section 3 systems of eqs

Upload: kayla-dollente

Post on 01-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Section 3 Systems of Eqs

    1/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-1 of 3-27

    SYSTEMS OF EQUATIONS (C&C 4th T ! "Chs# $%12'

    "A )* + c*

    S,ste-s o. E/u0tos (C&C 4th3 T !#13 # 215'Determine x

    1,x

    2,x

    3,…,xn such that

    f 1(x1,x2,x3,…,xn) !f 2(x

    1,x

    2,x

    3,…,xn) !

    f n(x1,x2,x3,…,xn) !

    Le0r A67e8r0c E/u0tos

    a11x1 " a12x2 " a13x3 " 9 " a1nxn  #1 

    a21x1 " a22x2 " a23x3 " 9 " a2nxn  #2 

    an1x1 " an2x2 " an3x3 " 9 " anxn  #n $here a%% ai&'s an #i's are constants

    I -0tr) .or-: (C& C 4th3 T!#2#13 #22; 0< T!#2#!3 # 22='

    11 12 13 1n 1 1

    21 22 23 2n 2 2

    31 32 33 3n 3 3

    n1 n2 n3 nn n n

    a a a a x #

    a a a a x #

      a a a a x #

    a a a a x #

           

    M M M

    ) ) 1 ) 1

    or simp%y "A)* + 8*

    A6c0tos o. So6utos o. Le0r S,ste-s o. E/u0tos* Steay-state reactor in +hemica% Engineering (121)* Static structura% ana%ysis (122)* otentia%s an currents in e%ectrica% net$ors (123)* Spring - mass moe%s (12.)* So%ution of partia% ifferentia% Equations (2/-32)

    0eat an f%ui f%o$o%%utants in enironmenteather Stress ana%ysis materia% science4

    * 5nerting matrices* 6u%tiariate 7e$ton-8aphson for

    non%inear systems of equations (/9)* Dee%oping approximations:

    east squares (1;)Sp%ine functions (1

  • 8/9/2019 Section 3 Systems of Eqs

    2/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-2 of 3-27

    C0te7ores o. So6uto Methooron- ? Decomposition (Doo%itt%e an +ho%esy)

    2  Iterative  - >aco#i 6etho- =auss - Seie% 6etho

    - Conjugate Gradient Method 

    Out6e o. our stue G0uss0 E6-0to: (C& C 4th3 $#23 # 2!?'

    So%e @4Cx Cc for Cx, $ith @4 n x n an Cx, Cc ∈ 8 n

     Basic Approach:1or$ar E%imination: Fae mu%tip%es of ro$s a$ay from su#sequent

    ro$s to Gero out co%umns such that @4 is conerte to ?4

    2Bac Su#stitution: Beginning $ith ?4, #ac-su#stitute to so%e for the xi's

     Details:

    1 Forward Elimination (8o$ 6anipu%ation)a orm augmente matrix @Hc4

    11 12 1n 1 1 11 12 1n 1

    21 22 2n 2 2 21 22 2n 2

    n1 n2 nn n n n1 n2 nn n

    a a a x # a a a #a a a x # a a a #

    a a a x # a a a #

      = ==>      

    L LL L

    M M O M M M M M O M ML L

     # By e%ementary ro$ manipu%ations, reuce @ H #4 to ? H #'4

    $here ? is an upper triangu%ar matrix:DA i 1, n-1

    DA i"1, n8o$() 8o$() - (aiIaii) J 8o$(i)

    E7DDAE7DDA

  • 8/9/2019 Section 3 Systems of Eqs

    3/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-3 of 3-27

    N0>e G0uss0 E6-0to (cot@e G0uss0 E6-0to: Example

    +onsier the system of equations

    1

    2

    3

    L! 1 2 x 1

    1 .! . x 2

    2 9 3! x 3

    Fo 2 significant figures, the exact so%ution is:

    { }true!!19

    x !!.1

    !!/1

    e $i%% use 2 ecima% igit arithmetic $ith rouning

    Start $ith the augmente matrix:

     

    L! 1 2 1

    1 .! . 2

    2 9 3! 3

    6u%tip%y the first ro$ #y K1IL! an a to seconro$

    6u%tip%y the first ro$ #y K2IL! an a to thirro$:

    L! 1 2 1! .! . 2

    ! 9 3! 3

    6u%tip%y the secon ro$ #y K9I.! an a to thirro$:

     

    L! 1 2 1

    ! .! . 2

    ! ! 2/ 2);

  • 8/9/2019 Section 3 Systems of Eqs

    4/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-4 of 3-27

    N0>e G0uss0 E6-0to: Example  (cot@

  • 8/9/2019 Section 3 Systems of Eqs

    5/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-5 of 3-27

    N0>e G0uss0 E6-0to: Example (cont'd)

    E..ect o.

