shale gas conversion: processing and economics gennaro j maffia, [email protected], alex...

113

Upload: letitia-warren

Post on 04-Jan-2016

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 2: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Shale gas conversion: Processing and economics

Gennaro J Maffia, [email protected], Alex Bertuccio. Chemical Engineering, Manhattan College, Riverdale, NY, NY 10471, United States

With the discovery of vast quantities of natural gas available in various shale formations in Pennsylvania, New York and several adjoining states comes the opportunity to convert this gas, traditionally used for fuel, into more value added products. The methane fraction can be converted into intermediates such as ethylene via oxidative coupling, whereas the ethane/propane fraction can be converted into ethylene via conventional steam pyrolysis. In this paper the processing requirements of a variety of technologies starting with methane and E/P mixes will be presented along with the expected material and energy balances and production economics.

Page 3: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Prof. Gennaro J. Maffia

“Jerry”

Often called a fracking engineer; or words to that effect

Page 4: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Jerry Maffia – background

1. Professor of Chemical Engineering – Manhattan College

2. Manager of Technology Development – ARCOa. Petrochemical & Refiningb. Start-up & Technical Services

[email protected]

http://home.manhattan.edu/~gennaro.maffia/ACS2013.pptx

Page 5: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Jerry Maffia – some projects

Energy Related Projects

a. Alaskan Pipeline and Remote Gas

b. Fuel Oxygenatesc. Biofuels/Bioseparationsd. Energy Integratione. Novel Separationsf. Manufacture of Proppants

Page 6: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Shale Gas – an opportunity

• One point of view

Page 7: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

“The outlook for advantaged U.S. natural gas was a significant factor in Dow’s decision to invest $4 billion to grow our overall ethylene and propylene production capabilities in the U.S. Gulf Coast region,” said Jim Fitterling, Dow Executive Vice President and President of Feedstocks & Energy and Corporate Development. “Today, 70 percent of the Company’s global ethylene assets are in regions with cost advantaged feedstocks – and we’ve seen the benefits this advantage provides given oil-based naphtha margin pressure in Europe and Asia. This plan represents a game-changing move to strengthen the competitiveness of our high-margin, high-growth derivatives businesses as we continue to capture growth in the Americas.”

Page 8: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Economic Impact

A World Scale Petrochemical Plant In Pittsburgh

.....are you crazy professor?

Maybe, but ...............

Page 9: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 10: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Shale Gas – a curse

• Another point of view

Page 11: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 12: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 13: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Shale Gas – a textbook

• Call a professor

Page 14: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Mining Natural Gas – Wiley Text (work in progress)

Table of Contents

Chapter 1 Worldwide energy pictureChapter 2 Current domestic energy situation and opportunitiesChapter 3 Worldwide carbon dioxide balance – current and anticipatedChapter 4 Review of basic fluid flowChapter 5 Overview of hydraulic fracturing – all issues Chapter 6 Two phase flow and flow through porous mediaChapter 7 Fluidization, sedimentation and suspension of proppantsChapter 8 Details of the hydraulic fracturing processChapter 9 Composition of fracturing fluids – current and alternativesChapter 10 Alternative fracturing methods and fluidsChapter 11 Environmental issues and safety concernsChapter 12 Economic evaluationChapter 13 Societal impact and safety concernsChapter 14 Sustainability issuesChapter 15 Future expectations

Page 15: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

What is all the fuss about .........

Page 16: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Mining

Page 17: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 18: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Methodology…....

hydraulic fracturing ……….how?

drill a vertical wellextend the drilling horizontallycase the wellperforate the casingpump in high pressure water and sand

to fracture the shale at the perforationsrecover/dispose of the watercap the well boresend gas to treatmenttreated gas to interstate pipeline system

Page 19: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 20: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Hey

Jerr

y w

hat’s

the

stor

y?

Page 21: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 22: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Hey Professor,

would it help if we didn’t use water?

Dry Frac

Atmospheric CO2 – approaching 400 ppmFlue Gas CO2 – much higher, depends on EALight HCs

Page 23: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

The FracKINGS Design Group

Morgan, Jimmy, Amanda, Amanda

Page 24: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Drexel University Senior Project Team – Using CO2 as a Fracking Fluid

Amanda, Amanda

Page 25: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Prof. M. and the FracKINGS

Page 26: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

0 50 100 150 200 250 300 350 400 450 5000

2

4

6

8

10

12

Month from April 1976

USD

per t

hous

and

CF

Page 27: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 28: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

SOME HEADLINES.........

