sfp op speed

Upload: danielvp21

Post on 03-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Sfp Op Speed

    1/16

    Created by: Imre Baumli 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    1

    OperationOperation speedspeed calculationcalculationfor 4Gb/sfor 4Gb/s SWSW andand LWLW SFPSFP

    optical transceiversoptical transceivers

    This document describes the channel operation speed, bit velocity

    estimation, dispersion estimation as well as the SW and LW mini GBIC

    operation speed calculation for4 Gb/s AVAGO SFP-Small Form-FactorePluggable parameters

  • 8/12/2019 Sfp Op Speed

    2/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    2

    ContentContent

    Operation speed and the band width*

    About Single Mode Fibers (Normalized Frequency, Polarization Mode Dispersion)

    SW Avago 4 Gbps SFP optical transceiver operation speed calculation (=850 nm)

    LW Avago 4Gbps SFP optical transceiver operation speed calculation (=1310 nm)

    Observations

  • 8/12/2019 Sfp Op Speed

    3/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    3

    Operation speed and band width

    The channel operation speed - RR,, channel band width ((ff),), and the total dispersion ofthe optical line () are characterized by the following relationship: R = 2R = 2f=1/4f=1/4

    The transmitter and receiver are characterized by a rise/fall time and the amplifier side of

    the receiver is characterized by a band width , all these restrict together the speed of the

    response, namely a the rise time on the output of the receiver.

    The transmitter and receiver are characterized by a rise/fall time and the amplifier side ofthe receiver is characterized by a band width , all these restrict together the speed of the

    response, namely a the rise time on the output of the receiver.

    The total band width of the impuls in ps on the receiver output:

    22 == ((trtr))22 ++ ((fiberfiber))22 ++ ((recrec))22 ++ ((aa))22

    Where on the right part represent the transmitter, optical fiber, receiver and the echivalenta.a.

    --trtr == ttrr/2/2 - transmitter impuls response width, whereris the optical rise time of the transmitter--

    fiberfiber

    is the total dispersion of fiber (in this case for SI-step index SMFs)

    --recrec == recrec/2/2 - receiver impuls response width , whererecrec is the receiver rise time--aa = 1/8= 1/8ff the effect of the link distance of the receiver part is expressible with a echivalent-aa whereffis the channel band width from the receiver side in GHz

  • 8/12/2019 Sfp Op Speed

    4/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    4

    trtr

    recrec

    LL fiberfiber

    DPMD

    trtr22

    recrec22

    f3dB = 0,35/rec

    BrBr 0,1/ D0,1/ DPMDPMD(L)(L)1/21/2

    D = c/BD = c/B2222LL

    aa=1/8=1/8ff

    fiberfiber22

    22 = (= (trtr))22 + (+ (fiberfiber))22 + (+ (recrec))22 + (+ (aa))22 R = 1/4R = 1/4

    Polarization Mode

    Dispersioncoefficient

    transmitter rise time

    receiver rise time

    length of fiber

    bit velocity dispersion

    total impulse width

    operation speedoperation speed

    Operation speed estimation block diagram

  • 8/12/2019 Sfp Op Speed

    5/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    5

    About Single Mode Fibers

    NAaa

    V nn ==

    22 22

    2

    1

    NF value is: V ==== 2,405

    Is the limit of the single mode operation.Is the limit of the single mode operation.

    Base modes

    HE11

    TMTM0101

    TETE0101

    HEHE1111HHyybridbrid Electromagnetic ModesElectromagnetic Modes

    TMTM0101 TransTransverseverse MagneticMagnetic ModesModes

    TETE0101 TraTrannssverseverse Electric ModesElectric Modes

    V

    nn11--corecore

    nn22--claddingcladding

    nneffeff==KK

    V=2.405V=2.405

    Higher modesHigher modes

    Single ModeSingle Modeoperation rangeoperation range

    2

    2

    mod

    VN es

    The number of modesThe number of modes

    Multi Mode operationrange

    We can eliminate the higher modes using inequalityWe can eliminate the higher modes using inequality VV 2,4052,405 aa 2,405/22,405/2NANA

    for SMF-Single Mode Fibers a 9 m (for LW fibers) and for cutoff 2a2aNANA /2,405 nm

    Normalized frequency

  • 8/12/2019 Sfp Op Speed

    6/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    6

    PolarizationPolarization ModeMode DispersionDispersion

    TheThe theoreticaltheoretical sectionsection andand thethe realreal sectionsection ofofthethe opticaloptical fibersfibers

    Real fiber is not completely symmetric.Real fiber is not completely symmetric. InIn casecase ofofthethe deformeddeformed fiberfibercorecore thethe rezultantrezultant polarizationpolarization

    planesplanes fluctuatefluctuate inin aa rangerange,, becausebecause theythey propagatepropagate withwith differentdifferent velocityvelocity inin thethe planesplanes ((becausebecause ofof

    thethe deformationdeformation)) andand theythey createcreate aa variablevariable opticaloptical powerpoweratat thethe endend ofofthethe fiberfibercorecore..