  • 8/9/2019 Section 3 Systems of Eqs

    6/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-6 of 3-27

    • 8o$ pioting oes not affect the orer of the aria#%es

    • 5nc%ue in any goo =aussian E%imination routine

    IOTING (cot@

  • 8/9/2019 Section 3 Systems of Eqs

    7/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-7 of 3-27

    * on't actua%%y sca%e, #ut use imaginary sca%ing factors to etermine$hat pioting is necessary

    * sca%e on%y #y po$ers of 2: no rounoff or iision require

    o to .oo6 sc067:

    @ poor choice of units can unermine the a%ue of sca%ing Begin $ith our

    origina% examp%e

    L! 1 2 1

    1 .! . 2

    2 9 3! 3

           

    5f the units of x1 $ere expresse in g instea of mg the matrix might rea:

    L!!!! 1 2 1

    1!!! .! . 2

    2!!! 9 3! 3

           

    Sca%ing yie%s:

    1 !!!!!2 !!!!!1 !!!!!1

    1 !!. !!!. !!!2

    1 !!!3 !!1L !!!1L

           

    hich equation is use to etermine x1TTT

    h, 8other to sc06eB

    OERATION COUNTING (C&C 4th3 $#2#13 #242'

     7um#er of mu%tip%ies an iies often etermines the +? time

    Ane f%oating point mu%tip%yIiie an associate asIsu#tracts is ca%%e

    a A: FLoating point Oeration

    So-e Use.u6 I

  • 8/9/2019 Section 3 Systems of Eqs

    8/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-8 of 3-27

    3m2 2 2 2 2

    i1

    m(m"1)(2m"1) m9) i 1 " 2 " " m " (m )

    9 3∑ K  "

    A(mn) means Uterms of orer mn an %o$erU

    S-6e E)0-6es o. Oer0to Cout7:

    1 DA i 1 to nV(i) W(i)Ii K 1

    E7DDA

    5n each iteration W(i)Ii K 1 represents 1 A #ecause it requires oneiision X one su#traction

    Fhe DA %oop extens oer i from 1 to n iterations:

     

    n

    i 1

    1 n

    =

    =∑   AS

    2 DA i 1 to nV(i) W(i) W(i) " 1DA & i to n

    Y(&) V(&) I W(i) 4 V(&) " W(i)E7DDA

    E7DDA

    ith neste %oops, a%$ays start from the innermost %oop

    V(&)IW(i)4 J V(&) " W(i) represents 2 AS

    n

     & i

    2

    =

    ∑  n

     & i

    2 1

    =

    ∑   2(n K i " 1) ASor the outer i-%oop:

    W(i)•W(i) " 1 represents 1 A

     

    n

    i 1

    1 2(n i 1)4

    =

    + − +∑   (3 " 2n)n n

    i 1 i 1

    1 2 i

    = =

    −∑ ∑

    (3 " 2n)n K2

    )1n(n2   +

    3n " 2n

    2

     K n

    2

     K n

    n2 " 2n

    2  O('

     

  • 8/9/2019 Section 3 Systems of Eqs

    9/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-9 of 3-27

    Oer0to Cout7 .or G0uss0 E6-0to

     #or$ard Elimination:DA 1 to nK1

    DA i "1 to nr @(i,)I@(,)DA & "1 to n

      @(i,&)@(i,&) K r J@(,&)E7DDA+(i) +(i) K r J+()

    E7DDA

    E7DDA

     Bac% Su&stitution:W(n) +(n)I@(n,n)DA i nK1 to 1 #y K1

    S?6 !DA & i"1 to n

    S?6 S?6 " @(i,&)JW(&)

    E7DDAW(i) +(i) K S?64I@(i,i)E7DDA

    Forward Elimination

    5nner %oop

    n

     & 1

    1

    = +∑   n K ("1) " 1 H  

    Secon %oop

    n

    i 1

    2 (n )4

    = +

    + −∑

    (2 " n) K 4 (n K )

    (n2 " 2n) K 2(n " 1)  

    2

    Auter %oop +

    n 12 2

    1

    (n 2n) 2(n 1) 4−

    =

    + − + +∑

    (n2"2n)

    n 1

    1

    1−

    =∑  K 2(n"1)

    n 1

    1

     −

    =∑  

    n 12

    1

     −

    =∑

    (n2"2n)(n-1) K 2(n"1)(n 1)(n)

    2

    − 

    9

    )1n2)(n)(1n(   −−

    +!

