: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix B  Primary Structure of Container Ship, August 2017 

94 

Maximumtorqueintherange0≤x<0,5Lpp

Maximumtorqueintherange0,5Lpp≤x≤Lpp

B.2.7  ThewavefrequencyandrelativeheadingofanequivalentdesignwaveistobeselectedsuchthattheResponseAmplitudeOperator(RAO)ofthehydrodynamictorqueisatitsmaximum.ThewaveamplitudeisobtainedbytheratioofthelongtermhydrodynamictorquetotheselectedRAO.Foreachcasetwoequivalentdesignwaves,i.e.wavesapproachingfromtheportsideandstarboardsideatthesameangle,aretobeconsidered.

TableB.2.1 Waveenvironmentandassumptionsforlongtermstatisticalanalysis

Wavedata IACSRec.34,seeTableB.2.2

Waveenergyspectrum

ISSCwavespectrum:

ω 4π1ω

exp16π

ω

Wavespreadingdistribution Cosine‐squared

Directionality(waveheadingrelativetothe

ship)

Allheadingsequallyprobable.Theheadingincrementisnottobegreaterthan

15deg.

Shipspeed 25%oftheship’smaximumservicespeedbutnottobetakenlessthan5knots.

 

TableB.2.2 IACSRec.34NorthAtlanticwaveenvironmentscatterdiagram

HS/TZ 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5

0,5

1,5

2,5

3,5

4,5

5,5

6,5

7,5

8,5

9,5

10,5

11,5

12,5

13,5

14,5

15,5

16,5

1,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

133,7

29,3

2,2

0,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

865,6

986,0

197,5

34,9

6,0

1,0

0,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1186,0

4976,0

2158,8

695,5

196,1

51,0

12,6

3,0

0,7

0,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

634,2

7738,0

6230,0

3226,5

1354,3

498,4

167,0

52,1

15,4

4,3

1,2

0,3

0,1

0,0

0,0

0,0

0,0

186,3

5569,7

7449,5

5675,0

3288,5

1602,9

690,3

270,1

97,9

33,2

10,7

3,3

1,0

0,3

0,1

0,0

0,0

36,9

2375,7

4860,4

5099,1

3857,5

2372,7

1257,9

594,4

255,9

101,9

37,9

13,3

4,4

1,4

0,4

0,1

0,0

5,6

703,5

2066,0

2838,0

2685,5

2008,3

1268,6

703,2

350,6

159,9

67,5

26,6

9,9

3,5

1,2

0,4

0,1

0,7

160,7

644,5

1114,1

1275,2

1126,0

825,9

524,9

296,9

152,2

71,7

31,4

12,8

5,0

1,8

0,6

0,2

0,1

30,5

160,2

337,7

455,1

463,6

386,8

276,7

174,6

99,2

51,5

24,7

11,0

4,6

1,8

0,7

0,2

0,0

5,1

33,7

84,3

130,9

150,9

140,8

111,7

77,6

48,3

27,3

14,2

6,8

3,1

1,3

0,5

0,2

0,0

0,8

6,3

18,2

31,9

41,0

42,2

36,7

27,7

18,7

11,4

6,4

3,3

1,6

0,7

0,3

0,1

0,0

0,1

1,1

3,5

6,9

9,7

10,9

10,2

8,4

6,1

4,0

2,4

1,3

0,7

0,3

0,1

0,1

0,0

0,0

0,2

0,6

1,3

2,1

2,5

2,5

2,2

1,7

1,2

0,7

0,4

0,2

0,1

0,1

0,0

0,0

0,0

0,0

0,1

0,2

0,4

0,5

0,6

0,5

0,4

0,3

0,2

0,1

0,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,0

0,0

0,0

0,0

0,0

NOTES

1. Total100,000waveobservations.

2. HSissignificantwaveheightinmetres.

3. TZiszerocrossingperiodinseconds.

   

Page 97: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix B  Primary Structure of Container Ship, August 2017 

95 

 

Fig.B.2.1

Determinationofdesignloadprobabilitylevelbasedonlongtermprobabilitydistribution

oftheverticalwavebendingmomentamidship

 

Fig.B.2.2

Selectionoflocationsandtorquefromthelongtermhydrodynamictorqueenvelopecurve,seeB.2.6

   

Page 98: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix B  Primary Structure of Container Ship, August 2017 

96 

 

SectionB.3 Non‐linearshipmotionanalysisB.3.1 Non‐lineartimedomainshipmotionanalysisistobecarriedoutforeachequivalentdesignregularwaveidentifiedinSectionB.2.

B.3.2 Thehydrodynamictorqueattheshearcentre(seeB.2.5)andverticalandhorizontalbendingmomentdistributionsalongtheshiplengthatanincrementnotgreaterthan0,05L,aretobeobtainedforatleast20steps(i.e.0–2π,in0,1πsteps)overacompletewavecycle.

B.3.3 Alternatively,thewavepressuresandinertialloadduetotheshipmotionsmaybeapplieddirectlytotheFEmodeltogeneratetherequiredgloballoads.

B.3.4  Intheselectionofthewavecycle,careistobetakentoensurethatthetimedomainsimulationhasreachedasteadystate.