Regulations and Current Policy

Page 29: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

May 2012 News

Safe Drinking Water Act

Several statutes may be leveraged to protect water quality, but EPA's central authority to protect drinking water is drawn from the Safe Drinking Water Act (SDWA).

The protection of USDWs is focused in the Underground Injection Control (UIC) program, which regulates the subsurface emplacement of fluid.

Congress provided for exclusions to UIC authority (SDWA § 1421(d)), however, with the most recent language added via the Energy Policy Act of 2005:

Page 30: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

May 2012 News

"The term 'underground injection' – (A) means the subsurface emplacement of fluids by well injection; and (B) excludes – (i) the underground injection of natural gas for purposes of storage; and (ii) the underground injection of fluids or propping agents (other than diesel fuels) pursuant to hydraulic fracturing operations related to oil, gas, or geothermal production activities."

While the SDWA specifically excludes hydraulic fracturing from UIC regulation under SDWA § 1421 (d)(1), the use of diesel fuel during hydraulic fracturing is still regulated by the UIC program.

Page 31: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

May 2012 News

State oil and gas agencies may have additional regulations for hydraulic fracturing. In addition, states or EPA have authority under the Clean Water Act to regulate discharge of produced waters from hydraulic fracturing operations.

Clean Water Act

Disposal of flowback into surface waters of the United States is regulated by the National Pollutant Discharge Elimination System (NPDES) permit program. The Clean Water Act authorizes the NPDES program.

Page 32: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Topics

• Current Ethylene Business Environment• ODH and Competing Cases – Processing• Economics• Preliminary Reactor Design • CO2 Sequestration and Management• ODH Upside Potential – Energy Upgrade

Page 33: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Ethylene Business Background

• Current Cracking Strategy• Feedstocks and Leveraging Issues

Page 34: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Ethylene Producers

• Domestic• North America• World-wide

Page 35: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

US

Prod

ucer

s

Page 36: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Petral Information

• Raw data – play it straight

Page 37: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 38: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 39: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 40: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 41: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 42: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 43: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 44: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 45: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Implications: In the US, with its advantaged natural gas–based feedstock, cash margins in the next cycle should be 2.4x the average of the past 20 years. Dow and LyondellBasellshould be the main beneficiaries. Asian utilization rates are set to tighten the most fromcurrent low levels. In Asia/Middle East, we prefer companies with exposure to gas-basedfeedstocks such as PTT Chemicals and SABIC. Europe should remain structurally weakdue to low demand, high feedstock costs, and proximity to potential Middle East imports.

Page 46: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

DefinitionsVC = RMC + UtilitiesFC = LC + MC + OVHD + OtherCC = FC + VCRNB = FC + VC + CR

Page 47: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

The US and Europe Have Driven Ethylene DemandFrom 1990 to 2000, global ethylene demand growth averaged5.0%, or 1.9x global GDP growth. However, from 2000 to2009, it averaged just 2.5%, or 0.9x global GDP growth.

Page 48: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

The US and Europe Have Driven Ethylene DemandFrom 1990 to 2000, global ethylene demand growth averaged5.0%, or 1.9x global GDP growth. However, from 2000 to2009, it averaged just 2.5%, or 0.9x global GDP growth.

Page 49: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

The ethane to ethylene program is an offshoot from another related TDC program which involves alternatives routes to styrene starting from ethane as one of the components in the feed.

The new reaction concept of ethane to ethylene is a controlled catalytic oxydehydrogenation (ODH) process at low temperature. This process undergoes no reaction in the absence of the catalyst till a temperature of 400 C . This new process provides an alternative to ethylene production compared to naphtha or ethane cracker. The main driver for this program is that the process has several potential applications including an alternative to present day ethane cracker, replacement of recycle cracker and the possibility of feed for EB/SM and EO plants.

Page 50: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

C2H6 + ½ O2 C2H4 + H2O + Heat

The process operates at low temperature (< 400 oC) and dry run experiments have proven that there are no reactions without the catalyst.

Page 51: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

To date many ethane ODH processes do exist in literature and sufficient research efforts have also been given in this regard, but none of them have yet been commercialized

The catalyst is capable of maintaining high ethane reaction rate, high ethylene selectivity and self stability. Several phases of improvement have been carried out with the catalyst and the results have also been promising when compared with an ethane pyrolysis furnace.

