seminario phd del instituto de matemáticas d e la universidad de sevilla

52
Seminario PHD del Instituto de Matemáticas de la Universidad de Sevilla Dimensión Métrica de Grafos Antonio González Departamento de Matemática Aplicada I Universidad de Sevilla 28 de noviembre de 2012

Upload: siran

Post on 23-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

Dimensión M étrica de G rafos. Antonio González Departamento de Matemática Aplicada I Universidad de Sevilla. 28 de noviembre de 2012. Seminario PHD del Instituto de Matemáticas d e la Universidad de Sevilla. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Seminario PHD del Instituto de Matemáticas de la Universidad de Sevilla

Dimensión Métrica de Grafos

Antonio González

Departamento de Matemática Aplicada I

Universidad de Sevilla

28 de noviembre de 2012

Page 2: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of weighings.

{1,2,3} {2,3,4} {3,4}

1 false coin 2 false coins 2 false coins

1 2

3 4

SOLUTION: METRIC DIMENSION OF THE HYPERCUBE!!!

n = 4

Page 3: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

What is a graph?vertices

G=(V,E)edgesn = |V|order

degree4

2

3x

y

d(x,y)=3

Page 4: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

What is a graph?

Complete Graph Kn Cycle Cn

Path Pn Trees

leaves

Page 5: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

Page 6: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

u3

u2

u1

Page 7: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

u3

u2

u1

Page 8: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

u3

u2

u1

(3,2,1)

Page 9: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

u3

u2

u1

(3,2,1)

Page 10: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

u3

u2

u1

(3,2,1)

(0,3,3)

(2,1,3)(1,2,3)

(3,0,3)

(3,3,0)

(2,3,1)

(3,1,2)

(2,2,2)(1,3,2)

Page 11: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

u2

u1 (0,3)

(2,1)(1,2)

(3,0)

(3,3)

(2,3)

(3,1)

(2,2)(1,3)

(3,2)

dim(G) = cardinality of a minimum resolving set

METRIC

BASIS

Page 12: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Resolving Sets and Metric Dimension

dim(G) = cardinality of a minimum resolving set

dim(Kn) = n-1 dim(Cn) = 2

dim(Pn) = 1

Page 13: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of weighings.

n = 4

This is the hypercube Qn !!!V(Qn) = Subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 1 } d( U , V ) = | U ∆ V| = |U| + |V| - 2|U ∩ V|

X

How to determine a possible situation X ?

X

{1} {2} {3} {4}

{1,3} {1,4} {2,3} {2,4}{1,2} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Ø

{1,3}

{1,2}{2,3,4}

Page 14: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of weighings.

n = 4

This is the hypercube Qn !!!V(Qn) = Subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 1 } d( U , V ) = | U ∆ V| = |U| + |V| - 2|U ∩ V|

How to determine a possible situation X ?

dim(Qn) + 1

{1} {2} {3} {4}

{1,3} {1,4} {2,3} {2,4}{1,2} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Ø

X

{1,3}

X

S can determine X !!!

d(X,Si) for every Si є S

d(X,Si) = |X| + |Si| - 2|X ∩ Si|

S resolving set of Qn

?{1,2,3,4}

Page 15: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of weighings. dim(Qn) + 1

[Erdős,Rényi,1963] [Lindström,1964]

Page 16: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of k-weighings if we have exactly k true coins.n = 5k = 2

This is the Johnson graph J(n,k) !!!

V(J(n,k)) = k-subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 2 }

d( U , V ) = ½| U ∆ V| = ½(|U| + |V| - 2|U ∩ V|)= k - |U ∩ V|

{1,4}

{2,3}

{2,4}

{1,2}

{3,4}{1,5}

{3,5}{4,5}

{2,5} {1,3}

dim(J(n,k))

Page 17: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

n = 5k = 2

This is the Johnson graph J(n,k) !!!

V(J(n,k)) = k-subsets of {1,2,3,…,n} E(Qn) = { {U,V} : |U ∆ V|= 2 }

d( U , V ) = ½| U ∆ V| = ½(|U| + |V| - 2|U ∩ V|)= k - |U ∩ V|

{1,4}

{2,3}

{2,4}

{1,2}

{3,4}{1,5}

{3,5}{4,5}

{2,5} {1,3}

dim(J(n,k))

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of k-weighings if we have exactly k true coins.

Page 18: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

dim(J(n,k))

J(6,2) J(7,2) J(8,2)

J(6,3) J(7,3) J(8,3)

Can we find any tool to approach the metric dimension of these graphs?

FINITE GEOMETRIES

Problem: Given n coins, each with one of two distinct weights, identify the weight of every coin with the minimum number of k-weighings if we have exactly k true coins.

Page 19: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line

Projective planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 20: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line

Projective planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 21: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line

Projective planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 22: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line

Projective planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 23: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line

Projective planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 24: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line

Projective planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 25: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 26: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 27: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 28: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 29: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 30: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 31: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k+1 points in every line k points in every line

Projective planesof order k

Affine planesof order k

A finite geometry (P,L) is a finite set P called points together with a non-empty collection L of subsets of P called lines.

