semismooth newton methods in function space theoretical ... · outlineofpartii...

80
Semismooth Newton Methods in Function Space Theoretical Foundations and Applications Part II Michael Ulbrich Technische Universität München 42nd Woudschoten Conference, October 4–6, 2017 Supported by the DFG and the Munich Centre of Advanced Computing (MAC) Includes joint work with Christian Böhm, Daniela Bratzke, Michael Hintermüller, Moritz Keuthen, Andre Milzarek, Stefan Ulbrich

Upload: others

Post on 20-Sep-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Semismooth Newton Methods in Function SpaceTheoretical Foundations and Applications

Part II

Michael Ulbrich

Technische Universität München

42nd Woudschoten Conference, October 4–6, 2017

Supported by the DFG and the Munich Centre of Advanced Computing (MAC)Includes joint work with Christian Böhm, Daniela Bratzke, Michael

Hintermüller, Moritz Keuthen, Andre Milzarek, Stefan Ulbrich

Page 2: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Outline of Part II

Sufficient Conditions for Regularity

Moreau-Yosida Regularization for State-Constrained andRelated Problems

Application to 3D Elastic Contact Problems (Multigrid Preconditioner)

Globalization

Semismooth Newton for Nonsmooth Minimizationusing the Proximal Operator

Application to Seismic Tomography

Mesh-Independence of Semismooth Newton

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 2

Page 3: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Sufficient Conditions for Regularity

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 3

Page 4: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Sufficient Conditions for RegularityS. Ulbrich, M.U. ’00; M.U. ’01,’11

Sufficient conditions for regularity

‖M−1‖Z→W ≤ C ∀ M ∈ ∂H(w), ∀ w ∈ BW (w , δ)

can be derived from second-order type optimality conditions.

For reformulated complementarity problems in L2, the central ingredientsof sufficient regularity conditions are:

(v ,F ′(w)v)L2(Ω) ≥ ν‖v‖2L2(Ω) ∀ v ∈ L2(Ω) with vF (w) = 0 a.e. on Ω.

F has the structure

F = γI + G with γ > 0, G : L2(Ω)→ Lp(Ω), p > 2.

Some further technical requirements.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 4

Page 5: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

State-Constrained and Related Problems

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 5

Page 6: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Nonsmooth Reformulation Beyond the L2 Setting

Consider the obstacle-type problem

minw∈W

J(w) s.t. w ≤ β.

with, e.g., W = H10 (Ω) or C(Ω), or H1

0 (Ω) ∩ H2(Ω) and β ∈W .

Then the optimality conditions assume the form

w ≤ β, 〈J ′(w),w − w〉W ∗,W ≥ 0 ∀ w ∈W , w ≤ β.

It is no longer possible to write this in pointwise form

w − P(−∞,β](w − τJ ′(w)) = 0,

since J ′(w) ∈W ∗ is not a pointwise a.e. defined function.

Hence, nonsmooth Newton methods for such problems are difficult.

Standard approach: Regularize the problem to recover an Lp setting.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 6

Page 7: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Moreau-Yosida RegularizationIto, Kunisch ’03,’08; Hintermüller, Kunisch ’06; Meyer, Yousept ’09;Neitzel, Tröltzsch ’08; Hintermüller, Schiela, Wollner ’12; M.U. ’02,’11;Keuthen, M.U. ’15; Böhm, M.U. ’15; M.U., S. Ulbrich, Bratzke ’17

Moreau-Yosida regularized problem:

minw

J(w) + 12θ

∥∥∥[λ+ θ(w − β)]+

∥∥∥2L2(Ω)

,

where θ > 0 is a penalty parameter and [t]+ = max0, t.λ ∈ L2

+(Ω) is a shift parameter (often: λ = 0).

Optimality Conditions: J ′(w) + [λ+ θ(w − β)]+ = 0.

Observation: Semismooth Newton methods are applicable, since

w ∈W ⊂ Lp(Ω) 7→ λ+ θ(w − β) ∈ L2(Ω) ⊂ Lp′(Ω) ⊂W ∗, p′ = pp−1 ,

is continuous affine linear with suitable p > 2 (Sobolev embedding).

Results on convergence rates w.r.t. θ and continuation methods are avaliable.Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 7

Page 8: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Moreau-Yosida Regularization – Semismooth NewtonIto, Kunisch ’03,’08; Hintermüller, Kunisch ’06; Hintermüller, Schiela, Wollner ’12;M.U. ’02,’11; Böhm, M.U. ’15; Keuthen, M.U. ’15; M.U., S. Ulbrich, Bratzke ’17

As observed, with p > 2 such that W ⊂ Lp(Ω), the operator

w ∈W ⊂ Lp(Ω) 7→ [λ+ θ(w − β)]+ ∈ Lp′(Ω) ⊂W ∗,

is semismooth. The generalized differential of [·]+ at λ+ θ(w − β) consistsof all operators M ∈ L(W ,W ∗), M : h 7→ g h, where

g ∈ L∞(Ω), g(x) ∈

0 if λ(x) + θ(w(x)− β(x)) < 0,1 if λ(x) + θ(w(x)− β(x)) > 0,[0, 1] if λ(x) + θ(w(x)− β(x)) = 0.

The semismooth Newton system thus reads

[J ′′(w) + θ g · I] s = −J ′(w)− [λ+ θ(w − β)]+.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 8

Page 9: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Moreau-Yosida – Some Extensions

Constrained problem: minw

J(w) s.t. c(w) ∈ C .

J : W → R and c : W → V are C1; C ⊂ V is closed and convex.

Choose a Hilbert space V0 (often V0 = L2) with V ⊂ V0 densely.

Moreau-Yosida regularized problem:

minw

Jθ(w) := J(w) + θ2dist

2V0

(c(w) + θ−1λ,C),

where λ ∈ V0 and distV0(·,C) measures the distance from C in V0.

Using proximal theory, Jθ is C1 with

J ′θ(w) = J ′(w) + θc ′(w)∗R(c(w) + θ−1λ− PV0C (c(w) + θ−1λ)).

Here, R : V0 → V ∗0 , Rw = (w , ·)V0 , is the Riesz map.