SectionB.4 CombinedstressanalysisB.4.1 AfullshipFEmodeldevelopedforPARTA’sanalysisistobeusedforthecombinedstressanalysistotheglobalhullstressresponseinobliqueseacondition.TheFEmodel(s)developedforPARTBistobeusedfortheanalysisofgloballoadsonlocalstructuraldetails.AllequivalentdesignwavesidentifiedinSectionB.2aretobeanalysed.

B.4.2 Thedynamicstressresponsesaretobecalculatedforatleast20steps(i.e.0–2π,in0,1πsteps)overacompletewavecycle.Thestressresponsescanbeobtainedbyapplyingthehydrodynamictorque,verticalandhorizontalbendingmomentdistributionsinB.3.2totheFEmodelforeachstepofthewavecycle.Individualloadcomponentsmaybeappliedseparatelyandthecombinedstressesareobtainedbysuperimposition.TheboundaryconditionsgiveninPARTA,Ch1,5forthefullshipmodelcanbeusedforthisanalysis.ForPARTB’sanalysis,additionalboundaryconditionsdescribedinPARTB,Ch1,4aretobeconsideredwhereappropriate.

B.4.3  Alternatively,thestressresponsesmaybeobtainedbyapplyingthewavepressuresandinertialloadduetotheshipmotionstotheFEmodel,seeB.3.3.AsuitableinertialrelieftechniquecanbeusedtobalancetheFEmodel.

B.4.4 PARTAanalysis

ForeachequivalentdesignwaveidentifiedinSectionB.2,thecombinedstaticanddynamicstressesandbucklingfactorsofsafetyoveracompletewavecyclemustcomplywiththecriteria(obliqueseacondition)giveninPARTA,Ch1,6.TheloadcombinationsgiveninPARTA,Ch1,Table1.4.3aretobeconsidered.

B.4.5  PARTBanalysis

ForeachequivalentdesignwaveidentifiedinSectionB.2,thecombinedstaticanddynamicstressesanddynamicstressrangesoveracompletewavecyclemustcomplywiththecriteria(obliqueseacondition)giveninPARTB,Ch1,5.TheloadcombinationsgiveninPARTA,Ch1,Table1.4.3aretobeconsidered.

   

Page 99: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix C  Primary Structure of Container Ship, August 2017 

97 

APPENDIX C:  

Rule Equivalent Design Wave Hydrodynamic 

Torque, Vertical and Horizontal Bending 

Moment Distributions 

 

SectionC.1 ApplicationC.1.1  Thehydrodynamictorque,verticalandhorizontalbendingmomentsgiveninthisAppendixrepresenttheloadresponsesoftheequivalentdesignwavecorrespondingtothehydrodynamicloadsgiveninPt4,Ch8,15oftheRulesforShips.

C.1.2  TheseloadscanbeusedtodeterminethestructuralresponsesoverawavecyclefortheanalysesinPARTAandPARTB.Theseloadsareequivalenttotheapplicationoftheruleloadformulae.TheprocedureisnecessaryfordeterminingthemaximumvonMisesstressesandminimumbucklingfactorofsafetyoverawavecycle,seePARTA,Ch1,4.6andPARTB,Ch1,4.7.

C.1.3  Thehydrodynamictorque,verticalandhorizontalbendingmomentdistributionsgiveninthisAppendixrepresenttheloadsresultingfromobliqueseastarboardequivalentdesignwave.

SectionC.2 LoadsC.2.1  Theverticalwavebendingmoment,MVWiatstepiofthewavecycleisgivenby:

MVWi =0,0505C0C3,iL2B(Cb+0,7) kNm

=(0,0052C0C3,iL2B(Cb+0,7) tonne‐fm

where

C3,i=VerticalwavebendingmomentdistributioncoefficientsdependingonthelongitudinalpositionfromA.P.giveninTableC.2.1.

OthersymbolsrefertoPt4,Ch8,15oftheRulesforShips.

C.2.2 Thehorizontalwavebendingmoment,MHWiatstepiofthewavecycleisgivenby:

MHWi =0,2063C0C4,iL2T(Cb+0,7) kNm

=(0,0210C0C4,iL2T(Cb+0,7) tonne‐fm

where

C4,i=HorizontalwavebendingmomentdistributioncoefficientsdependingonthelongitudinalpositionfromA.P.giveninTableC.2.2.

OthersymbolsrefertoPt4,Ch8,15oftheRulesforShips.

C.2.3  Thehydrodynamictorque,MTWiatstepiofthewavecycleisgivenby:

Page 100: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix C  Primary Structure of Container Ship, August 2017 

98 

MTWi =0,0728C0C5,iLB2(Cb+0,7)–0,8683(0,65T+ε)C0K3,iLT(Cb+0,7) kNm

=(0,0078C0C5,iLB2(Cb+0,7)–0,0886(0,65T+ε)C0K3,iLT(Cb+0,7) tonne‐fm

where

C5,i=HydrodynamictorquedistributioncoefficientsdependingonthelongitudinalpositionfromA.P.giveninTableC.2.3.

K3,i=HorizontalwaveshearforcedistributioncoefficientsdependingonthelongitudinalpositionfromA.P.giveninTableC.2.4.

