search for direct top squark pair production in events ... · all limits at 95% cl lep limit...

21
Intro Method Plots Results Conclusions Backup Search for direct top squark pair production in events with two tau leptons with the ATLAS detector Ewan Hill University of Victoria + TRIUMF June 15 2016 Ewan Hill 1 / 14

Upload: others

Post on 22-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Search for direct top squark pair productionin events with two tau leptons

with the ATLAS detector

Ewan Hill

University of Victoria + TRIUMF

June 15 2016

Ewan Hill

1 / 14

Page 2: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Why

SUSY

ATLAS SUSY

Signal

Method

Plots

Results

Conclusions

Backup

ATLAS is searching for “new physics” to explainsome open questions about the Standard Model

Dark matter

Hierarchy problemEwan Hill

2 / 14

Page 3: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Why

SUSY

ATLAS SUSY

Signal

Method

Plots

Results

Conclusions

Backup

Supersymmetry to the rescue

Supersymmetry fixing SM:

I G̃ = dark matter candidate

I top squark (“stop”, t̃) helps with hierarchy problemEwan Hill

3 / 14

Page 4: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Why

SUSY

ATLAS SUSY

Signal

Method

Plots

Results

Conclusions

Backup

Many SUSY searches performed by ATLAS,including for top squarks

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/

Ewan Hill

4 / 14

Page 5: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Why

SUSY

ATLAS SUSY

Signal

Method

Plots

Results

Conclusions

Backup

Search for top squark to tau slepton signal over tt̄background

Signal (GMSB)

τ̃

τ̃

p

p

b ν

τ

νb

τ

σ(t̃t̃∗) ∼ 0.5 pb, m(t̃) = 500 GeV

Dominant background

t

t

W

W

p

p

b `

ν

b

ν

τhad

σ(tt̄) ∼ 8× 102 pb

I G̃/ν = undetected → EmissT

I Final state objects:

I 2 b-jetsI Emiss

TI 0− 2 e or µI 2− 0 τhad

Channels:

I lepton–lepton = 2 e or µ

I lepton–hadron =1 τhad and (1 e or µ)

I hardon–hadron = 2 τhadEwan Hill

5 / 14

Page 6: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Analysis method

Variables

Signal regions

SR cuts

Plots

Results

Conclusions

Backup

Selection cuts isolate regions of phase space tomaximize/minimize signal to background

Just count # events in phase space regions:

I Control: scale simulation to data for dominant backgrounds

I Validation: check scaling

I Signal: maximized signal to background

Analysis blinded to reduce human bias

Data set from 2012: 8 TeV, 20fb−1Ewan Hill

6 / 14

Page 7: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Analysis method

Variables

Signal regions

SR cuts

Plots

Results

Conclusions

Backup

Several kinematic variables separate signal frombackground

Signal

τ̃

τ̃

p

p

b ν

τ

νb

τ

Dominant background

t

t

W

W

p

p

b `

ν

b

ν

τhad

I Number of b-jets

I Probes of decaying particles’ masses, e.g. mT2 (b`,bτ)

I mT2(a,b)=

√min

qaT

+qbT

=pmissT

(max[m2T(pa

T,qaT),m2

T(pbT,qb

T)])

I Sums/ratios of momenta e.g.

I HT = pjet1T + pjet2T

Ip`T+pτT∑alli pT(i)Ewan Hill

7 / 14

Page 8: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Analysis method

Variables

Signal regions

SR cuts

Plots

Results

Conclusions

Backup

Design analyses around unknown signal masses:m(t̃) and m(τ̃)

m(t̃) =? m(τ̃) =? m(G̃)� 1 GeVEwan Hill

8 / 14

Page 9: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Analysis method

Variables

Signal regions

SR cuts

Plots

Results

Conclusions

Backup

Main cuts separating each channel/SR aremT2(t)→ m(t̃) and mT2(W )→ m(τ̃)

I SRHM mT2(W ) > 120 GeV vs SRHH mT2(W ) > 50 GeV

I SRHM mT2(t) > 180 GeV vs SRHH all top squark masses

I 2 leptons mT2(W ) and jet pT & multiplicity

I SRLM mT2(t) < 60 GeV vs SRHH all top squark massesEwan Hill

9 / 14

Page 10: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

mT2 (b`, bτ)SRL

mT2 (`, τ)SRH

Results

Conclusions

Backup

t mass-probing variable

notNeededQuestionMark

0 100 200 300 400 500 600

Eve

nts

/ 20

GeV

-310

-210

-110

1

10

210

310

410

510

610-1 = 8 TeV, 20.3 fbs

ATLAS

Preselection SRLM

Data 2012SM Backgroundtop fake taustop true taus

ν l→W Other

)=(391,148) GeV1τ∼,1t~m(

)=(195,87) GeV1τ∼,1t~m(

) [GeV]hadτ(bl,bT2m

0 100 200 300 400 500 600Dat

a / M

C

00.5

11.5

2

mT2(t) = mT2 (b`,bτ)