Example: C = v ∈ V ; v(x) ∈ C a.e. on Ω; C ⊂ Rn closed,convex. Then PL2(Ω)n

C (v)(·) = PC (v(·)) is a superposition operator.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 9

Page 10: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

State ConstraintsA particularly involved situation arises for state constraints:

miny∈Y ,u∈U

J(y , u) s.t. e(y , u) = 0, y ≤ β.

Then, in general, CQs are more demanding: Usually, Y ⊂ C(Ω) is required.As a consequence, the multiplier is a measure: λ ∈M(Ω) = C(Ω)∗.

Moreau-Yosida-Regularized Problem:

miny∈Y ,u∈U

J(y , u) + 12θ‖[λ+ θ(y − β)]+‖2L2(Ω) s.t. e(y , u) = 0.

Moreau-Yosida Optimality System:

Jy (y , u) + [λ+ θ(y − β)]+ + ey (y , u)∗q = 0,

Ju(y , u) + eu(y , u)∗q = 0,

e(y , u) = 0.

Semismooth Newton methods are applicable to the MY optimality system.Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 10

Page 11: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

State-Constrained Problem – Optimal State

State constraint: y ≤ 0.1 in Ω.Semismooth Newton requires 20 iterations.Nested iteration reduces fine grid iterations to 4.

00.1

0.20.3

0.40.5

0.60.7

0.80.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 11

Page 12: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

State-Constrained Problem – Optimal Multiplier

The Lagrange multiplier for the state constraint is very irregular (a measure).This makes state constraints a challenging problem class.

00.1

0.20.3

0.40.5

0.60.7

0.80.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 12

Page 13: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

State-Constrained Problem – Optimal Control

00.1

0.20.3

0.40.5

0.60.7

0.80.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−100

−50

0

50

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 13

Page 14: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Application to 3D Elastic Contact Problems

M.U., S. Ulbrich, D. Bratzke ’17

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 14

Page 15: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Elastic 3D Contact Problem

Ω

nΓC

ΓN

ΓD

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 15

Page 16: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Elastic 3D Contact Problem

Elastic 3D Contact Problem as Optimization Problem (P):

minu∈U

J(u) :=∫

Ω

(µε(u) : ε(u) + λ

2 div(u)2 − f TV u)dx −

∫ΓN

f TS u dS(x)

s. t. uT n ≤ β on ΓC

Ω ⊂ R3 reference domain of an elastic body,ΓD , ΓN ⊂ ∂Ω Dirichlet boundary, Neumann boundary,ΓC ⊂ ∂Ω possible contact boundary on Ω,u ∈ U displacement, U =

u ∈ H1(Ω)3 ; u|ΓD = 0

ε(u) = 1

2 (∇u +∇uT ) strain,λ, µ Lamé material constants,uT n normal displacement on ΓC ,β ∈ H 1

2 (ΓC ) normal distance of the body to the obstacle,fV ∈ L2(Ω)3, fS ∈ L2(ΓN)3 volume / surface forces.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 16

Page 17: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Possible Generalizations

Our theory and methods also work for other C2-functions J : U → R.

The following structure is required:

J(u) =∫

Ω

( 12 (C∇u) : ∇u+D(u) : ∇u+e(u)−f T

V u)dx−

∫ΓN

f TS u dS(x),

where C, D, and e have suitable properties.

For error estimates we need that J : U → R is strongly convex in aneighborhood of the solution.

For the analysis of the multigrid semismooth Newton method werequire that J : U → R is strongly convex in a neighborhood of theMoreau-Yosida-regularized solution.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 17

Page 18: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Related Work

Semismooth Newton methods for contact problems:Bratzke, Christensen, Hoppe, Hüeber, Ito, Kunisch, Pang, Stadler,M.U., S. Ulbrich, Wohlmuth, . . .

Multilevel methods for contact problems:Dostal, Hüeber, Kornhuber, Krause, Schöberl, Stadler, Oosterlee,Vollebregt, Wohlmuth, Zhao . . .

Abstract multilevel theory (only the references we built on):Bornemann, Yserentant (. . . and many more)

Multilevel trust region methods:Gratton, von Loesch, Toint, . . .

Regularization of obstacle and state-constrained problems:Hintermüller, Ito, Kunisch, Meyer, Prüfert, Rösch, Schiela, Tröltzsch,M.U, Weiser, . . .

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 18

Page 19: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

KKT-System of the Elastic Contact ProblemWe define a : U ×U → R, A ∈ L(U,U∗), N ∈ L(U,H 1

2 (ΓC )), f ∈ U∗ by

a(v ,w) = 〈v ,Aw〉U,U∗ =∫

Ω

(2µε(v) : ε(w) + λdiv(v)div(w)

)dx ,

Nu = uT n|ΓC , 〈f , u〉U∗,U =∫

Ωf TV u dx +

∫ΓN

f TS u dS(x).

(P) minu∈U

12a(u, u)− 〈f , u〉U∗,U s. t. Nu ≤ β.

The problem is uniformly convex and quadratic. Also, N is onto (= CQ).

Optimality Conditions:u ∈ U solves (P) if and only if there exists z ∈ H 1

2 (ΓC )∗ such thatAu − f + N∗z = 0

z ≥ 0, Nu − β ≤ 0, 〈z ,Nu − β〉(H

12 )∗,H

12

= 0.

Here, z ≥ 0 means 〈z , v〉(H

12 )∗,H

12≥ 0 ∀ v ∈ H 1

2 (ΓC ), v ≥ 0.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 19

Page 20: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Moreau-Yosida-Regularized Problem

Moreau-Yosida-Regularized Elastic Contact Problem

minu∈U

12 〈Au, u〉U∗,U − 〈f , u〉U∗,U + 1

2θ‖[z + θ(Nu − β)]+‖2L2(ΓC )

Here, θ > 0 is a penalty parameter and z ∈ L2(ΓN)+.Optimality condition is a semismooth system:

Auθ − f + N∗[z + θ(Nuθ − β)]+ = 0

Operator in the semismooth Newton system is boundedly invertible:

A + θN∗MN, with Md = 1z+θ(Nu−β)≥0 d .

