section de génie mécanique - stisrv13.epfl.ch · section de génie mécanique...

1
SECTION DE Génie mécanique The effect of wing phasing on the aerodynamic forces on the wings of a dragonflytype ornithopter Author Alice Concordel Acknowledgements Prof. Akira Azuma Ryohei Kazama Shin’nosuke Hirakawa Objec>ve & Method Experimental method Force sensing Conclusions Supervisors Prof. Jamie Paik Prof. Isao Shimoyama Dr. Hidetoshi Takahashi 2 MEMS piezoresisFve canFlever differenFal pressure sensors [4] aLached to leMhand side wings measure the pressure difference above and below the wing. The sensor chips are aLached and connected via wire bonding to flexible electrodes, which are aLached to the wing on a Ø 0.5 mm hole using beeswax. The sensor chip is placed at ½ wing length and ¼ wing chord. [4] H. Takahashi, K. Matsumoto, and I. Shimoyama, "Differen>al pressure distribu>on measurement for the development of insectsized wings," Measurement Science and Technology, vol. 24, no. 5, p. 055304, 2013. Types of flights Tethered flights Correspond to hovering flight Free flights (manual launch) Body angle between 40° and 60° Horizontal velocity 1.34 SD 0.16 m/s 12 tethered & 18 free flights, sampling the space of phase lag angles. Collected data DifferenFal pressure Movement analysis Body posiFon and angle Wing angle and feathering Objec>ve Evaluate the effect of wing phasing on the flight mode Method Create an ornithopter which isolates the wing phasing from the other degrees of freedom of the wing moFon. Measure the forces on the wings Track the wing and body movement IdenFfy effects Biologistsobserva>on Dragonflies most oMen flap at phase 270° Finding 270° is most efficient Biologists’ observa>on Hindwings generate most of the thrust because they are larger Forewings are used for steering Finding With iden>cal wings, higher performance on hindwing at 270° Constant performance on forewing The forewing performance varies liLle with phase angle 90° gives lower performance on hindwings inefficient interacFon, especially for tethered flight 180° used for hovering equal load on all wings 270° used for high speed flight larger performance on hindwings Ornithopter design 60 120 40 10 90 1 mm B A 100 μm B A slidercrank design transforms the rotaFonal movement of a small DC motor into a flapping movement. The crankshaM is adjustable for phase angle. Parts Set of 3 gears (speed reducFon ~0.04) 3D printed frames, cranks and wing pivots Carbon rods for the structure Japanese paper for the wings Key Results The differenFal pressure range is used as an indicator of wing performance. Special thanks ChrisFan Kanesan Wenjing Chen Dr. Minh Dung Nguyen 54.4 A Actuator

Upload: vanlien

Post on 16-Sep-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

SECTION DE

Génie mécanique

The  effect  of  wing  phasing  on  the  aerodynamic  forces    on  the  wings  of  a  dragonfly-­‐type  ornithopter  

Author  

Alice  Concordel  

Acknowledgements  

Prof.  Akira  Azuma  

Ryohei  Kazama  

Shin’nosuke  Hirakawa  

Objec>ve  &  Method  

Experimental  method  

Force  sensing  

Conclusions  

Supervisors  

Prof.  Jamie  Paik  

Prof.  Isao  Shimoyama  

Dr.  Hidetoshi  Takahashi  

2  MEMS  piezoresisFve  canFlever  differenFal  pressure  sensors  [4]  aLached  to  leM-­‐hand  side  wings  measure  the  pressure  difference  above  and  below  the  wing.  The  sensor  chips  are  aLached  and  connected    via  wire  bonding  to  flexible  electrodes,  which    are  aLached  to  the  wing  on  a  Ø  0.5  mm  hole    using  beeswax.  The  sensor  chip  is  placed  at    ½  wing  length  and  ¼  wing  chord.  

 

[4]  H.  Takahashi,  K.  Matsumoto,  and  I.  Shimoyama,  "Differen>al  pressure  distribu>on  measurement  for  the  development  of  insect-­‐sized  wings,"  Measurement  Science  and  Technology,  vol.  24,  no.  5,  p.  055304,  2013.  

Types  of  flights  -­‐  Tethered  flights        à  Correspond  to  hovering  flight  -­‐  Free  flights  (manual  launch)        à  Body  angle  between    

 40°  and  60°                  à  Horizontal  velocity    

 1.34  SD  0.16  m/s    

12  tethered  &  18  free  flights,  sampling  the  space  of  phase                              lag  angles.  

Collected  data  -­‐  DifferenFal  pressure  -­‐  Movement  analysis        à  Body  posiFon  and  angle        à  Wing  angle  and  feathering  

Objec>ve  Evaluate  the  effect  of  wing  phasing  on  the  flight  mode  

Method  -­‐  Create  an  ornithopter  which  isolates  the  wing  phasing  from  the  other  degrees  of  freedom  of  the  wing  moFon.  

-­‐  Measure  the  forces  on  the  wings    -­‐  Track  the  wing  and  body  movement  -­‐  IdenFfy  effects  

Biologists’  observa>on  -­‐  Dragonflies  most  oMen  flap  at  phase  270°  

Finding  -­‐  270°  is  most  efficient  

Biologists’  observa>on  -­‐  Hindwings  generate  most  of  the  thrust  because  they  are  larger  -­‐  Forewings  are  used  for  steering    Finding  -­‐  With  iden>cal  wings,  higher  performance  on  hindwing  at  270°    -­‐  Constant  performance  on  forewing  

-­‐  The  forewing  performance  varies  liLle  with  phase  angle  -­‐  90°  gives  lower  performance  on  hindwings            à  inefficient  interacFon,  especially  for  tethered  flight  -­‐  180°  used  for  hovering  à  equal  load  on  all  wings  -­‐  270°  used  for  high  speed  flight  à  larger  performance  on  hindwings  

Ornithopter  design  

60  

120  

40   10

 

・  

・  

90   1  mm  

B

A

100  μm  B

A  slider-­‐crank  design  transforms    the  rotaFonal  movement  of  a    small  DC  motor  into  a  flapping    movement.  The  crankshaM  is  adjustable  for  phase  angle.    

Parts  -­‐  Set  of  3  gears  (speed  reducFon  ~0.04)  -­‐  3D  printed  frames,  cranks  and  wing  pivots  -­‐  Carbon  rods  for  the  structure  -­‐  Japanese  paper  for  the  wings  

Key  Results  The  differenFal  pressure  range  is  used  as  an  indicator  of  wing  performance.  

Special  thanks  

ChrisFan  Kanesan  

Wenjing  Chen  

Dr.  Minh  Dung  Nguyen  

54.4  

A・

Actuator