OthersymbolsrefertoPt4,Ch8,15oftheRulesforShips.

 

Page 101: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix C       Primary Structure of Container Ship, August 2017 

99 

TableC.2.1 Verticalwavebendingmomentdistributioncoefficients

x/LPP ,, ,

, ,, ,

, ,, ,

, ,, ,

, ,, ,

, ,, ,

, ,, ,

, ,, ,

, ,, ,

, ,, ,

,

0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

0,05 0,062 0,065 0,061 0,051 0,036 0,018 ‐0,002 ‐0,022 ‐0,040 ‐0,054 ‐0,062 ‐0,065 ‐0,061 ‐0,051 ‐0,036 ‐0,018 0,002 0,022 0,040 0,054

0,10 0,158 0,156 0,138 0,106 0,065 0,017 ‐0,033 ‐0,079 ‐0,118 ‐0,145 ‐0,158 ‐0,156 ‐0,138 ‐0,106 ‐0,065 ‐0,017 0,033 0,079 0,118 0,145

0,15 0,305 0,288 0,242 0,173 0,087 ‐0,008 ‐0,102 ‐0,186 ‐0,251 ‐0,292 ‐0,305 ‐0,288 ‐0,242 ‐0,173 ‐0,087 0,008 0,102 0,186 0,251 0,292

0,20 0,460 0,420 0,338 0,224 0,087 ‐0,058 ‐0,197 ‐0,318 ‐0,407 ‐0,456 ‐0,460 ‐0,420 ‐0,338 ‐0,224 ‐0,087 0,058 0,197 0,318 0,407 0,456

0,25 0,611 0,539 0,414 0,248 0,058 ‐0,137 ‐0,319 ‐0,470 ‐0,575 ‐0,623 ‐0,611 ‐0,539 ‐0,414 ‐0,248 ‐0,058 0,137 0,319 0,470 0,575 0,623

0,30 0,732 0,624 0,454 0,240 0,002 ‐0,235 ‐0,450 ‐0,621 ‐0,731 ‐0,769 ‐0,732 ‐0,624 ‐0,454 ‐0,240 ‐0,002 0,235 0,450 0,621 0,731 0,769

0,35 0,817 0,669 0,456 0,198 ‐0,080 ‐0,350 ‐0,585 ‐0,763 ‐0,867 ‐0,885 ‐0,817 ‐0,669 ‐0,456 ‐0,198 0,080 0,350 0,585 0,763 0,867 0,885

0,40 0,850 0,667 0,419 0,129 ‐0,173 ‐0,458 ‐0,699 ‐0,871 ‐0,957 ‐0,950 ‐0,850 ‐0,667 ‐0,419 ‐0,129 0,173 0,458 0,699 0,871 0,957 0,950

0,45 0,836 0,626 0,354 0,048 ‐0,263 ‐0,548 ‐0,780 ‐0,935 ‐0,999 ‐0,965 ‐0,836 ‐0,626 ‐0,354 ‐0,048 0,263 0,548 0,780 0,935 0,999 0,965

0,50 0,780 0,554 0,274 ‐0,032 ‐0,336 ‐0,607 ‐0,818 ‐0,949 ‐0,987 ‐0,929 ‐0,780 ‐0,554 ‐0,274 0,032 0,336 0,607 0,818 0,949 0,987 0,929

0,55 0,683 0,459 0,190 ‐0,097 ‐0,374 ‐0,615 ‐0,796 ‐0,899 ‐0,914 ‐0,839 ‐0,683 ‐0,459 ‐0,190 0,097 0,374 0,615 0,796 0,899 0,914 0,839

0,60 0,555 0,352 0,114 ‐0,135 ‐0,371 ‐0,571 ‐0,714 ‐0,788 ‐0,784 ‐0,704 ‐0,555 ‐0,352 ‐0,114 0,135 0,371 0,571 0,714 0,788 0,784 0,704

0,65 0,415 0,241 0,043 ‐0,159 ‐0,345 ‐0,498 ‐0,602 ‐0,647 ‐0,628 ‐0,548 ‐0,415 ‐0,241 ‐0,043 0,159 0,345 0,498 0,602 0,647 0,628 0,548

0,70 0,275 0,137 ‐0,015 ‐0,165 ‐0,300 ‐0,404 ‐0,470 ‐0,489 ‐0,460 ‐0,386 ‐0,275 ‐0,137 0,015 0,165 0,300 0,404 0,470 0,489 0,460 0,386

0,75 0,165 0,064 ‐0,044 ‐0,147 ‐0,236 ‐0,302 ‐0,338 ‐0,341 ‐0,311 ‐0,250 ‐0,165 ‐0,064 0,044 0,147 0,236 0,302 0,338 0,341 0,311 0,250

0,80 0,085 0,016 ‐0,054 ‐0,119 ‐0,172 ‐0,208 ‐0,224 ‐0,219 ‐0,191 ‐0,145 ‐0,085 ‐0,016 0,054 0,119 0,172 0,208 0,224 0,219 0,191 0,145

0,85 0,041 ‐0,002 ‐0,044 ‐0,083 ‐0,113 ‐0,132 ‐0,138 ‐0,131 ‐0,111 ‐0,080 ‐0,041 0,002 0,044 0,083 0,113 0,132 0,138 0,131 0,111 0,080

