sec 3.2 matrices and gaussian elemination coefficient matrix 3 x 3 coefficient matrix 3 x 3...

14
(eq3) 23 9 7 2 (eq2 20 7 8 3 (eq1 4 2 z y x z y x z y x Example Sec 3.2 Matrices and Gaussian Elemination 9 7 2 7 8 3 1 2 1 23 9 7 2 20 7 8 3 4 1 2 1 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4

Upload: chad-nelson

Post on 30-Dec-2015

228 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

(eq3) 23972

(eq2) 20783

(eq1) 4 2

zyx

zyx

zyxExample

Sec 3.2 Matrices and Gaussian Elemination

972

783

121

23972

20783

4121

Coefficient Matrix3 x 3

Augmented Coefficient Matrix3 x 4

Page 2: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

n) (eq aa aa

2) (eq aa aa

1) (eq aa aa

1nn3n32n21n1

12n323222121

11n313212111

bxxxx

bxxxx

bxxxx

n

n

n

System

Linear

Sec 3.2 Matrices and Gaussian Elemination

nnnn

n

n

aaa

aaa

aaa

21

22221

11211

nnnnn

n

n

baaa

baaa

baaa

21

222221

111211

Coefficient Matrixn x n

Augmented Coefficient Matrixn x (n+1)

Page 3: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

Elementary Row OperationsMultiply one equation by a nonzero constant1

Equ(i) * C

Interchange two equations2

Equ(j) Equ(i)

Add a constant multiple of one equation to another equation

3location Equ(j) Equ(j) Equ(i) * C

Multiply one row by a nonzero constant1 iR * C

Interchange two rows

2ji R R

Add a constant multiple of one row to another row

3ji R R * C

(eq3) 11892

(eq2) 5 23

(eq1) 221083

zyx

zyx

zyxExample

Page 4: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

1)Extra HW2)Problem Session3)Quiz 2 Stat4)Chapter 1 Summ

Page 5: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

How to solve any linear system

Use sequence of elementary row operations Triangular

system

*

*

*

z

y

xUse back substitu

tion

****

****

****

*100

**10

***1

Page 6: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

How to solve any linear system

****

****

****

****

****

***1

***0

***0

***1

***0

**10

***1

**00

**10

***1

*100

**10

***1

Page 7: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

(eq3) 23972

(eq2) 20783

(eq1) 4 2

zyx

zyx

zyxExample

(-3) R1 + R2

(-2) R1 + R3

(-3) R2 + R3

23972

20783

4121Augmented Matrix

23972

20783

4121

15730

8420

4121(1/2) R2

3100

4210

4121

15730

4210

4121

Definition: (Row-Equivalent Matrices)

A and B are row equivalent if B can be obtained from A by a finite sequence of elementary row operations

A

BExample A and B are row equivalent

A is the augmented matrix of sys(1)B is the augmented matrix of sys(2)

The

orem

1:

A and B are row equivalent&

sys(1) and sys(2) have same solution

Page 8: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

Echelon Matrix

000000

430120

000000

020000

110101

zero row

Example How many zero rows

000000

000000

100000

021020

110101

010000

000001

100000

021020

110101

Page 9: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

Echelon Matrix

non-zero row

Example

1) How many non-zero rows

2) Find all leading entries

000000

000000

100000

021020

110101

010000

000001

100000

021020

110101

000000

430120

000000

020000

110101

leading entry The first (from left) nonzero element in each nonzero row

0000

1120

1101

Page 10: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

Echelon Matrix

Def: A matrix A in row-echelon form if

1) All zero rows are at the bottom of the matrix

2) In consecutive nonzero rows the leading in the lower row appears to the right of the leading in the higher row

1 5 0 2

0 1 0 1

0 0 0 0

A

1

1 5 0 2

0 2 0 1

0 0 0 0

A

2

1 5 0 2

0 0 1 1

0 1 0 1

A

3

1 5 0 2

0 0 0 0

0 1 0 1

A

1100000

0120000

1010000

2020010

Page 11: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

1 5 0 2

0 1 0 1

0 0 0 0

A

1 0 5 2

0 1 0 1

0 0 0 0

B

000000

001000

100000

020010

010001

Echelon Matrix

2326542

2121363

1513163

Transform each augmented matrix to echelon form. Then use back substitution to solve the system

Page 12: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

Def: A matrix A in reduced-row-echelon form if

1) A is row-echelon form

2) All leading entries = 1

3) A column containing a leading entry 1 has 0’s everywhere else

1 5 0 2

0 1 0 1

0 0 0 0

A

1 0 5 2

0 1 0 1

0 0 0 0

B

000000

001000

100000

020010

010001

Reduced Echelon Matrix

Page 13: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

1) A row-echelon form

2) Make All leading entries = 1 (by division)

3) Use each leading 1 to clear out any nonzero elements in its column

1 5 0 2

0 1 0 1

0 0 0 0

A

1 0 5 2

0 1 0 1

0 0 0 0

B

000000

001000

100000

020010

010001

Echelon Matrix Reduced Echelon Matrix

4200000

9603300

4311211

Page 14: Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix

Solving Linear System

Gaussian Elimination Method:

1 * * *

* * * *

* * * *

Gauss-Jordan Elimination Method:

A row-echelon form back subsutition

A reduced-row-echelon form

Solve:

1 2 3

1 2 3

1 2 3

2 6 7

2 1

5 7 4 9

x x x

x x x

x x x

:Example

A1 * * *

0 * * *

0 * * *

1 * * *

0 1 * *

0 * * *

1 * * *

0 1 * *

0 0 * *

1 * * *

0 1 * *

0 0 1 *

Row-echelon form

Reduced Row-echelon form

1 * * *

0 1 * *

0 0 1 *

1 * 0 *

0 1 0 *

0 0 1 *

1 0 0 *

0 1 0 *

0 0 1 *