    PMDPMD normalnormal delaydelay timetime

    resultingresulting

    polarizationpolarization planeplane

    undeformedundeformed corecore

    excentricexcentric ((deformeddeformed)) corecore

    fluctuationfluctuation ofof

    polarizationpolarization planesplanes

    slowslow axisaxis

    fastfast axisaxis

    LDPMDPMD

    kmpsPMD

    /11,0 TheThe typicaltypical valuesvalues forforthethe DPMDDPMD polarizationpolarization modemode dispersiondispersion coefficientcoefficient areare::

    Dr

    PMD TL

    11,01,0 = LDB PMDr /1,0

    wherewhere TT isis thethe bitbit periodeperiode andand BrBrthethe bitbit velocityvelocity.

  • 8/12/2019 Sfp Op Speed

    7/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    7

    SW Avago 4 Gbps SFP optical transceiver operation speed calculation

    150 m/300 m150 m/300 mLength of the fiber - LL

    850 nm850 nmOperating wavelength -

    1,451,45Cladding refractive index n2

    1,471,47Core refractive index n1>>>> n2

    125125 mmCladding diameter ddcladdingcladding

    5050 mmCore diameter - ddcorecore

    ValueValueMultimodeMultimode fiberfibercharacteristicscharacteristics

    AFBR-57D7APZ-IB, SW/150 or 300 mOptical transceiver type

    PIN Photodiode5050 pspsReceiver electrical rise/fall time -recrec

    Vertical Cavity Surface Emitting laserVertical Cavity Surface Emitting laser9090 pspsTransmitter optical rise/fall time -trtr

    Laser typeLaser typeValueValueTransmitter and receiverTransmitter and receiver

    characteristicscharacteristics

    http://www.avagotech.com/products/optical_transceivers/storage/4http://www.avagotech.com/products/optical_transceivers/storage/4 g_fibre_channel/?linksource=dropdowng_fibre_channel/?linksource=dropdown

    SW SFP device

  • 8/12/2019 Sfp Op Speed

    8/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    8

    Two rays at entranceTwo rays at entrance

    to fiberto fiberacceptanceacceptance

    conecone

    corecore nn11 >>>>>>>> nn22

    MultiMulti--Mode FiberMode Fiber

    nn22--claddingcladding

    L=150 mL=150 m

    SingleSingle

    impulseimpulse

    Illustration of dispersionIllustration of dispersion

    Rays at end of fiberRays at end of fiber

    fastfast slowslow

    Run time difference

    For characterization of the size of dispersion the "run time difference" = 2-1 is the

    suitable parameter.The run time difference is = (L= (Ln1/c)n1/c) where delta is the refractive index difference.For the above values the= 0,0013 = (L1= (L1n1/c)n1/c) = (150m(150m1,47/31,47/3108m/s)) 0,00130,0013 ===== 0,95 ns

    Resultingfiber=0,95 ns 2fiber = (0,95)2 = 0,9025 ns =902,5 ps

    Transmitter rise timetrtr = 90= 90 psps 2tr = (tr /2)2 = (45)2 = 2025 psReceiver rise timerecrec = 50= 50 psps 2rec = (rec /2)2 =(25)2 = 625 ps

  • 8/12/2019 Sfp Op Speed

    9/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    9

    For 3dB bandwide correspondingrec is: f3dB = 0,35/rec = 0,35/5010-12 s =

    ==== 0,007103109 = 7 GHz

    R = 2R = 2f=1/4f=1/4 a = 1/8f= 1/(87109)= (1/56) 10-9 = 0,017 ns

    2a = 0,000289 ns = 0,000289103 ps = 0,289 ps

    22 = (= (tr)tr)22 + (+ (rec)2 + (rec)2 + (fiber)fiber)22 + (+ (a)a)22 = 2025 ps + 625 ps + 902,5 ps + 0,289 ps =