0,90 0,022 ‐0,002 ‐0,026 ‐0,047 ‐0,063 ‐0,074 ‐0,077 ‐0,073 ‐0,061 ‐0,044 ‐0,022 0,002 0,026 0,047 0,063 0,074 0,077 0,073 0,061 0,044

0,95 0,010 0,001 ‐0,009 ‐0,017 ‐0,024 ‐0,028 ‐0,030 ‐0,029 ‐0,025 ‐0,018 ‐0,010 ‐0,001 0,009 0,017 0,024 0,028 0,030 0,029 0,025 0,018

1,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

NOTES1. , ,

, where

| | ,, 0,

| | ,, 0

2. , :Hoggingandsaggingverticalbendingmomentcorrectionfactors,see2.1ofINTRODUCTION.3. Intermediatevaluesaretobedeterminedbylinearinterpolation.

   

Page 102: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix C       Primary Structure of Container Ship, August 2017 

100 

 TableC.2.2 Horizontalwavebendingmomentdistributioncoefficients

x/LPP , , , , , , , , , , , , , , , , , , , ,

0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

0,05 ‐0,016 ‐0,012 ‐0,007 ‐0,001 0,005 0,010 0,014 0,017 0,019 0,018 0,016 0,012 0,007 0,001 ‐0,005 ‐0,010 ‐0,014 ‐0,017 ‐0,019 ‐0,018

0,10 ‐0,046 ‐0,030 ‐0,010 0,010 0,030 0,046 0,058 0,064 0,064 0,058 0,046 0,030 0,010 ‐0,010 ‐0,030 ‐0,046 ‐0,058 ‐0,064 ‐0,064 ‐0,058

0,15 ‐0,097 ‐0,055 ‐0,009 0,039 0,083 0,119 0,143 0,153 0,148 0,129 0,097 0,055 0,009 ‐0,039 ‐0,083 ‐0,119 ‐0,143 ‐0,153 ‐0,148 ‐0,129

0,20 ‐0,154 ‐0,076 0,009 0,094 0,169 0,228 0,264 0,275 0,259 0,217 0,154 0,076 ‐0,009 ‐0,094 ‐0,169 ‐0,228 ‐0,264 ‐0,275 ‐0,259 ‐0,217

0,25 ‐0,208 ‐0,084 0,049 0,176 0,287 0,369 0,415 0,421 0,385 0,312 0,208 0,084 ‐0,049 ‐0,176 ‐0,287 ‐0,369 ‐0,415 ‐0,421 ‐0,385 ‐0,312

0,30 ‐0,242 ‐0,065 0,118 0,289 0,432 0,533 0,582 0,573 0,509 0,395 0,242 0,065 ‐0,118 ‐0,289 ‐0,432 ‐0,533 ‐0,582 ‐0,573 ‐0,509 ‐0,395

0,35 ‐0,247 ‐0,019 0,211 0,420 0,588 0,699 0,741 0,711 0,611 0,451 0,247 0,019 ‐0,211 ‐0,420 ‐0,588 ‐0,699 ‐0,741 ‐0,711 ‐0,611 ‐0,451

0,40 ‐0,217 0,055 0,322 0,557 0,738 0,846 0,872 0,812 0,673 0,468 0,217 ‐0,055 ‐0,322 ‐0,557 ‐0,738 ‐0,846 ‐0,872 ‐0,812 ‐0,673 ‐0,468

0,45 ‐0,153 0,147 0,433 0,677 0,854 0,948 0,949 0,857 0,681 0,438 0,153 ‐0,147 ‐0,433 ‐0,677 ‐0,854 ‐0,948 ‐0,949 ‐0,857 ‐0,681 ‐0,438

0,50 ‐0,072 0,240 0,528 0,764 0,926 0,997 0,970 0,849 0,644 0,377 0,072 ‐0,240 ‐0,528 ‐0,764 ‐0,926 ‐0,997 ‐0,970 ‐0,849 ‐0,644 ‐0,377

0,55 0,014 0,318 0,590 0,805 0,941 0,985 0,932 0,789 0,568 0,291 ‐0,014 ‐0,318 ‐0,590 ‐0,805 ‐0,941 ‐0,985 ‐0,932 ‐0,789 ‐0,568 ‐0,291

0,60 0,087 0,365 0,608 0,791 0,897 0,915 0,843 0,689 0,467 0,200 ‐0,087 ‐0,365 ‐0,608 ‐0,791 ‐0,897 ‐0,915 ‐0,843 ‐0,689 ‐0,467 ‐0,200

0,65 0,136 0,377 0,581 0,729 0,805 0,802 0,721 0,569 0,361 0,118 ‐0,136 ‐0,377 ‐0,581 ‐0,729 ‐0,805 ‐0,802 ‐0,721 ‐0,569 ‐0,361 ‐0,118

0,70 0,158 0,353 0,514 0,624 0,674 0,657 0,576 0,439 0,258 0,053 ‐0,158 ‐0,353 ‐0,514 ‐0,624 ‐0,674 ‐0,657 ‐0,576 ‐0,439 ‐0,258 ‐0,053