Eur. Phys. J. C 76, 1-30, 2016

Ewan Hill

10 / 14

Page 11: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

mT2 (b`, bτ)SRL

mT2 (`, τ)SRH

Results

Conclusions

Backup

W mass-probing variable

notNeededQuestionMark

0 50 100 150 200 250 300

Eve

nts

/ 20

GeV

-210

-110

1

10

210

310

410

510

610-1 = 8 TeV, 20.3 fbs

ATLAS

Preselection SRHM

Data 2012SM Backgroundtop fake taustop true taus

ν l→W Other

)=(391,148) GeV1τ∼,1t~m(

)=(195,87) GeV1τ∼,1t~m(

) [GeV]hadτ(l,T2m

0 50 100 150 200 250 300Dat

a / M

C

00.5

11.5

2

mT2(W ) = mT2 (`, τ)

Eur. Phys. J. C 76, 1-30, 2016

Ewan Hill

11 / 14

Page 12: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

SR counts

CombinedExclusion

Conclusions

Backup

No excesses seen in any signal region

Analysis Expected bkgd Observed(nom. ± stat. & syst.)

Lepton–hadron low massSRLM 22.1± 4.7 20Lepton–hadron high massSRHM 2.1± 1.5 3Hadron–hadronSRHH 3.1± 1.2 3

2-leptons channel has many SRs : no excess.

Eur. Phys. J. C 76, 1-30, 2016Ewan Hill

12 / 14

Page 13: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

SR counts

CombinedExclusion

Conclusions

Backup

Use SR/channel that gives best expected CLs forcombination

[GeV]1

t~m

200 300 400 500 600 700

[GeV

]1τ∼

m

100

200

300

400

500

600

700-1 = 8 TeV, 20 fbs

) = 1G~

τ →1

τ∼) = 1, BR(νb1τ∼ → 1t~

production, BR(1t~1t

~

ATLAS

)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

LEP limit

All limits at 95% CL

Combination

Num

bers

indi

cate

bes

t exp

ecte

d S

R

1τ∼ + m

b < m1t~m

1 2 2 2 2 2 2 2 5 2 2

2

2 2 5 5 2 2 2 2 5 2

35 5 5 5 5 2 2 5 5 53

35 5 5 2 5 5 5 53

33 5 5 5 5 5 5 5

35 5 5 5 5 5

35 5 5 5

3 5 5 5 5

5

5 5

5

1 2 2 2 2 2 2 2 5 2 2

2

2 2 5 5 2 2 2 2 5 2

35 5 5 5 5 2 2 5 5 53

35 5 5 2 5 5 5 53

33 5 5 5 5 5 5 5

35 5 5 5 5 5

35 5 5 5

3 5 5 5 5

5

5 5

5

3=lepton–lepton 5=lepton–hadron high mass1=lepton–hadron low mass 2=hadron–hadron

Eur. Phys. J. C 76, 1-30, 2016

Ewan Hill

13 / 14

Page 14: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Summary

Backup

Summary

I Top squark could help fix an open problem in the StandardModel

I Low and high t̃ masses probed as a function of the τ̃ mass

I No excesses observed.

I Set limits on m(t̃) as a function of m(τ̃)

I Heaviest top squark mass excluded ∼ 660 GeV

I Expecting ∼ 25fb−1 this year

I Should be sensitive to m(t̃) ∼ 800 GeV

Ewan Hill

14 / 14

Page 15: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

Region cuts are all orthogonal to each other

Region N⌧had Nµ Njet Nb�jet EmissT ��(j1,2, p

missT ) mT2(⌧had, `) msum

T (⌧had, `)

SRHH 2 0 � 2 � 1 > 150 GeV � 0.5 > 50 GeV > 160 GeVCRHHTop 1 1 � 2 � 1 > 100 GeV � 0.5 - [70,120] GeV

CRHHWjets 1 1 � 2 0 > 100 GeV � 0.5 < 40 GeV [80,120] GeVVRHHTop 1 1 � 2 � 1 > 120 GeV � 0.5 < 40 GeV [120,140] GeV

VRHHWjets 1 1 � 2 0 > 120 GeV � 0.5 < 40 GeV [120,150] GeV

CRHHQCD � 2a 0 � 2 � 1 > 150 GeV 0.5b - -

aFor the multi-jet control region (CRHHQCD), no identification criteria are applied to tau leptons.bThe �� requirement only applies to the sub-leading jet j2.