Thus, the semismooth Newton method converges locally superlinearly.

We apply a multigrid-preconditioned semismooth Newton CG method.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 20

Page 21: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Error EstimatesM.U., S. Ulbrich, Bratzke ’17

Let u be the solution of (P) with corresponding Lagrange multiplier z .

Let uθ be the solution of (Pθ) and zθ := [z + θ(Nuθ − β)]+.

Regularity results (e.g., Nečas ’75 or Kinderlehrer ’81) can be used toobtain improved regularity of u and z .

For z ∈ L2(ΓC ), we can show for θ →∞:

‖uθ − u‖H1 = o(θ− 12 ),

‖zθ − z‖(H1/2)∗ = o(θ− 12 ).

For z − z ∈ Hs(ΓC ), 0 < s ≤ 12 , we can show θ →∞:

‖uθ − u‖H1 = O(θ−s− 12 ),

‖zθ − z‖(H1/2)∗ = O(θ−s− 12 ),

‖zθ − z‖L2 = O(θ−s).Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 21

Page 22: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Multigrid-Preconditioned Semismooth Newton PCG Method

M.U., S. Ulbrich, Bratzke ’17

In a recent paper we propose and analyze a multigrid preconditioner for theMY-regularized semismooth Newton system:

The underlying operator is A + θN∗MN.

Large θ generates a strong algebraic (0th order) coupling supportedon the approximate contact boundary.

This requires special care in the multigrid method.

A suitable discretization yields a hierarchy of discretized semismoothNewton systems with the same structure.

We developed a multigrid preconditioner and proved a contractionrate that is independent of the number of grid levels and uniform forall sufficiently large regularization parameters θ.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 22

Page 23: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

3D Hertzian Contact Problem

05

1015

20

0

5

10

15

200

5

10

15

20

xz

y

coarsest mesh – 3993 elements finest mesh – 4 120 119 elements

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 23

Page 24: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

3D Hertzian Contact Problem

left: Maximal contact normal stresses on levels 0,. . . ,6

right: Normal contact stress distribution in the x-y plane

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 24

Page 25: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

3D Hertzian Contact Problem

contact zone von Mises stress distribution

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 25

Page 26: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

3D Hertzian Contact Problem

Final θ = 108

εpcg = 10−2 εpcg = 10−4 εpcg = 10−8

l nl nC,l itNewt avg-itpcg itNewt avg-itpcg itNewt avg-itpcg0 922 69 3 1.00 3 1.00 3 1.001 1793 245 6 2.33 4 4.00 4 7.502 4827 929 5 2.40 4 5.00 3 8.6673 16456 3621 5 3.00 4 6.25 3 10.674 61711 14257 5 3.76 4 7.00 4 11.755 237300 56612 5 3.80 4 7.50 4 12.756 928152 225563 5 4.00 4 7.75 4 13.75

Convergence history semismooth Newton method with pcg-multigrid solver:l : Level, nl : number of grid points, nC ,l : number of contact nodes,itNewt: number of semismooth Newton iterations,avg-itpcg: average number of pcg iterations per Newton iteration

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 26

Page 27: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 27

Page 28: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization

Achieving global convergence of Newton-type methods requiresadditional measures. We address two variants (further options exist).

Globalization using a merit function:Choose a suitable merit function and enforce (nonmonotone) descentto achieve convergence to stationarity for this merit function.

Globalization by path following:Generate a one-parameter family of problems with (Pµ0) easy to solveand (P0) the original system. Follow the path for µ 0.Examples are interior-point and smoothing methods.

If H(w) = 0 expresses optimality conditions, then globalizationtechniques for the underlying optimization problem can be used.

Central for globalizations of Newton-type methods is transition to fastlocal convergence (“undamped” Newton) under realistic conditions.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 28

Page 29: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Merit Functions

Globalization based on a merit function ϕ enforces convergence tostationarity of the following auxiliary problem:

(Pglob) minw∈W

ϕ(w) s.t. w ∈ S.

S ⊂W is a closed convex set containing the relevant roots of H.

ϕ : U → R is a continuous (preferably C1) function defined on U ⊃ S.

The problem is chosen such that solutions of H(w) = 0 are stationarypoints of (Pglob), ideally with a 1-to-1 correspondence.

Stationarity is often expressed by a continuous criticality measureχ : W → R+ with χ(w) = 0 iff w is a stationary point of (Pglob).

Global convergence comes in different flavors, such as:

lim infk→∞

χ(wk) = 0 or, stronger, limk→∞

χ(wk) = 0.

Sometimes, ϕ depends on (e.g., penalty) parameters that are adapted.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 29

Page 30: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Merit Functions (2)

If Z = Z∗ is a H-space, a canonical merit function is

ϕ2(w) = 12‖H(w)‖2Z .

If H is differentiable then ϕ′2(w) = H ′(w)∗H(w) and the Newton stepsk = −H ′(wk)−1H(wk) is a descent direction:

〈ϕ′2(wk), sk〉W ∗,W = 〈H ′(wk)∗H(wk),−H ′(wk)−1H(wk)〉W ∗,W= −‖H(wk)‖2Z .

If H is nonsmooth, then ϕ2 is usually nonsmooth, too.

Thus, there arise the following tasks:

• Finding a (preferably C1) merit function ϕ

• Showing that semismooth Newton steps are sufficient descentdirections for ϕ, at least close to a “nice” solution.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 30

Page 31: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Merit Functions (3)

For complementarity problems (bilateral bounds can also be handled)

w ≥ 0, F (w) ≥ 0, (w ,F (w))W = 0

in either W = Rn or W = L2(Ω) one can use a reformulation

HFB(w) := φFB(w ,F (w)) = 0

component-wise in Rn, pointwise a.e. in L2(Ω).

φFB(a, b) = a + b − ‖(a, b)‖2 is the Fischer-Burmeister function.

We then have HFB : W → Z := W .

Although HFB is nonsmooth, one can show that φ2FB is C1 with

∇(φ2FB)(a, b) = 2φFB(a, b)g for all gT ∈ ∂φFB(a, b).