0,75 0,151 0,299 0,417 0,495 0,524 0,502 0,431 0,317 0,173 0,012 ‐0,151 ‐0,299 ‐0,417 ‐0,495 ‐0,524 ‐0,502 ‐0,431 ‐0,317 ‐0,173 ‐0,012

0,80 0,123 0,225 0,305 0,355 0,370 0,349 0,294 0,210 0,106 ‐0,009 ‐0,123 ‐0,225 ‐0,305 ‐0,355 ‐0,370 ‐0,349 ‐0,294 ‐0,210 ‐0,106 0,009

0,85 0,083 0,145 0,193 0,222 0,229 0,214 0,178 0,124 0,059 ‐0,013 ‐0,083 ‐0,145 ‐0,193 ‐0,222 ‐0,229 ‐0,214 ‐0,178 ‐0,124 ‐0,059 0,013

0,90 0,043 0,074 0,097 0,111 0,114 0,106 0,088 0,060 0,028 ‐0,008 ‐0,043 ‐0,074 ‐0,097 ‐0,111 ‐0,114 ‐0,106 ‐0,088 ‐0,060 ‐0,028 0,008

0,95 0,013 0,023 0,031 0,035 0,036 0,034 0,028 0,020 0,009 ‐0,002 ‐0,013 ‐0,023 ‐0,031 ‐0,035 ‐0,036 ‐0,034 ‐0,028 ‐0,020 ‐0,009 0,002

1,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

NOTE1. Intermediatevaluesaretobedeterminedbylinearinterpolation.

 

   

Page 103: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix C       Primary Structure of Container Ship, August 2017 

101 

 TableC.2.3 Hydrodynamictorquedistributioncoefficients

x/LPP , , , , , , , , , , , , , , , , , , , ,

0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

0,05 ‐0,289 ‐0,202 ‐0,096 0,020 0,134 0,235 0,313 0,360 0,372 0,348 0,289 0,202 0,096 ‐0,020 ‐0,134 ‐0,235 ‐0,313 ‐0,360 ‐0,372 ‐0,348

0,10 ‐0,456 ‐0,271 ‐0,060 0,157 0,358 0,525 0,640 0,693 0,677 0,596 0,456 0,271 0,060 ‐0,157 ‐0,358 ‐0,525 ‐0,640 ‐0,693 ‐0,677 ‐0,596

0,15 ‐0,455 ‐0,199 0,075 0,343 0,577 0,754 0,858 0,877 0,811 0,665 0,455 0,199 ‐0,075 ‐0,343 ‐0,577 ‐0,754 ‐0,858 ‐0,877 ‐0,811 ‐0,665

0,20 ‐0,342 ‐0,044 0,258 0,535 0,760 0,910 0,971 0,937 0,812 0,606 0,342 0,044 ‐0,258 ‐0,535 ‐0,760 ‐0,910 ‐0,971 ‐0,937 ‐0,812 ‐0,606

0,25 ‐0,184 0,130 0,432 0,691 0,883 0,988 0,997 0,908 0,730 0,481 0,184 ‐0,130 ‐0,432 ‐0,691 ‐0,883 ‐0,988 ‐0,997 ‐0,908 ‐0,730 ‐0,481

0,30 ‐0,022 0,288 0,570 0,796 0,944 1,000 0,958 0,822 0,606 0,330 0,022 ‐0,288 ‐0,570 ‐0,796 ‐0,944 ‐1,000 ‐0,958 ‐0,822 ‐0,606 ‐0,330

0,35 0,169 0,452 0,691 0,863 0,950 0,944 0,846 0,665 0,418 0,131 ‐0,169 ‐0,452 ‐0,691 ‐0,863 ‐0,950 ‐0,944 ‐0,846 ‐0,665 ‐0,418 ‐0,131

0,40 0,323 0,570 0,761 0,878 0,909 0,851 0,709 0,499 0,239 ‐0,044 ‐0,323 ‐0,570 ‐0,761 ‐0,878 ‐0,909 ‐0,851 ‐0,709 ‐0,499 ‐0,239 0,044

0,45 0,439 0,642 0,782 0,846 0,827 0,727 0,556 0,330 0,072 ‐0,193 ‐0,439 ‐0,642 ‐0,782 ‐0,846 ‐0,827 ‐0,727 ‐0,556 ‐0,330 ‐0,072 0,193

0,50 0,522 0,677 0,766 0,780 0,717 0,585 0,395 0,166 ‐0,078 ‐0,316 ‐0,522 ‐0,677 ‐0,766 ‐0,780 ‐0,717 ‐0,585 ‐0,395 ‐0,166 0,078 0,316

0,55 0,562 0,672 0,715 0,689 0,595 0,443 0,248 0,028 ‐0,194 ‐0,397 ‐0,562 ‐0,672 ‐0,715 ‐0,689 ‐0,595 ‐0,443 ‐0,248 ‐0,028 0,194 0,397

0,60 0,544 0,606 0,609 0,553 0,442 0,288 0,106 ‐0,086 ‐0,271 ‐0,428 ‐0,544 ‐0,606 ‐0,609 ‐0,553 ‐0,442 ‐0,288 ‐0,106 0,086 0,271 0,428