Page 32: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k points in every line

Affine planesof order k

X Y

3 4

8

56

9

1

2

7

J(9,3)

Given two vertices X,Y є V(J(n,k)), is there any line L є L distinguishing them?

There exist k+1 distinct lines through every point!!!

Page 33: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k points in every line

Affine planesof order k

X Y

3 4

8

56

9

1

2

7

J(9,3)

Given two vertices X,Y є V(J(n,k)), is there any line L є L distinguishing them?

There exist k+1 distinct lines through every point!!!

Page 34: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k points in every line

Affine planesof order k

X Y

3 4

8

56

9

1

2

7

J(9,3)

Given two vertices X,Y є V(J(n,k)), is there any line L є L distinguishing them?

There exist k+1 distinct lines through every point!!!

d(L,Y) ≠ d(L,X)

Page 35: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k points in every line

Affine planesof order k

X Y

3 4

8

56

9

1

2

7

J(9,3)

Given two vertices X,Y є V(J(n,k)), is there any line L є L distinguishing them?

There exist k+1 distinct lines through every point!!!

d(L,Y) ≠ d(L,X) ≠

Page 36: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Finite Geometries

k points in every line

Affine planesof order k

X Y

3 4

8

56

9

1

2

7

J(9,3)

Given two vertices X,Y є V(J(n,k)), is there any line L є L distinguishing them?

There exist k+1 distinct lines through every point!!!

d(L,Y) ≠ d(L,X) ≠

[Cáceres,Garijo,G.,Márquez,Puertas,2011]

Proposition: If k ≥ 3 is a prime power, then

dim(J(k2,k)) ≤ k2 + k and dim(J(k2+k+1,k+1)) ≤ k2 + k+1.

Proposition: If n ≥ 3, then

dim(J(n,2))=

Page 37: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

What else?

Partial geometries

Steiner systems

Toroidal grids

Page 38: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

The number of resolving sets of a graph

dim = 2 dim = 5# bases = 1 # bases = 6

Page 39: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Graphs with “many” metric bases

dim ≤ 2

Open Problem [Chartrand,Zhang,2000]: Characterize the graphs G such that every subset of size dim(G) is a basis.

[Chartrand,Zhang,2000] Complete graphs and odd cycles.

dim > 2 [Garijo,G.,Márquez,2011] Complete graphs.

K1K2

C3C5

Page 40: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Upper Dimension and Resolving Number

(1,1,2,2,3)

(1,1,2,2,3)

dim+(G) = 4 res(G) = 6

UPPER

BASISdim(G) ≤ dim+(G) ≤ res(G)

res(G)= minimum k such that every k-subset is a resolving set.

dim+(G)= maximum size of a minimal resolving set

Realizability ???

Page 41: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)

dim(Kn)=n-1

a

=

[Chartrand et al.,2000]

res(Kn)=n-1

c=

Page 42: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

=

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)

a

=

c=

b

[Chartrand et al.,2000]

Page 43: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)

Conjecture: For every pair a,b of integers with 2≤a≤b, there exists a conected graph G such that dim(G)=a and dim+(G)=b.

=

a

=

b

It is true!!! [Garijo,G.,Márquez,2011]

Theorem:

[Chartrand et al.,2000]

Page 44: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)=

a

=

b

How many???

[Chartrand et al.,2000]

Page 45: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)=

a

=

b

How many???

[Chartrand et al.,2000]

Page 46: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)=

a

=

b

How many???

[Chartrand et al.,2000]

Page 47: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)=

a

=

b

How many???

[Chartrand et al.,2000]

Page 48: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Realizabilitydim(G) ≤ dim+(G) ≤ res(G)=

a

=

b

How many???

c=

Theorem:[Garijo,G.,Márquez] Given c>3, the set of graphs with resolving number c is finite.

QUESTION (2): RECONSTRUCTION!!!

QUESTION (1): Realization of triples (a,b,c).

[Chartrand et al.,2000]

Page 49: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

ReconstructionProblem: given c > 0, which are the graphs G such that res(G) = c?

res ≤ 2 [Chartrand,Zhang,2000] Paths and odd cycles.

Page 50: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

ReconstructionProblem: given c > 0, which are the graphs G such that res(G) = c?

res ≤ 2

res = 3

[Chartrand,Zhang,2000] Paths and odd cycles.

[Garijo,G.,Márquez,2011] Even cycles plus other 18 graphs.

Page 51: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

ReconstructionProblem: given c > 0, which are the graphs G such that res(G) = c?

res ≤ 2

res = 3

Open problem: Reconstruction of trees.

[Chartrand,Zhang,2000] Paths and odd cycles.

[Garijo,G.,Márquez,2011] Even cycles plus other 18 graphs.

Page 52: Seminario  PHD del  Instituto  de  Matemáticas d e la Universidad de  Sevilla

Thanks!