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 31

Page 32: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Merit Functions (4)

Due to the C1-smoothness of φ2FB , in both cases W = L2(Ω) orW = Rn, it can be proved that if F is C1, then ϕ2 is C1 with

ϕ′2(w) = M∗HFB(w) ∀ M ∈ ∂HFB(w).

For W = Rn, all M ∈ ∂HFB(w) = ∂HFB(w) ⊂ Rn×n have the form

M = Diag(ga) + Diag(gb)F ′(w),

(gaj , gb

j ) ∈ ∂φFB(wj ,Fj(w)) (1 ≤ j ≤ n).

In the case W = L2(Ω), all M ∈ ∂HFB(w) ⊂ L(W ,W ) have the form

Md = ga d + gb F ′(w)d ∀ d ∈ L2(Ω),

ga, gb ∈ L∞(Ω), (ga(x), gb(x)) ∈ ∂φFB(w(x),F (w)(x)) for a.a. x ∈ Ω.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 32

Page 33: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Merit Functions (5)

In the case Rn, one can devise globally, superlinearly convergentalgorithms that use HFB and ϕ2.

In the case L2(Ω), ϕ2 is a C1-function, but HFB is not semismooth.

In fact, the typical lifting property F = γI + G , where G : L2 → Lp,p > 2, cannot be exploited to achieve that w 7→ (w ,F (w)) maps tosome Lp(Ω)2, p > 2.

In M.U. ’02, ’11, smoothing (or lifting) steps are proposed to closethe L2-Lp norm gap; we do not go into these technicalities.

We see that globalizing semismooth Newton methods in functionspace is delicate.

In practice, semismooth Newton methods combined with nestediteration over a grid hierarchy usually require globalization only oncoarser grids.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 33

Page 34: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Merit Functions (6)M.U. ’11; Milzarek, M.U. ’14; Milzarek ’16

We used and analyzed the following globalization in several contexts:

Choose an auxiliary problem and a globally convergent method for it.

Use semismooth Newton steps whenever they are admissible for theglobalization method or if they satisfy certain other acceptanceconditions.

Examples for acceptance conditions:

• Nonmonotone filter (filter globalization goes back to Fletcher ’96)

• Sufficient residual reduction between Newton steps.

The acceptance conditions are such that if infinitely many Newtonsteps satisfy the condition, then ‖H(wk)‖Z → 0 on this subsequence.

These conditions are satisfied for full Newton steps in a neighborhoodof a “reasonably nice” solution.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 34

Page 35: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Globalization Based on Path FollowingContinuation w.r.t. a parameter can be used for globalization in various ways:

Nested iteration over a grid hierarchy often requires globalization onlyon the coarse grids (→ finite dimensional theory applies)

Moreau-Yosida regularization (state constraints and related problems)forms a basis for path following, which can be used for globalization.

Smoothing methods introduce a smoothed approximation Hε of H.

• Smoothing Newton system:

H ′εk(wk)sk = −H(wk).

• The merit function ϕk(w) = 12‖Hεk (w)‖2Z is used.

• In Rn global and fast local convergence of smoothing methods isshown, e.g., in Chen, Qi, Sun ’98.

• In a current draft paper, we extend the convergence theory ofsmoothing methods to an L2-setting.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 35

Page 36: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Semismooth Newton for Nonsmooth MinimizationUsing the Proximal Operator

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 36

Page 37: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

A Composite Nonsmooth Optimization Problem

We consider a composite nonsmooth optimization problem:

minw

g(w) + h(w).

W is a Hilbert space and g : W → R is C1.

h : W → R ∪ +∞ is proper, convex, lower semicontinuous.

For convenience we choose W ∗ = W , 〈·, ·〉W ∗,W = (·, ·)W .

Problems of this form arise in big data, compressed sensing, imageanalysis, sparse control, . . .

Optimality condition of the composite nonsmooth problem:

0 ∈ ∇g(w) + ∂h(w),

where ∂h is the subdifferential of convex analysis.

Goal: Reformulate this generalized equation as a nonsmooth equation.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 37

Page 38: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Composite Nonsmooth Optimization Problems: Examples

Example 1: h can represent constraints:

h(w) = ιWad(w) :=

0 (w ∈Wad),∞ (w /∈Wad),

Wad ⊂W closed, convex.

where Wad ⊂W is closed, convex.

Then the problem is equivalent to minw∈Wad g(w).

Example 2: Sparse optimization and related problems:

h(w) = ‖w‖W with W ⊂ W .

Important in compressed sensing and sparse control:

h(w) = ‖w‖L1 or h(w) = ‖w‖`1 are sparsity promoting.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 38

Page 39: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Proximal Operator

We introduce the Proximal Problem:

miny∈W

f (y) + 12‖y − w‖2W .

f : W → R ∪ ∞ is proper, lower semicontinuous, and convex.

W is a Hilbert space; we work with W ∗ = W , 〈·, ·〉W ∗,W = (·, ·)W .

The proximal problem is strictly convex. Hence, for every w ∈W , theproximal problem has a unique solution.

The unique solution y is denoted by proxf (w) and defines theproximal operator proxf : W →W .

proxf is firmly non-expansive, i.e., for all w1,w2 ∈W :

‖proxf (w1)− proxf (w2)‖W ≤ (proxf (w1)− proxf (w2),w1 − w2)1/2W

≤ ‖w1 − w2‖W .

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 39

Page 40: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Proximal Operator (2)

Optimality condition of prox problem:

y = proxf (w) satisfies:

0 ∈ ∂f (y) + y − w .

The optimal value function ef : W → R,

ef (w) := miny∈W

f (y) + 12‖y − w‖2W

= f (proxf (w)) + 12‖proxf (w)− w‖2W

is called Moreau envelope or Moreau-Yosida regularization.

ef is convex and continuously differentiable with

∇ef (w) = w − proxf (w).

Much more could be said, cf., e.g., Bauschke, Combettes ’11.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 40

Page 41: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Proximal Operator – Example

Example: f (w) = µ|w |, W = R, µ > 0.

Proximal operator:

proxµ|·|(w) =

0 (|w | ≤ µ),w − µ sgn(w) (|w | ≥ µ).