    ! (

    2'

  • 8/9/2019 Section 3 Systems of Eqs

    10/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-10 of 3-27

     Back Substitution

    5nner oop

    n

     & i 1

    1

    = +∑   n K (i "1) " 1 H

    Auter oop   [ ]

    n 1

    i 11 (n i)

    = + −∑   (1"n)n 1

    i 11

    =∑  Kn 1

    i 1i

    =∑   (1"n) (n–1) – 

    (n 1)n

    2

    − 

    2

    2 ('

    *otal #lops or$ar E%imination " Bac Su#stitution

    n3I3 " " (n2) " n2I2 " " (n)

    ≈  n3I3 " " (n2)

    Fo conert (@,#) to (?,#') requires n3I3, p%us terms of orer n2 ansma%%er, f%ops

    *o back solve re%uires 1 " 2 " 3 " . " " n n (n"1) I 2 f%opsP

    Grand *otal the entire effort requires !J! O(2' .6os 06to7ether

    G0uss%Kor

  • 8/9/2019 Section 3 Systems of Eqs

    11/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-11 of 3-27

    G0uss%Kor

  • 8/9/2019 Section 3 Systems of Eqs

    12/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-12 of 3-27

    1 ! !!3< !!2 !!!L !

    ! 1 !1 !!!!L !!2L !

    ! ! 2< !!3; !1L 1

    −     −     − −  

    1 ! ! !!2 !!!!2/ !!!1.! 1 ! !!!!3; !!29 !!!39

    ! ! 1 !!!13 !!!L. !!39

    − −     − −     − −  

    MATRI INERSE "A%1

    CHECK:[ A ] [ A ]-1 = [ I ]

    L! 1 2 !!2! -!!!2/ -!!!1. !//; !13 !!!2

    2 .! . -!!!!3; !!29 -!!!39 !!!! 1!19 !!!1

    2 9 3! -!!!13 -!!!L. !!39 !!!1 !!12 1!L9

    − −

    = −

    − −

    [ A ]-1 { c } = { x } Gaussian Elimination

    !!2! -!!!2/ -!!!1. 1 !!1L

    -!!!!3; !!29 -!!!39 2 !!33

    -!!!13 -!!!L. !!39 3 !!//

    =

     !!19

    x !!.1

    !!/1true   =

    !!19

    x !!.!

    !!/3

    =

    LU Deco-osto (C&C 4th3 1;#13 # 2=4'

    @ practica%, irect metho for equation so%ing, especia%%y $hen seera%

    rhs's are neee anIor $hen a%% rhs's are not no$n at the start of the pro#%em

    E)0-6es o. 06c0tos:

    * time stepping: @ u t"1  B u t " ε t* seera% %oa cases: @xi  #i* inersion: @-1

    * iteratie improement

    Do@t co-ute A%1

    8equires n3 f%ops to get @-1

     7umerica%%y unsta#%e ca%cu%ation

    LU co-ut0tosStores the ca%cu%ations neee to repeat'=aussian' e%imination on a ne$ rhs c-ector 

  • 8/9/2019 Section 3 Systems of Eqs

    13/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-13 of 3-27

    LU Decomposition (See C&C Figure 10.1)

    @ 4 C x C #  

    ? 4 4 a) ecomposition @4 Z 4?4

    4 C C # #) for$ar su#stitution  H # 4 Z C

    ? 4 C x C c) #ac$ar su#stitution

      C x

     Doolittle /0 Decomposition (See C&C 4th3 1;#1#2%!3 # 2=='? is &ust the upper triangu%ar matrix from =aussian e%imination

    @ H #4  ? H #′ 4

    4 has one's on the iagona% (ie, it is a Uunit %o$er triangu%ar matrixUan therefore can #e enote 14), an e%ements #e%o$ iagona% are &ust the factors use to sca%e ro$s $hen oing =aussian e%imination,

    eg, 1 1 11Ii ia a=l  for i 2, 3, …, n

    [ ]

    11 12 13 1n

    21 22 23 2n

    31 32 33 3n

    n1 n2 n3 nn

    a a a a

    a a a a

    @ a a a a

    a a a a

    =

    L

    L

    L

    M M M O M

    L

    21

    31 32

    n1 n2 n3

    1 ! ! !