0,65 0,472 0,483 0,447 0,368 0,252 0,111 ‐0,040 ‐0,187 ‐0,316 ‐0,415 ‐0,472 ‐0,483 ‐0,447 ‐0,368 ‐0,252 ‐0,111 0,040 0,187 0,316 0,415

0,70 0,260 0,244 0,204 0,144 0,070 ‐0,011 ‐0,091 ‐0,162 ‐0,217 ‐0,251 ‐0,260 ‐0,244 ‐0,204 ‐0,144 ‐0,070 0,011 0,091 0,162 0,217 0,251

0,75 ‐0,074 ‐0,108 ‐0,132 ‐0,142 ‐0,138 ‐0,121 ‐0,092 ‐0,054 ‐0,011 0,033 0,074 0,108 0,132 0,142 0,138 0,121 0,092 0,054 0,011 ‐0,033

0,80 ‐0,366 ‐0,373 ‐0,344 ‐0,281 ‐0,191 ‐0,082 0,035 0,149 0,248 0,323 0,366 0,373 0,344 0,281 0,191 0,082 ‐0,035 ‐0,149 ‐0,248 ‐0,323

0,85 ‐0,385 ‐0,354 ‐0,288 ‐0,195 ‐0,082 0,039 0,156 0,258 0,334 0,378 0,385 0,354 0,288 0,195 0,082 ‐0,039 ‐0,156 ‐0,258 ‐0,334 ‐0,378

0,90 ‐0,198 ‐0,169 ‐0,124 ‐0,066 ‐0,002 0,062 0,120 0,167 0,197 0,208 0,198 0,169 0,124 0,066 0,002 ‐0,062 ‐0,120 ‐0,167 ‐0,197 ‐0,208

0,95 ‐0,075 ‐0,056 ‐0,031 ‐0,002 0,026 0,052 0,073 0,086 0,091 0,088 0,075 0,056 0,031 0,002 ‐0,026 ‐0,052 ‐0,073 ‐0,086 ‐0,091 ‐0,088

1,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

NOTE1. Intermediatevaluesaretobedeterminedbylinearinterpolation.

 

   

Page 104: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix C       Primary Structure of Container Ship, August 2017 

102 

 TableC.2.4 Horizontalwaveshearforcedistributioncoefficients

x/LPP , , , , , , , , , , , , , , , , , , , ,

0,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

0,05 0,101 0,061 0,015 ‐0,032 ‐0,076 ‐0,113 ‐0,139 ‐0,151 ‐0,148 ‐0,131 ‐0,101 ‐0,061 ‐0,015 0,032 0,076 0,113 0,139 0,151 0,148 0,131

0,10 0,211 0,107 ‐0,008 ‐0,122 ‐0,224 ‐0,304 ‐0,354 ‐0,370 ‐0,349 ‐0,295 ‐0,211 ‐0,107 0,008 0,122 0,224 0,304 0,354 0,370 0,349 0,295

0,15 0,276 0,112 ‐0,062 ‐0,231 ‐0,377 ‐0,486 ‐0,548 ‐0,555 ‐0,509 ‐0,413 ‐0,276 ‐0,112 0,062 0,231 0,377 0,486 0,548 0,555 0,509 0,413

0,20 0,277 0,060 ‐0,163 ‐0,370 ‐0,541 ‐0,659 ‐0,712 ‐0,696 ‐0,611 ‐0,467 ‐0,277 ‐0,060 0,163 0,370 0,541 0,659 0,712 0,696 0,611 0,467

0,25 0,214 ‐0,045 ‐0,299 ‐0,525 ‐0,699 ‐0,804 ‐0,831 ‐0,776 ‐0,646 ‐0,452 ‐0,214 0,045 0,299 0,525 0,699 0,804 0,831 0,776 0,646 0,452

0,30 0,089 ‐0,181 ‐0,433 ‐0,643 ‐0,790 ‐0,860 ‐0,845 ‐0,748 ‐0,577 ‐0,350 ‐0,089 0,181 0,433 0,643 0,790 0,860 0,845 0,748 0,577 0,350

0,35 ‐0,083 ‐0,326 ‐0,538 ‐0,697 ‐0,787 ‐0,801 ‐0,736 ‐0,599 ‐0,404 ‐0,169 0,083 0,326 0,538 0,697 0,787 0,801 0,736 0,599 0,404 0,169

0,40 ‐0,268 ‐0,459 ‐0,606 ‐0,693 ‐0,712 ‐0,662 ‐0,547 ‐0,378 ‐0,172 0,050 0,268 0,459 0,606 0,693 0,712 0,662 0,547 0,378 0,172 ‐0,050

0,45 ‐0,422 ‐0,526 ‐0,579 ‐0,575 ‐0,515 ‐0,404 ‐0,254 ‐0,079 0,104 0,277 0,422 0,526 0,579 0,575 0,515 0,404 0,254 0,079 ‐0,104 ‐0,277

0,50 ‐0,485 ‐0,489 ‐0,445 ‐0,358 ‐0,235 ‐0,090 0,064 0,212 0,339 0,433 0,485 0,489 0,445 0,358 0,235 0,090 ‐0,064 ‐0,212 ‐0,339 ‐0,433