Region Nb−jet HT/meffp`T+p

τhadT

meffmT2(b`, b) mT2(b`, bτhad) mT(`, p

missT ) meff

SRLM ≥ 2 < 0.5 > 0.2 < 100 GeV < 60 GeV - -CRTtLM ≥ 2 - > 0.2 < 100 GeV 110− 160 GeV > 100 GeV -CRTfLM ≥ 2 - > 0.2 < 100 GeV 110− 160 GeV < 100 GeV -CRWLM 0 < 0.5 > 0.2 - - > 40 GeV < 400 GeVVRTLM ≥ 2 > 0.5 > 0.2 < 100 GeV 60− 110 GeV - -

Region Nb−jet EmissT meff HT/meff mT2(b`, bτhad) mT2(`, τhad) mT(`, p

missT )

SRHM ≥ 1 > 150 GeV > 400 GeV < 0.5 > 180 GeV > 120 GeV -CRTtHM ≥ 1 > 150 GeV > 400 GeV < 0.5 > 180 GeV 20-80 GeV > 120 GeVCRTfHM ≥ 1 > 150 GeV > 400 GeV < 0.5 > 180 GeV 20-80 GeV < 120 GeVCRWHM 0 > 150 GeV > 400 GeV < 0.5 - 20-80 GeV 40-100 GeVVRHM ≥ 1 < 150 GeV > 400 GeV < 0.5 > 180 GeV > 80 GeV -

Ewan Hill

15 / 14

Page 16: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

mT2 Upper Limits

τ̃

τ̃

p

p

b ν

τ

νb

τ

mT2 Max Value for Max Value forSignal tt̄ background

mT2 (b`,bτ) top squark mass top mass

amT2 (b`,b) top mass

mT2 (`, τ) If chargino not virtual W mass(not true here):chargino mass

Ewan Hill

16 / 14

Page 17: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

Fake and τ background estimation done with MC

I Fit for tt̄(τ true), tt̄(τfake), and W+jets seperately in thebackground-only fit with a CR for each.

I W+jets CRs: Use b-veto to isolate.

I tt̄ CRs: Use an mT2 variable to isolate tt̄ and then m`T to distinguish

true and fake taus.

I The same-sign method (tau has same sign charge as e/µ) was alsotested

Summary of results:

I Both methods give similar results to within the uncertainties.

I MC method was chosen because of a lack of statistics in thesame-sign method.

Ewan Hill

17 / 14

Page 18: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

Exclusion plot for lepton-hadron Low Mass channel

[GeV]1

t~m

160 170 180 190 200 210 220 230 240 250

[GeV

]1τ∼

m

50

100

150

200

250

300

350

-1 = 8 TeV, 20.3 fbs

) = 1G~

τ →1

τ∼) = 1, BR(νb1τ∼ → 1t~

production, BR(1t~1t

~

ATLAS

)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

LEP limit

All limits at 95% CL

Lepton-hadron SRLM

1τ∼ + mb < m

1t~m

Eur. Phys. J. C 76, 1-30, 2016Ewan Hill

18 / 14

Page 19: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

Exclusion plot for lepton-hadron High Mass channel

[GeV]1

t~m

200 300 400 500 600 700

[GeV

]1τ∼

m

100

200

300

400

500

600

700-1 = 8 TeV, 20.3 fbs

) = 1G~

τ →1

τ∼) = 1, BR(νb1τ∼ → 1t~

production, BR(1t~1t

~

ATLAS

)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

LEP limit

All limits at 95% CL

Lepton-hadron SRHM

1τ∼ + m

b < m1t~m

Eur. Phys. J. C 76, 1-30, 2016Ewan Hill

19 / 14

Page 20: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

Exclusion plot for hadron-hadron channel

[GeV]1

t~m

200 300 400 500 600 700

[GeV

]1τ∼

m

100

200

300

400

500

600

700-1 = 8 TeV, 20.1 fbs

) = 1G~

τ →1

τ∼) = 1, BR(νb1τ∼ → 1t~

production, BR(1t~1t

~

ATLAS

)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

LEP limit

All limits at 95% CL

Hadron-hadron

1τ∼ + m

b < m1t~m

Eur. Phys. J. C 76, 1-30, 2016Ewan Hill

20 / 14

Page 21: Search for direct top squark pair production in events ... · All limits at 95% CL LEP limit Combination Numbers indicate best expected SR 1 t ~ + m b < m 1 t ~ m 1 25 2 2 25 3 5

Intro

Method

Plots

Results

Conclusions

Backup

Regional Cuts

mT2 UpperLimits

Real/fake τEstimation

SRLM Exclusion

SRHM Exclusion

SRHH Exclusion

SRLL Exclusion

Exclusion plot for lepton-lepton channel

[GeV]1

t~m

200 300 400 500 600 700

[GeV

]1τ∼

m

100

200

300

400

500

600

700-1 = 8 TeV, 20.3 fbs

) = 1G~

τ →1

τ∼) = 1, BR(νb1τ∼ → 1t~

production, BR(1t~1t

~

ATLAS

)theory

SUSYσ1 ±Observed limit (

)expσ1 ±Expected limit (

LEP limit

All limits at 95% CL

Lepton-lepton

1τ∼ + m

b < m1t~m

Eur. Phys. J. C 76, 1-30, 2016Ewan Hill

21 / 14