    1 ! !

    1 !

    1

    L

    l L

    l l L

    M M M O M

    l l l L

    11 12 13 1n

    22 23 2n

    33 3n

    nn

    u u u u

    ! u u u

    ! ! u u

    ! ! ! u

    L

    L

    L

    M M M O M

    L

    the 14 C C# 

    Z ?4 Cx C in $hich C is synonymous $ith C#'

     Basic 1pproac& (.2. Fi$ure 343)+onsier @4Cx C#

    a) ?se =auss-type UecompositionU of @4 into 4?4 n3I3 f%ops

      @4Cx C# #ecomes 4?4Cx C#

     #) irst so%e 4C C# for C #y for$ar su#stitution n2I2 f%ops

    c) Fhen so%e ?4Cx C for Cx #y #ac su#stitution n2I2 f%ops

  • 8/9/2019 Section 3 Systems of Eqs

    14/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-14 of 3-27

    LU Deco-osto 0r0tosDoo%itt%e 14?4 =enera% @4 +X+ 1!12

    +rout 4?14 =enera% @4 +X+ 1!1.

    +ho%esy 44F

      D Symmetic +X+ 1112

    +ho%esy $ors on%y for ositie Definite symmetric matrices

    Doo6tt6e >ersus Crout:

    • Doo%itt%e &ust stores =aussian e%imination factors $here +rout uses a

    ifferent series of ca%cu%ations, see +X+ Section 1!1.

    • Both ecompose @4 into 4 an ?4 in n3I3 AS

    • Different %ocation of iagona% of 1's (see a#oe)

    • +rout uses each e%ement of @4 on%y once so the same array can #e

    use for @4 an [?14 saing computer memoryN (Fhe 1\s of ?14 arenot store)

    M0tr) I>erso (C&C 4th3 1;#23 # 25!'

    Frst Ru6e:  Dot

  • 8/9/2019 Section 3 Systems of Eqs

    15/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-15 of 3-27

    FLOS .or Le0r A67e8r0c E/u0tos3 "A)* + 8*:

    =auss e%imination (1 rhs)3

    2n  " (n )3

    "

    =auss->oran (1 rhs) 3 2n  " (n )2

    " L!M more than =auss E%imin4

    ? ecomposition3

    2n  " (n )3

    "

    Each ne$ ? right-han sie n2

    +ho%esy ecomposition (symmetric @)3

    2n  " (n )9

    " 0a%f the As of =auss E%imin4

    5nersion (naie =auss->oran)

    3

    2.n  " (n )3

    "

    5nersion (optima% =auss->oran) n3 " "(n2)

    So%ution #y +ramer's 8u%e nN

  • 8/9/2019 Section 3 Systems of Eqs

    16/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-16 of 3-27

    Errors So6utos to S,ste-s o. Le0r E/u0tos (C&C 4th, 10.3, p. 277)

    O8Pect>e: So%e @4Cx C#

    ro86e-: 8oun-off errors may accumu%ate an een #e exaggerate #y the so%ution proceure Errorsare often exaggerate if the system is i%%-conitione

    oss86e re-e

  • 8/9/2019 Section 3 Systems of Eqs

    17/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-17 of 3-27

    5as to detect ill+conditionin$1 +a%cu%ate CxP mae a sma%% change in @4 or C# an etermine effect on the ne$ so%ution Cx2 @fter for$ar e%imination examine iagona% of upper triangu%ar matrix if aii ]] a &&, ie there is a

    re%atie%y sma%% a%ue on the iagona%, then this may inicate i%%-conitioning3 +ompare CxS57=E $ith CxDA?BE.