0,55 ‐0,447 ‐0,353 ‐0,225 ‐0,075 0,083 0,232 0,359 0,450 0,498 0,497 0,447 0,353 0,225 0,075 ‐0,083 ‐0,232 ‐0,359 ‐0,450 ‐0,498 ‐0,497

0,60 ‐0,338 ‐0,172 0,010 0,192 0,355 0,483 0,564 0,589 0,557 0,471 0,338 0,172 ‐0,010 ‐0,192 ‐0,355 ‐0,483 ‐0,564 ‐0,589 ‐0,557 ‐0,471

0,65 ‐0,227 0,011 0,248 0,460 0,628 0,734 0,768 0,727 0,615 0,443 0,227 ‐0,011 ‐0,248 ‐0,460 ‐0,628 ‐0,734 ‐0,768 ‐0,727 ‐0,615 ‐0,443

0,70 ‐0,094 0,193 0,461 0,683 0,839 0,913 0,897 0,794 0,613 0,372 0,094 ‐0,193 ‐0,461 ‐0,683 ‐0,839 ‐0,913 ‐0,897 ‐0,794 ‐0,613 ‐0,372

0,75 0,067 0,372 0,641 0,847 0,970 0,998 0,928 0,768 0,532 0,245 ‐0,067 ‐0,372 ‐0,641 ‐0,847 ‐0,970 ‐0,998 ‐0,928 ‐0,768 ‐0,532 ‐0,245

0,80 0,185 0,470 0,709 0,879 0,963 0,952 0,848 0,661 0,410 0,118 ‐0,185 ‐0,470 ‐0,709 ‐0,879 ‐0,963 ‐0,952 ‐0,848 ‐0,661 ‐0,410 ‐0,118

0,85 0,245 0,487 0,681 0,808 0,857 0,821 0,705 0,520 0,284 0,021 ‐0,245 ‐0,487 ‐0,681 ‐0,808 ‐0,857 ‐0,821 ‐0,705 ‐0,520 ‐0,284 ‐0,021

0,90 0,220 0,403 0,547 0,637 0,664 0,627 0,528 0,378 0,191 ‐0,015 ‐0,220 ‐0,403 ‐0,547 ‐0,637 ‐0,664 ‐0,627 ‐0,528 ‐0,378 ‐0,191 0,015

0,95 0,133 0,227 0,299 0,342 0,351 0,326 0,269 0,186 0,084 ‐0,026 ‐0,133 ‐0,227 ‐0,299 ‐0,342 ‐0,351 ‐0,326 ‐0,269 ‐0,186 ‐0,084 0,026

1,00 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

NOTE1. Intermediatevaluesaretobedeterminedbylinearinterpolation.

 

Page 105: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix D  Primary Structure of Container Ship, August 2017 

103 

APPENDIX D:  

Combined Direct Stresses in Oblique Sea 

(Alternative Method) 

 

SectionD.1 ApplicationD.1.1  ThestresscombinationsgiveninthisAppendixcanbeusedasanalternativetoPARTA,Ch1,Table1.4.3toobtainthemaximumandminimumdirectstressesandtangentialstressesifthehydrodynamicloadsinobliqueseaconditionspecifiedinAppendixCareusedintheanalysis.

D.1.2  Thestresscombinationsarenotapplicableifthehydrodynamicloadsinobliqueseaareobtainedusingnon‐linearshipmotionanalysis,seeAppendixB.Inthiscase,theloadcombinationsdescribedinPARTA,Ch1,Table1.4.3aretobeused.

SectionD.2 StressCombinationsD.2.1  ThestresscombinationsaregiveninTableD.2.1.

D.2.2  However,ifnon‐linearshipmotionanalysisisusedtodeterminethehydrodynamicloads,seePARTA,Ch1,4.2,theloadcombinationsgiveninTable1.4.3mustbeused.

Page 106: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix D  Primary Structure of Container Ship, August 2017 

104 

TableD.2.1 Stresscombinationsforobliqueseacondition(fordirectstresses)

   

Wave(hullgirder)

Longitudinalacceleration,seeNote1

(Containers,seeNote2

and/orFO,seeNote3)

Stillwater

(seeNote4)

(seeNote6)