    ==== 3552,789 ps = 59, 605 ps

    R =1/4R =1/4 = 1/459, 605 ps = 1/(238,4210-12

    )s = 0,00419 103

    109

    b/s = 4,194,19 Gb/sGb/s

  • 8/12/2019 Sfp Op Speed

    10/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    10

    LW Avago 4Gbps SFP optical transceiver operation speed calculation

    0,10,1

    ps/(km)ps/(km)1/21/2PMD Polarization Mode Dispersion

    coefficient- PMDPMD

    4 km4 kmLength of the fiber - LL

    1310 nm1310 nmOperating wavelength -

    1,461,46Cladding refractive index n2

    1,4651,465Core refractive index n1>>>> n2

    125125 mmCladding diameter ddcladdingcladding

    99 mmCore diameter - ddcorecore

    ValueValueSingle modeSingle mode fiberfibercharacteristicscharacteristics

    The mini GBIC (AvagoAvago, type, type:::::::: AFCTAFCT--57R5APZ, LW/4km57R5APZ, LW/4km) transmitter and receiver optical parametersare the followings:

    www.avagotech.com/search/results.jsp?src=&siteCriteria=AFCT-57R5APZ

    AFCT-57R5APZ, LW/4kmOptical transceiver type

    PIN Photodiode5050 pspsReceiver electrical rise/fall time - recrec

    High performanceHigh performance FabryFabry--PerotPerot9090 pspsTransmitter optical rise/fall time -trtr

    Laser typeLaser typeValueValueTransmitter and receiverTransmitter and receiver

    characteristicscharacteristics

    LW SFP device

  • 8/12/2019 Sfp Op Speed

    11/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    11

    LDLD PDPDcorecore nn11 >>>>>>>> nn22

    SingleSingle--Mode FiberMode Fiber

    nn22--claddingcladding

    L=4 kmL=4 km

    PIN receiverPIN receiverFP laserFP laser

    D(D())

    Dispersion calculation

    The run time of the rays (the time difference between the fast and slow rays at end of fiber) is::::::::======== DDLL The speed of light isThe speed of light is:: cc======== ff ff ======== c/c/ dfdf======== --(1/(1/22)) ccdd========1/1/22ccdd

    ======== DDLL ======== DD((22/c)/c) dfdf LL DD((22/c)/c) ff LL but the spectral wideff BB (bit velocity)======== DD((22/c)/c) BB LL

    The run time is smaller as the bitThe run time is smaller as the bit periodeperiode

  • 8/12/2019 Sfp Op Speed

    12/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    12

    BrBr 0,1/0,1/ DDPMDPMD(L)(L)1/21/2 for the Br- bit velocity resulting the following:

    ][50,02,0

    1,0

    21,0

    1,0

    ][4]/[1,0

    1,01,0

    1010

    12

    12 spskmkmpsLBr

    DPMD =====

    D = c/B2D = c/B222L =L = =

    =

    ++

    kmnm

    sm

    kmnm

    sm

    4171610025,0

    /3

    4171610025,0

    /3

    10

    1010

    10

    10212

    26

    212

    8

    kmnm

    ps

    kmnm

    ps

    kmnm

    sm

    kmnm

    sm

    =

    =

    =

    =

    + 10101010

    10101010 4

    4124

    2212

    26

    00069,025,4290

    3

    41716125,0

    /3

    41716125,0

    /3

    kmnm

    ps

    kmnm

    ps

    kmnm

    ps

    L

    cD

    B

    =

    =

    = 79,600069,0 10

    4

    22

    Resulting for the optical fiber dispersion coefficient: 2fiber = (7)2 = 49 ps

    For 4 km distance: we choose for a transmitter optical rise/fall timetrtr= 90= 90 pspsand for theand for the receiver rise/fall timereceiver rise/fall time recrec = 50= 50 psps

    The 3dBThe 3dB--band widthband width forfor recrec is:is: ff3dB = 0,35/3dB = 0,35/recrec = 0,35/50= 0,35/501010--1212 s = 0,007s = 0,007101033101099 = 7 GHz= 7 GHz

  • 8/12/2019 Sfp Op Speed

    13/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    13

    The operation speedand the band width are characterized by the following relationship:

    R = 2R = 2f=1/4f=1/4 22f=1/4f=1/4recrec a = 1/8f = 1/(87109)= (1/56)10-9 ==0,017810-9 s =0,0178 ns = 17,8 ps 2a = (17,8)2(17,8)2 = 316,84ps