     

    Estimate Uconition num#erU for @

    Su#stituting the ca%cu%ate Cx into @4Cx an checing this against C# $i%% unfortunate%y nota%$ays $orN (See +X+ Box 1!1)

    Nor-s 0< the Co

  • 8/9/2019 Section 3 Systems of Eqs

    18/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-18 of 3-27

    M0tr) Nor-s (C&C 4th3 o) 1;#23 # 25$'

    Sca%er measure of the magnitue of a matrix

    6atrix norms corresponing to the ector norms a#oe are efine #y the genera% re%ationship:

    [ ] { } p 1

    x p   p

    @ max @ x

    =

    =

    1 argest co%umn sum:

    n

    1 i& &   i 1

    @ max a

    ==   ∑

    2 argest ro$ sum:

    n

    i&i   & 1

    x max a∞

    =

    =   ∑

    3 Spectra% norm:   1I 22 max@ ( )= µ

    $here max is the %argest eigena%ue of @4F@4

    5f @4 is symmetric, (max)1I2  λ max, the %argest eigena%ue of @4

    Matrix  Norms

    or matrix norms to #e usefu% $e require that

    ! HH @x HH ≤  HH @ HH HHx HH

    =enera% properties of any matrix norm:

    1 HH @ HH ≥ ! an HH @ HH ! iff @4 !2 HH @ HH HH @ HH $here is any positie sca%ar 

    3 HH @ " B HH ≤  HH @ HH " HH B HH UFriang%e 5nequa%ityU

    . HH @ B HH ≤  HH @ HH HH B HH

    h, 0re or-s -ort0tB

    • 7orms permit us to express the accuracy of the so%ution Cx in terms of HH  x HH

    • 7orms a%%o$ us to #oun the magnitue of the prouct @4Cx an the associate errors

  • 8/9/2019 Section 3 Systems of Eqs

    19/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-19 of 3-27

    D7resso: A re. Itro06ue ro86e-

    or a square matrix @4, consier the ector Cx an sca%ar λ for $hich

    @4Cx λ Cx

    x is ca%%e an eigenvector   an λ  an eigenvalue  of @ Fhe pro#%em of fining eigena%ues aneigenectors of a matrix @ is important in scientific an engineering app%ications, eg, i#ration pro#%ems,sta#i%ity pro#%ems See +hapra X +ana%e +hapter 2; for #acgroun an examp%es

    Fhe a#oe equation can #e re$ritten

    ( @4 K λ 54 ) Cx !

    inicating that the system ( @4 K λ 54 ) is singu%ar Fhe characteristic equation

    et (@4 –  λ 54) !,

    yie%s n rea% or comp%ex roots $hich are the eigena%ues λ i, an n rea% or comp%ex eigenectors Cxi 5f

    @4 is rea% an symmetric, the eigena%ues an eigenectors are a%% rea% 5n practice, one oes not usua%%yuse the eterminant to so%e the a%ge#raic eigena%ue pro#%em, an instea emp%oys other a%gorithmsimp%emente in mathematica% su#routine %i#raries

    Forward and Backward Error 1nalsis

    or$ar an #ac$ar error ana%ysis can estimate the effect of truncation an rounoff errors on the precision of a resu%t Fhe t$o approaches are a%ternatie ie$s:

    1 or$ar (a priori) error ana%ysis tries to trace the accumu%ation of error through each process of the

    a%gorithm, comparing the ca%cu%ate an exact a%ues at eery stage2 Bac$ar (a posteriori) error ana%ysis ie$s the fina% so%ution as the exact so%ution to a pertur#e

     pro#%em Ane can consier ho$ ifferent the pertur#e pro#%em is from the origina% pro#%em

    0ere $e use the co

  • 8/9/2019 Section 3 Systems of Eqs

    20/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-20 of 3-27

    Error A06,ss .or "A)* + 8* .or errors 8*

    Suppose the coefficients C# are not precise%y represente

    hat might #e the effect on ca%cu%ate Cx" δxT

    Le--0: @4Cx C# yie%s HH @ HH HH x HH ≥ HH # HH

    or # @1x@ x #

    ≥ ⇒ ≤

     7o$ an error in C# yie%s a corresponing error in Cx:

    @ 4Cx " δx C# " δ #

    @4Cx " @4Cδx C# " Cδ #

    Su#tracting @4Cx C# yie%s:

    @4Cδx Cδ # KKZ Cδx @4-1 Cδ #

    Faing norms an using the %emma:

    1x # #@ @x # #

    −δ δ δ≤ × × = κ  

    Define the co

  • 8/9/2019 Section 3 Systems of Eqs

    21/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-21 of 3-27

    Est-0te o. Loss o. S7.c0ce:

    +onsier the possi#%e impact of errors δ@4 on the precision of Cx

    5f p@ ^ 1!