(shrinkage/thresholding)

Moreau envelope:

eµ|·|(w) =

12w2 (|w | ≤ µ),µ(|w | − µ

2 ) (|w | ≥ µ).(Huber function)

Gradient of Moreau envelope:

∇eµ|·|(w) =

w (|w | ≤ µ),

µ sgn(x) (|w | ≥ µ)

= w − proxµ|·|(w).

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 41

Page 42: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Sketches for the Example f (w) = µ|w |

left: proxµ|w | middle: eµ|·| right: ∇eµ|·|.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 42

Page 43: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Proximal Operator – Example (2)

Example: f (w) = ιWad(w), W = W ∗ H-space,Wad ⊂W closed and convex.

Proximal operator:

proxιWad(w) = PWad = projection onto Wad.

Moreau envelope:

eιWad(w) = 1

2‖w − PWad(w)‖2W = 12 dist

2W (w ,Wad).

Gradient of Moreau envelope:

∇eιWad(w) = w − proxιWad

(w) = w − PWad(w).

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 43

Page 44: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Proximal Operator – Example (3)

Example: f (w) = µ‖w‖L1 + ιWad(w), W = L2(Ω),Wad = w ; α ≤ w ≤ β a.e. in Ω.

Proximal problem:

miny

µ‖y‖L1 + 12‖y − w‖2L2 s.t. α ≤ y ≤ β a.e. in Ω

One can show (we assume α < 0 < β):

proxf (w)(x) = P[α,β](w(x)− P[−µ,µ](w(x))), x ∈ Ω.

From our results it follows that this superposition operator is semismoothfrom Lp(Ω) to Lr (Ω), 1 ≤ r < p ≤ ∞.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 44

Page 45: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Proximal Operator of µ| · |+ ι[α,β]

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 45

Page 46: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Prox-based Equation Reformulation

Optimization problem: minw g(w) + h(w).

Optimality condition:

(1) 0 ∈ ∇g(w) + ∂h(w).

Optimality condition of prox problem for h with w = w −∇g(w):

(2) 0 ∈ y − w +∇g(w) + ∂h(y).

We now show: (1) ⇐⇒ (3) with

(3) w = proxh(w −∇g(w)).

“=⇒”: If w satisfies (1) then y = w satisfies (2) and thus

proxh(w −∇g(w)) = y = w .

“⇐=”: If w satisfies (3) then y = w satisfies (2) and inserting y = winto (2) shows that w satisfies (1).

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 46

Page 47: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Prox-Based Equation Reformulation (2)

We can replace g and h by τg and τh.

This yields that the first order optimality system

(1) 0 ∈ ∇g(w) + ∂h(w).

is equivalent to

(3)τ w = proxτh(w − τ∇g(w)).

We thus arrive at a nonsmooth system of equations.

If ∇g and proxτh are semismooth, then we can apply semismoothNewton methods.

An example, discussed on the next slide, is L1-regularization pluspointwise bound constraints.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 47

Page 48: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Prox-Based Equation Reformulation: Example

L1-regularization plus pointwise bound constraints result in

h(w) = µ‖w‖L1(Ω) + ιWad(w),

where Wad =

w ∈ L2(Ω) ; α ≤ w ≤ β a.e. in Ω.

As shown,

proxτh(w) = P[α,β](w(·)− P[−τµ,τµ](w(·))), x ∈ Ω,

is semismooth from Lp(Ω), p > 2, to L2(Ω).

If g : L2(Ω)→ R has the structure

∇g = γI + G with G : L2(Ω)→ Lp(Ω)

we achieve with τ = 1/γ:

H(w) := w − proxτh(w − τ∇g(w)) = w − proxγ−1h(−γ−1G(w))

is semismooth from L2(Ω) to L2(Ω).

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 48

Page 49: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Application to Seismic Tomography

C. Boehm, M.U. ’15

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 49

Page 50: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Introduction

Seismic Inversion:Given a set of seismograms and a description of the seismic sources,determine the material parameters of the Earth.

A better knowledge of the structure of the Earth’s subsurface can help to

explain geodynamic processes,

support the search for natural resources,

identify areas of potential geological hazards, ...

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 50

Page 51: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Related Work

Full-Waveform Inversion in the Time DomainTromp, Tape, Liu ’05; Epanomeritakis, Akçelik, Ghattas, Bielak ’08;Fichtner, Kennett, Igel, Bunge ’09; Wilcox, Stadler, Burstedde,Ghattas ’10; Fichtner, Trampert ’11 ...

Properties of Parameter-to-State OperatorStolk ’00; Blazek, Stolk, Symes ’13; Kirsch, Rieder ’13 ...

Randomized Source Sampling, Mini-Batch HessianKrebs, Anderson, et al. ’09; Byrd, Chin, Neveitt, Nocedal ’11;Aravkin, Friedlander, Herrmann, Leeuwen ’12; Byrd, Chin, Nocedal,Wu ’12; Haber, Chung, Herrmann ’12; Schiemenz, Igel ’13 ...

Paper: Boehm, M.U., SISC, 2015

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 51

Page 52: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Elastic Wave Equation

Bounded domain Ω ⊂ Rd (d = 2, 3), time interval I = (0,T ):

ρutt −∇ · (Ψ : ε(u)) = f on Ω× I,u(0) = 0 on Ω,

ut(0) = 0 on Ω,(Ψ : ε(u)) · ~n = 0 on ∂Ω× I.

u : displacement field ε(u) : strain tensor (= 12 (∇u +∇uT ))

ρ : density Ψ : 4th-order material tensor (Ψijkl )

Particularly important is Lamé material:

Ψijkl = λδijδkl + µ(δikδjl + δilδjk) with parameters λ(x), µ(x).

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 52

Page 53: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Suitable Parameter Spaces

Parameterization:Ψ(m)(x) = Ψ(x) + Φ (m(x))

Ψ ∈ L∞(Ω)d4 = reference model that captures major discontinuities.

Unknown m parameterizes model variations

Φ : Rr → Rd4 is sufficiently smooth.

Here for simplicity: Φ linear.

Hilbert space of model variations: M ⊂⊂ L∞(Ω)r (compactly).