Stillwaterhogging

Loadcases

Wavedirection

σ σ σ σ (seeNote5) σ σ

OS1a Starboard σ(OS1a) 1 1 Hog 1

OS2a Starboard σ(OS2a) 1 1 Hog ‐1

OS3a Starboard σ(OS3a) 1 ‐1 Hog 1

OS4a Starboard σ(OS4a) 1 ‐1 Hog ‐1

OS1b Starboard σ(OS1b) ‐1 1 Hog 1

OS2b Starboard σ(OS2b) ‐1 1 Hog ‐1

OS3b Starboard σ(OS3b) ‐1 ‐1 Hog 1

OS4b Starboard σ(OS4b) ‐1 ‐1 Hog ‐1

Loadcases

Wavedirection

σ σ σ σ (seeNote5) σ σ

OP1a Port σ(OP1a) 1 1 Hog 1

OP2a Port σ(OP2a) 1 1 Hog ‐1

OP3a Port σ(OP3a) 1 ‐1 Hog 1

OP4a Port σ(OP4a) 1 ‐1 Hog ‐1

OP1b Port σ(OP1b) ‐1 1 Hog 1

OP2b Port σ(OP2b) ‐1 1 Hog ‐1

OP3b Port σ(OP3b) ‐1 ‐1 Hog 1

OP4b Port σ(OP4b) ‐1 ‐1 Hog ‐1

Stillwatersagging

Loadcases

Wavedirection

σ σ σ σ (seeNote5) σ σ

OS5a Starboard σ(OS5a) 1 1 Sag 1

OS6a Starboard σ(OS6a) 1 1 Sag ‐1

OS7a Starboard σ(OS7a) 1 ‐1 Sag 1

OS8a Starboard σ(OS8a) 1 ‐1 Sag ‐1

OS5b Starboard σ(OS5b) ‐1 1 Sag 1

OS6b Starboard σ(OS6b) ‐1 1 Sag ‐1

OS7b Starboard σ(OS7b) ‐1 ‐1 Sag 1

OS8b Starboard σ(OS8b) ‐1 ‐1 Sag ‐1

Loadcases

Wavedirection σ σ σ σ (seeNote5) σ σ

OP5a Port σ(OP5a) 1 1 Sag 1

OP6a Port σ(OP6a) 1 1 Sag ‐1

OP7a Port σ(OP7a) 1 ‐1 Sag 1

OP8a Port σ(OP8a) 1 ‐1 Sag ‐1

OP5b Port σ(OP5b) ‐1 1 Sag 1

OP6b Port σ(OP6b) ‐1 1 Sag ‐1

OP7b Port σ(OP7b) ‐1 ‐1 Sag 1

OP8b Port σ(OP8b) ‐1 ‐1 Sag ‐1

seeContinuationforNotes

Page 107: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

 

Appendix D  Primary Structure of Container Ship, August 2017 

105 

TableD.2.1 (Continuation):Stresscombinationsforobliqueseacondition(fordirectstresses)

NOTES1. Longitudinalaccelerationloadcomponentisrequiredtobeappliedfortheassessmentoftransversebulkheadandcrossdeck

structures,seePARTA,Ch1,Table1.6.1,andPARTB’sanalysis.2. Containers‐longitudinalcomponentofcontainerloads,arisingfromtheeffectofshipmotions,actingonthetransverse

bulkheadsandcrossdeckstructure.SeePARTA,Ch1,4.3.11andPARTC,Ch2,fordefinitionofthisloadcomponent.3. FO‐longitudinalcomponentoffueloil(orotherliquid)loads,arisingfromtheeffectofshipmotions,actingonthetransverse

bulkheads.SeePARTA,Ch1,4.3.11andPARTC,Ch5,fordefinitionofthisloadcomponent.4. Hoggingandsagging(orminimumhogging)stillwaterloadcasesasspecifiedinPARTA,Ch1,4.3.1and4.3.2aretobe

considered.Thestressofeachstillwaterloadcaseistobecombinedwiththestressesduetocargotorqueandwaveloads(includinglongitudinalaccelerationinertialloadwhererequired,seeNote6)forassessmentagainsttheacceptancecriteria.

5. Inertialforceduetolongitudinalaccelerationofcontainersand/orfueloil,seePARTA,Ch1,4.3.11: 1indicatesapplicationofobliqueseapositivepitchaccelerationcaseMC3(OS1_1) ‐1indicatesapplicationofobliqueseanegativepitchaccelerationcaseMC3(OS1_2)

6. Cargotorqueloadcase,seePARTA,Ch1,4.3.9.

Symbols

σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ

where

σ =Stressduetocargotorque, ,seePARTA,Ch1,4.3.9

σ =StressduetothestillwaterloadcasewithrequiredSWBMdistribution,seeNote4.

σ ,σ =Stressesduetoobliqueseaverticalwavebendingmoments, and ,giveninAppendixC.

σ ,σ =Stressesduetoobliqueseahydrodynamictorques, and ,giveninAppendixC.

σ ,σ =Stressesduetoobliqueseahorizontalwavebendingmoments, and ,giveninAppendixC.

and   isequivalenttotheobliqueseaverticalwavebendingmomentsdistribution, and ,giveninPt4,Ch8,15.3.1oftheRulesforShipswiththehoggingandsaggingfactorsincorporated.

and   isthesamedistributionastheobliqueseahorizontalwavebendingmoments, and ,giveninPt4,Ch8,15.3.2oftheRulesforShips.

and   isthesamedistributionastheobliqueseahydrodynamictorques, and ,giveninPt4,Ch8,15.3.3oftheRulesforShips.

Page 108: SDA Containerships procedure August 2017 Final …...greater than 150 m and for other container ships of abnormal hull form, or of unusual structural configuration or complexity, see

© Lloyd’s Register Group Limited 2017 Published by Lloyd’s Register Group Limited

Registered office (Reg. no. 08126909) 71 Fenchurch Street, London, EC3M 4BS

United Kingdom

Lloyd’s Register and variants of it are trading names of Lloyd’s Register Group Limited, its subsidiaries and affiliates. For further details please see http://www.lr.org/entities

Lloyd's Register Group Limited, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this clause as ‘Lloyd's Register’. Lloyd's Register assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register entity for the provision of this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract.

© Lloyd’s Register, 2017