    @

    −δ, then 

    x @_ 

    x x @

    δ δ≤

    + δimp%ies

    that ifx

    ^ 1!x x

    sδ+ δ

    −  , then 1!_ 1! s p− −≤  

    or, taing the %og of #oth sies, one o#tains:  s ≥  6o71;( '

    * %og1!(κ ) is the %oss in ecima% precision, ie, $e start $ith p significant figures an en-up $ith ssignificant figures (Fhis iea is expresse in $ors at #ottom of p2

    * Ane oes not necessari%y nee to fin @4-1 to estimate κ   con@4 +an use an estimate #aseupon iteration of inerse matrix using ? ecomposition

    * Ane oes not necessari%y nee to fin @4

    -1

     to estimate κ   con@4 orexamp%e, if @4 is symmetric positie efinite, κ   ` maxI` min an one can #oun ` max #y any matrix norm an ca%cu%ate ` min using the ?ecomposition of @4 an a metho ca%%e inerse ector iterationb

    * rograms such as 6@F@B hae #ui%t-in functions to ca%cu%ate κ   con@4or the reciproca% conition num#er 1Iκ  (conb an rconb)

    Iter0t>e So6uto Metho

  • 8/9/2019 Section 3 Systems of Eqs

    22/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-22 of 3-27

    Iter0t>e So6uto Metho

  • 8/9/2019 Section 3 Systems of Eqs

    23/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-23 of 3-27

    Fhis iteratie metho is ca%%e the ,acobi -et&od ina% form:

    Cx &"1  D4-1( Cc K ( o4"?o4 )Cx & )

    or, $ritten out more fu%%y:

    ( ) & 1 & &   &1 12 13 2n n 111 2 3x # a x a x a x a+   = − + + +

    L

    ( ) & 1 & &   &2 21 23 2n n 222 1 3x # a x a x a x a+   = − + + + L

    ( ) & 1 & &   &3 31 32 2n n 333 1 2x # a x a x a x a+   = − + + + L

    :

    ( ) & & & & 1n n n1 n2 n,n 1 nn1 2 n 1x # a x a x a x a+ −   − = − + + + L

     7ote that, a%though the ne$ estimate of x1 $as no$n, $e i not use it to ca%cu%ate the ne$ x2

    Iter0t>e So6uto Metho

  • 8/9/2019 Section 3 Systems of Eqs

    24/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-24 of 3-27

    Co>er7ece o. Iter0t>e So6uto Metho

  • 8/9/2019 Section 3 Systems of Eqs

    25/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-25 of 3-27

    I-ro>7 R0te o. Co>er7ece o. Iter0t>e So6uto Sche-es

    (C&C 4th3 11#2#23 # 2$4:

     +elaxation Schemes:ne$ tria% o%i i ix `x " (1- `) x   $here !! ] λ ≤ 2!

    Uerre60)0to ( 1! ] λ ≤ 2! )6ore $eight is p%ace on the ne$ a%ue@ssume the ne$ a%ue is heaing in the right irection, an hence pushes the ne$ a%ue c%oser tothe true so%ution

    Fhe choice of λ is high%y pro#%em epenent an is empirica%, so re%axation is usua%%y on%y use foroften repeate ca%cu%ations of a particu%ar c%ass

    h, Iter0t>e So6utosB

    Vou often nee to so%e @ x # $here n 1!!!'s

    * Description of a #ui%ing or airframe,

    * inite-Difference approximation to DE

    6ost of @'s e%ements $i%% #e GeroP for finite-ifference approximations to ap%ace equation hae fie

    ai& ≠ ! in each ro$ of @

     Direct met&od (Gaussian elimination)

    * 8equires n3I3 f%ops (n L!!!P n3I3 . x 1!1! f%ops)

    * i%%s in many of n2-Ln Gero e%ements of @

     Iterative met&ods (,acobi or Gauss+Seidel)* 7eer store @

    (say n L!!!P on\t nee to store .n2  1!! 6ega#yte)

    * An%y nee to compute (@-B)xP an to so%e Bx t"1  #

    * Effort:

    Suppose B is iagona%, so%ing B # n f%ops

    +omputing (@–B) x .n f%ops

    or m iterations Lmn f%ops

    or n m L!!!, Lmn 12Lx1!

  • 8/9/2019 Section 3 Systems of Eqs

    26/27

    ENGRD 241 Lecture Notes Section 3: Systems of Equations page 3-26 of 3-27

    *'"l"bl') a*+ th' $r!con"ition!" conjuat! ra"i!nt m!t#o"s a%' ''*$%' %ap+l $*'%"'*t.

  • 8/9/2019 Section 3 Systems of Eqs

    27/27