Admissible set: Mad = M ∩M∞ad withM∞ad = m ∈ L∞(Ω)r : ψa ≤ Sm ≤ ψbS ∈ L(M,Q), Q ⊂ Lq(Ω)n for some q > 2,ψa, ψb ∈ Q, ψa ≤ 0 < ψb.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 53

Page 54: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Parameter Identification Problem

Input:

ns seismic sources fi (with location and source time function).

Observations uδi (t, x) for every source in Ωobs × I, Ωobs ⊂ Ω.

Reference model Ψ ∈ L∞(Ω)d4 .

Seismic Inverse Problem (SIP)

minm∈Mad

j(m) = J(u(m),m) def=ns∑

i=1Jfit(ui , uδi ) + αJreg(m)

where the displacements u(m) = (ui (m))1≤i≤ns solve the elastic wave PDEs

E (ui ,m) = fi , ui (0) = 0, (ui )t(0) = 0 (1 ≤ i ≤ ns).

Here (e.g.): Jfit(ui , uδi ) = 12∥∥ui − uδi

∥∥2L2(Ωobs×I), Jreg(m) = 1

2‖m‖2M .

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 54

Page 55: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Existence and Differentiability for the Seismic Inverse Problem

Let V = H1(Ω)d . The following can be shown:

Existence and uniqueness of (very) weak solutionsu(m) ∈ C (I; L2(Ω)d ) ∩ C1(I; V ∗) to the elastic wave equation forfixed m ∈ M, sufficiently regular ρ and f ∈ L2(I; V ∗).

Fréchet-differentiability of the parameter-to-state operator:Let f ∈ Hk+l (I; V ∗), k ≥ 2, l ≥ 0, and f (t) = 0 near t = 0.Then the solution operator

m ∈ L∞(Ω)r 7→ u(m) ∈ C l (I; V )

is (k − 2)-times Lipschitz continuously Fréchet-differentiable.

Existence of a solution to the regularized seismic inverse problem.

Böhm, M.U. ’15, Lions, Magenes ’72, Lasiecka, Triggiani ’90Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 55

Page 56: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Moreau-Yosida Regularization

Moreau-Yosida-Regularized Problem

For θ ∈ (0,∞) defineminm∈M

jθ(m) def= j(m) + θφ(m),

with the penalty function

φ(m) def= 12

(‖[Sm − ψb]+‖2L2(Ω)n + ‖[ψa − Sm]+‖2L2(Ω)n

).

First order optimality conditions:

j ′(m) + θS∗([Sm − ψb]+ − [ψa − Sm]+

)= 0 in M∗.

If j is twice cont. diff. then this is a semismooth operator equationsince [ · ]+ is semismooth as a map

Q ⊂ Lq(Ω)n → Lq

q−1 (Ω)n ⊂ Q∗, q > 2.

We also can prove error estimates for the regularized solution in terms of θ.Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 56

Page 57: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Outline of the Optimization AlgorithmMoreau-Yo

sidaPe

nalty

Metho

d

Trust-Re

gion

1: Choose θ0 > 0, an initial parameter m0θ0 and ε > 0.

2: for k = 0, 1, 2, . . . do3: Obtain an approximate solution m∗

θk of (Pθk ):4: for i = 0, 1, 2, . . . do5: Obtain iterates mi+1

θkby solving a

6: trust-region subproblem with a7: matrix-free Newton-PCG method.8: end for9: if (violation of feasibility & optimality at m∗

θk ) < ε then10: Stop with m∗ = m∗

θk .11: else12: Choose θk+1 > θk .13: Set m0

θk+1 = m∗θk .

14: end if15: end for

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 57

Page 58: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Simultaneous Sources – Motivation

minm∈Mad

12∑ns

i=1∥∥ui (m)− uδi

∥∥2L2(Ωobs×I) + αJreg(m)

s.t. E (ui ,m) = fi , ui (0) = 0, (ui )t(0) = 0 (1 ≤ i ≤ ns).

Required number of simulations: objective: ns

gradient: + ns

Newton step: + 2 ns · itcg

Idea: Replace individual seismic events by simultaneous “super-shots”.=⇒ Source-encoding: For w ∈ Rns define u(m; w) as the solution to:

E (u,m) =ns∑

i=1wi fi , u(0) = 0, ut(0) = 0.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 58

Page 59: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Sample Average Approximation

Define

Jfit,w (m) := 12‖u(m; w)−

ns∑i=1

wiuδi ‖2L2(Ωobs×I)

and for WK = (w1, . . . ,wK ) ∈ Rns×K consider

minm∈Mad

j(m; WK ) := 1K

K∑k=1

Jfit,wk (m) + α2 ‖m‖

2M .

+ Requires only 2K simulations for objectiveand gradient.

− Possible loss of information due tointerference.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 59

Page 60: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Marmousi Test Data

Synthetic data set provided by Institut Français du Pétrole.

2D domain, 9.2km × 3.1km,

190 seismic sources at 36m depth,

384 receivers, equidistant at 100m depth,

perfectly elastic, isotropic material with constant Poisson’s ratio.

m: 50k nodes, u: 800k nodes, 4k time steps.

geophysical exploration displacement field (snapshot)

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 60

Page 61: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Sample Average Gradient

WK ∈ −1, 1ns×K , i.i.d. Rademacher distributed.

K = 1 super-shot K = 8 super-shots

0 2 4 6 8

0

1

2

3

dept

h(k

m)

0 2 4 6 8

0

1

2

3

8 single sources all 190 sources

0 2 4 6 8

0

1

2

3

dept

h(k

m)

length (km)0 2 4 6 8

0

1

2

3

length (km)

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 61

Page 62: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Reconstruction

1 super-shot

8 super-shots

16 super-shots

λ, difference from initial model

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 62

Page 63: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Reconstruction - Computational Effort

K super-shots, WK ∈ −1, 1ns×K , i.i.d. Rademacher distributed.