    Transmitter and receiver impulse response widths are :

    tr = (tr /2) = 45 ps 2tr = (45)2 = 2025 psrec = (rec /2) = 25 ps 2rec =(25)2 = 625 ps

    The total band width of the impuls (total dispersion of the PCM line):

    22 = (= (tr)tr)22 + (+ (rec)rec)22 + (+ (fiber)fiber)22 + (+ (a)a)22 = 2025 ps + 625 ps + 49 ps + 316,84 ps

    2

    = 3015,84 ps = 54,916 ps (-delta is sometime called the "line dispersion")

    The value of the operation speed is:

    R =1/4R =1/4 = 1/4 54,916 ps = 1/(454,91610-12)s = 11012/(219,664) s =0,004552 103109 s = 4,54,5 Gb/sGb/s

  • 8/12/2019 Sfp Op Speed

    14/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    14

    SSWW AVAGOAVAGO PartPart NumberNumbercodingcoding:: AFAFBRBR -- 5757 -- DD7A7A PPZZ

    AFAF ==AvagoAvago Fiber OpticsFiber OpticsBRBR = multimode device= multimode device

    5757 = SFP (a 59 would be SFF)= SFP (a 59 would be SFF)

    DD = 8/4/2G (= 8/4/2G (RR would be 4/2/1G)would be 4/2/1G)

    77 = Gen 2 (= Gen 2 (55 = Gen 1)= Gen 1)

    AA = extended temp (= extended temp (--10 to 85 C)10 to 85 C)

    PP

    = bail latch option= bail latch option

    ZZ == RoHSRoHS compliantcompliant

    LLWW AVAGOAVAGO PartPart NumberNumbercodingcoding:: AFAFCTCT -- 5757 -- DD 5A5ATTPPZZ

    AFAF ==AvagoAvago Fiber OpticsFiber Optics

    CTCT = single mode device= single mode device

    5757 = SFP (a 59 would be SFF)= SFP (a 59 would be SFF)

    DD = 8/4/2G (R would be 4/2/1G)= 8/4/2G (R would be 4/2/1G)

    55 = Gen 1= Gen 1

    AA = extended temp (= extended temp (--10 to 85 C)10 to 85 C)

    TT == DFB source for 10DFB source for 10--kmkm ((NN is for 30 km device)is for 30 km device)

    PP = bail latch option= bail latch option

    ZZ == RoHSRoHS compliantcompliant

  • 8/12/2019 Sfp Op Speed

    15/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    15

    Observations

    The operation speed of the laser optical transceivers deppending hardly from thekey parameters of the photodiode and laserlasertransceivertransceiver..

    TheThe keykey parametersparameters areare thethe receiverreceiverandandtransmittertransmitterrise/fallrise/falltimestimes.

    R = 1/4R = 1/4 (operation speed)

    == [[[[[[[[ ((trtr))22

    ++ ((recrec))22

    + (+ (fiberfiber))22

    + (+ (aa))22

    ]]]]]]]]1/21/2

    (line dispersion)

    trtr

    (optical transceiver) Laser transmitter (Laser transmitter (laserdiodelaserdiode))

    VCSEL, FPVCSEL, FP--FabryFabry--Perot or DFB lasersPerot or DFB lasers

    Rise/Fall time*Rise/Fall time*trtr= 90= 90 psps

    mini

    GBIC/SFP

    Receiver (PIN photodiode)Receiver (PIN photodiode)

    Rise/Fall time*Rise/Fall time*recrec = 50= 50 pspsThe tr- rise time of the laser deviceis the time during the output opticalpower of the laser increasing from

    10% until 90% ..

    10% of opt. power

    90% of optical powerpowerpower

    riserise

    timetimefall timefall time

  • 8/12/2019 Sfp Op Speed

    16/16

    5/1/2010 2010, IBM Advanced Technical

    Support Techdocs, Copyright IBM

    Corp.

    16

    The operation speedcan be different for different optical transceivers which are

    characterized by different "key parameters"::::

    2 Gb/s

    4 Gb/s

    8 Gb/s

    trtr= 120= 120 psps

    recrec = 75= 75 psps

    trtr= 90= 90 pspsrecrec = 50= 50 psps

    trtr= 60= 60 pspsrecrec = 30= 30 psps

    rise/fall time

    Remark:::: For SW/300 mwe have < 4 Gb/s

    O

    P

    E

    RA

    T

    I

    O

    N

    SP

    E

    E

    D