Ktol = 10−3 tol = 10−6

iter. avg. cg it # PDEs iter. avg. cg it # PDEs

1 24 14.3 810 41 25.0 22552 25 15.3 1784 46 26.6 53544 28 18.8 4796 38 24.4 81968 24 17.0 7504 30 21.6 1158416 23 15.6 13376 31 21.9 24256

Can we do better?

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 63

Page 64: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Approximation of the Hessian

j ′′(m; WK ) = 1K

K∑k=1

j ′′(m; wk).

Idea: Use mini-batch to generate curvature information.In every Newton iteration:Choose S ⊂ w1, . . . ,wK and approximate

j ′′(m; WK ) ≈ 1|S|

∑wκ∈S

j ′′(m; wκ).

+ Reduces number of PDE solves by a factor of K/|S|.

+ Reduces memory requirements by a factor of K/|S|.

− Only approximation to the true Hessian.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 64

Page 65: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Computational Effort with Mini-Batch Hessian

WK ∈ −1, 1ns×K , i.i.d. Rademacher distributed,

K = 8 super-shots for objective function and gradient,

Hessian approx. with S = wk (k chosen cyclical).

0 5000 100000

0.2

0.4

0.6

0.8

1

PDE simulations

rel. m

isfit

0 5000 10000

10−6

10−4

10−2

100

PDE simulations

rel. o

ptim

.

full Hessian L-BFGS mini-batch Hessian

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 65

Page 66: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Comparison: Unconstrained vs. Bounds on Wave Velocities

WK ∈ −1, 1ns×K , i.i.d. Rademacher distributed,

unconstrained vs. lower bound on P-wave velocity: 1450 m/s,

K super-shots, Hessian approx. with S = wk (k chosen cyclical).

Kw/o constraints with constraints

iter. avg. cg it # PDEs iter. avg. cg it # PDEs

8 65 23.2 5058 66 24.0 509216 62 22.5 6112 65 24.4 6358

Total no. of PDE solves is less than 16 cg iterations without super-shots!

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 66

Page 67: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Comparison: Unconstrained vs. Bounds on Wave Velocities

WK ∈ −1, 1ns×K , i.i.d. Rademacher distributed,

unconstrained vs. lower bound on P-wave velocity: 1450 m/s,

K super-shots, Hessian approx. with S = wk (k chosen cyclical).

Kw/o constraints with constraints

iter. avg. cg it # PDEs iter. avg. cg it # PDEs

8 65 23.2 5058 66 24.0 509216 62 22.5 6112 65 24.4 6358

Total no. of PDE solves is less than 16 cg iterations without super-shots!

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 66

Page 68: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Parallel Scaling Statistics - Multiple Events

#cores 32 64 128 256 512 1024

#events 32 32 32 32 32 32#cores / event 1 2 4 8 16 32total time (s) 265.3 130.1 66.6 33.7 18.5 9.4speed-up 1.0 2.04 3.99 7.88 14.36 28.27

par. efficiency 1.000 1.020 0.996 0.985 0.898 0.883

Strong scaling results: 2d elastic wave equation, 32 eventsDiscretization: 12,288 elements, 197,633 dofs, 6,000 time steps

all computations carried out on Piz Daint (Cray XC30, Xeon E5),Swiss National Supercomputing Centre

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 67

Page 69: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Parallel Scaling Statistics

#cpu cores 8 64 512 4096

#elements 8,000 64,000 512,000 4,096,000total time (s) 16.7 17.0 17.3 17.9

scaling efficiency 1.000 0.979 0.963 0.935

Weak scaling results: 3d elastic wave equationDiscretization: 68,921 dofs per core, 1,000 time steps

all computations carried out on Piz Daint (Cray XC30, Xeon E5),Swiss National Supercomputing Centre

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 68

Page 70: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Mesh-Independence of Semismooth Newton

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 69

Page 71: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Challenges due to Nonsmoothness

Parametric stability of the radius of fast convergence, mesh-independenceresults, impicit function theorems, and other related topics are significantlymore challenging in nonsmooth settings than in the smooth case:

In the smooth case, the Jacobian H ′(w) at w induces a good linearmodel H(w) + H ′(w)d of H(w + d) in a neighborhood of w .

If H is C1, then the model varies continuously with w .

In the nonsmooth case, however, the linear operator M(w + d) in the“linear” model has to be chosen depending on w + d , not w :H(w) + M(w + d)d .

In finite dimensions, upper semicontinuity and compact-valuedness of∂H are helpful and yield, e.g., dist(M(w + d), ∂H(w))→ 0 as d → 0.

In infinite dimensions, such properties of ∂H are not available.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 70

Page 72: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Structure of a Semismooth Newton Mesh-Independence ResultAccuracy of discretization measured by mesh size h ∈ (0, h0], h0 > 0.Discrete spaces: Wh ⊂W , Zh ⊂ Z .

Equation: H(w) = 0, H : W → Z

Semismooth Newton: wk+1 = wk + sk , Mksk = −H(wk).

Discretized Equation: Hh(wh) = 0, Hh : Wh → Zh

Discrete Semismooth Newton: wk+1h = wk

h + skh , Mh,ksk

h = −Hh(wkh ).

Let be given solutions w and wh, h ∈ (0, h0), with

‖wh − w‖W → 0, as h→ 0.

Our mesh-independence results have the following flavor:

For all η ∈ (0, 1), there exist h1 ≤ h0, δ > 0, such that ∀ h ∈ (0, h1]:∥∥wk − w∥∥

W < δ,∥∥wk

h − wh∥∥

W < δ ⇒∥∥wk+1 − w∥∥

W ≤ η∥∥wk − w

∥∥W ,

∥∥wk+1h − wh

∥∥W ≤ η

∥∥wkh − wh

∥∥W .

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 71

Page 73: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Structure of a Semismooth Newton Mesh-Independence Result (2)Proving mesh-independence can be split in two parts:

There exist h1 ≤ h0, δ0 > 0, C > 0 such that for all h ∈ (0, h1] there holds:

Uniform Regularity Condition:∥∥M−1∥∥

Z→W ≤ C1 ∀ M ∈ ∂H(w), w ∈ BW (w , δ0),∥∥M−1h∥∥

Zh,Wh≤ C1 ∀ Mh ∈ ∂Hh(wh), wh ∈ BWh (wh, δ0).

Mesh-Independent Semismoothness:

For all η ∈ (0, 1) there exists δ ∈ (0, δ0):

∀ w ∈ BW (w , δ), M ∈ ∂H(w), wh ∈ BWh (wh, δ), Mh ∈ ∂Hh(wh) :

‖H(w)− H(w)−M(w − w)‖Z ≤ η ‖w − w‖W ,

‖Hh(wh)− Hh(wh)−Mh(wh − wh)‖Z ≤ η ‖wh − wh‖W .

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 72

Page 74: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Mesh-Independence Result for VIs in L2

We consider the following complementarity problem:Find w ∈W := L2(Ω) such that

w ≥ 0, F (w) := G(w) + γw ≥ 0, w (G(w) + γw) = 0,

where G : W → Lp(Ω), p > 2 is C1.

Semismooth Reformulation:

(P) H(w) := w − [−γ−1G(w)]+ = 0.

Suitable FE discretization (e.g., piecewise constant finite elements for wh)results in the complementarity problem of finding wh ∈Wh ⊂W with

wh ≥ 0, Gh(wh) + γwh ≥ 0, wh (Gh(wh) + γwh) = 0.

The corresponding semismooth reformulation is given by

(Ph) Hh(wh) := wh − [−γ−1Gh(wh)]+ = 0.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 73

Page 75: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Assumptions

For brevity, let h = 0 correspond to the continuous problem: (P0) = (P).Furthermore, we define Bh(wh, δ) := wh ∈Wh ; ‖wh − wh‖L2 < δ.

Assumptions:

There exist h0, δ0 > 0, p > 2 and L > 0 such that for all h ∈ [0, h0]:

w = w0 solves (P) and wh solves (Ph).

‖wh − w‖L2 → 0 as h→ 0+.

‖Gh(wh)− G(w)‖Lp → 0 as h→ 0+.

Gh : Wh →Wh is C1 on Bh(wh, δ0).∥∥Gh(w1h )− Gh(w2

h )∥∥

Lp ≤ LG∥∥w1

h − w2h∥∥

L2 ∀ w ih ∈ Bh(wh, δ0).∥∥G ′h(w1

h )− G ′h(w2h )∥∥

Wh→Wh≤ LG′

∥∥w1h − w2

h∥∥

L2 ∀ w ih ∈ Bh(wh, δ0).

Strict complementarity: meas(x ∈ Ω ; G(w)(x) = 0) = 0.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 74

Page 76: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

A Mesh-Independence Resultcf. Hintermüller, M.U. ’04; M.U. ’11

Under these assumptions, there holds (see M.U. ’11 for refinements):

Mesh-Independent Semismoothness:

For all η ∈ (0, 1) there exist δ ∈ (0, δ0] and h′ ∈ (0, h0] such that, for allh ∈ [0, h′], all sh ∈ Bh(wh, δ), and all M ∈ ∂H(wh + sh):

‖Hh(wh + sh)− Hh(wh)−Msh‖L2 ≤ η ‖sh‖L2 .

Mesh-Independence Result:

Let∥∥M−1h

∥∥Wh→Wh

≤ CM ∀ Mh ∈ ∂Hh(wh), wh ∈ Bh(wh, δ0), h ≤ h0.

Then for all η ∈ (0, 1) there exist δ ∈ (0, δ1] and h′ ∈ (0, h1] such that, forall h ∈ [0, h′] and all w0

h with∥∥w0

h − wh∥∥

L2 < δ, the semismooth Newtonmethod for (Ph) converges to wh with at least q-linear rate η:∥∥wk+1

h − wh∥∥

L2 ≤ η∥∥wk

h − wh∥∥

L2 ∀ k ≥ 0.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 75

Page 77: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Mesh-Independent Order of Semismoothness

One can find examples showing that order of semismoothness at a point wis not stable w.r.t. perturbations of w .

This is bad news for mesh-independent order of semismoothness.

In M.U. ’11 two solutions are provided:

If G ′h are locally Hölder continuous at wh, h ∈ [0, h′] then we can show auniform order α > 0 of semismoothness for all h ∈ [0, h′] and allsh ∈ Bh(0, δ) under the following

Uniform Growth Condition for Complementarity:

There exist constants C > 0, κ > 0, and τ > 0 with

meas(x ; 0 < |Gh(wh)(x)| < t) ≤ Ctκ for all t ∈ (0, τ ], h ∈ [0, h′].

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 76

Page 78: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Mesh-Independent Order of Semismoothness (2)

Alternatively, if the above uniform growth condition for complementarity isreplaced by a condition only for h = 0,

meas(x ; |G(w)(x)| < t) ≤ Ctκ for all t ∈ (0, τ ]

we can show a bit less:

Mesh-Independent Order of Semismoothness Result:

There exist δ ∈ (0, δ0], h′ ∈ (0, h0], and C ′ > 0 such that, for allh ∈ [0, h′], all sh ∈ Bh(0, δ), and all Mh ∈ ∂H(wh + sh):

‖Hh(wh + sh)− Hh(wh)−Mhsh‖L2 ≤ C ′max‖sh‖αL2 , ‖Gh(wh)− G(w)‖αL2 ‖sh‖L2

with α = (p−2)κ2(κ+p) .

Corresponding mesh-independent q-orders of local convergence forsemismooth Newton methods can be shown.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 77

Page 79: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Conclusions and Final Remarks

Semismooth Newton methods are an efficient tool for handlinginequality constraints, variational inequalities, and structurednonsmooth optimization problems.

They have been successfully applied in many fields.

A quite comprehensive theory on semismoothness and semismoothNewton is available and is further developing.

You should consider to make them part of your toolbox!

Also in other fields, e.g., machine learning and big data, second ordermethods are about to become increasingly important.

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 78

Page 80: Semismooth Newton Methods in Function Space Theoretical ... · OutlineofPartII SufficientConditionsforRegularity Moreau-YosidaRegularizationforState-Constrainedand RelatedProblems

Many thanks for your attention!

Michael Ulbrich | Semismooth Newton Methods in Function Space: Theory and Applications | 5.10.2017 79