70

75

80

85

90

95

100

30 40 50 60 70 80

% C2 Conversion

% C

2= S

elec

tivi

ty

TDC DATA: 10 mol% ethane + 8 mol% oxygen + 10 mol% water + 72 mol% nitrogen Best Literature data (2005 ODH) : 9 mol% ethane + 6 mol% oxygen + 85 mol% helium Pyrolysis cracker (commercial plants) : S/O = 0.3

Page 52: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Oxidative Dehydrogenation Study Cases

Case 1: Air plus process water recycleCase 2: Air plus nitrogen recycleCase 3: Oxygen plus process water recycleCase 4: Case 3 @ SP Conversion and High SelectivityCase 5: Dow ATR

ABB ODH Basis: 90 % conversion, 90% selectivity (Cases 1-3) CO/CO2 equimolar yield 0.08/0.1/0.82 = O2/C2/Carrier 450 C; 4 bar reactor inlet or as noted in sub-cases

Page 53: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Case 1-HT 3-HT 3-MT 3-LT 3-MT-A 4-MT

O2 source air O2 O2 O2 O2 O2 Recycle diluent H2O H2O H2O H2O H2O H2O Rx inlet P, barA 4 4 4 4 4 3Feed O2 mole% 8 8 8 8 8 8

C2H6 mole% 10 10 10 10 10 by calc. C2H6 % conv. 90 90 90 90 90 70% selectivity 90 90 90 90 90 95

Effl mole% O2 1.2 1.2 1.2 1.2 1.2 1.2Rx exit T, oC 450 450 425 375 425 425

Trim Rx yes yes yes yes no yes

Case Specifics

Page 54: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

N2 Purge/Sales Ethylene

CO2Ethane

Air

ProcessWater Compression

Net Water Drying & EthaneN2 Removal Recycle

ODH/Trim Quench

Amine System

Case 1

Uses combination of N2/stm as diluent - replaced by Case 3 (all stm) as the Base Case

Page 55: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

EthyleneN2 recycle loop N2 (net)

CO2Ethane

Air

water

EthaneRecycle

ODH/Trim Quench

Amine System

Compression, DryingPurge and Recycle

Case 2

Not pursued further due to N2 loading

Page 56: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Ethylene

CO2 CompressionEthane & Drying

O2

ProcessWater

Net Water EthaneRecycle

ODH/Trim Quench

Amine System

Cases 3,4

Case 3 90/90Case 4 70/95

Page 57: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

EA/H2

Ethane

Steam

RCTR CaO

CO2Quench

water compression

dryer

chilling trainDe-C1

De-C2

De-C3

C2 Fract

Fuel gas

C3s

C2= Product

DOW ATR Process

Case 5 – Based on examples in Dow patent USP 6566573 E-1; looks like an OP

Page 58: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 59: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 60: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 61: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 62: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Summary ( cents/lb C2H4)

Case CC RNB (20%)1 ODH - air high high2 ODH - N2 high high3 ODH 26.8 35

3 - LT ODH 27.1 36.84 ODH 25.8 35.85 Dow 32.2 46.26 SP - Hi H2 24.1 407 SP - Lo H2 25.8 41.7

Page 63: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Fuel Value conventional conventional$/1e6 BTU H2 chem H2 fuel

6 19 21.28 24.1 25.910 29.1 30.512 34.2 35.1

Cash Costs, US cts./lb

ODH Case 3 is breakeven CC with Conventional (H2 as fuel)

CC for ODH will improve greatly with upgrade of low level heat rejection

Page 64: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Fuel Value conventional conventional Case 3 Case 3$/1e6 BTU H2 chem H2 fuel 1.2 ethane 1.23 ethane

6 19 21.2 20.8 21.38 24.1 25.9 26.2 26.810 29.1 30.5 31.6 32.312 34.2 35.1 37 37.9

Cash Costs, US cts./lb

ODH Case 3 is breakeven CC with Conventional (H2 as fuel)

CC for ODH will improve greatly with upgrade of low level heat rejection

Page 65: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Cents per Pound EthyleneFuel Value conventional conventional Case 3 Case 3$/1e6 BTU H2 chem H2 fuel 1.2 ethane 1.23 ethane

6 29.7 32 26.2 26.88 34.8 36 31.7 32.410 40 41.4 37.2 38.112 45.2 46.1 42.7 43.7

Required Netback, US cts./lb

Much better capital and plant simplicity result in favorable RNBs for the ODH case

Page 66: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Reactor Heat Balance

• Needs Significant Heat Rejection at a High Temperature– Similar to EO (Shell) or ACC Oxidative Coupling– Current research data puts reactor conditions on

the threshold of the need for molten salt cooling

Page 67: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

350.000

370.000

390.000

410.000

430.000

450.000

470.000

490.000

0.000 1.000 2.000 3.000 4.000 5.000 6.000

length, m

tem

pera

ture

, C

Case 3 – 420 C coolant

Page 68: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 69: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 70: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 71: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

350.000

360.000

370.000

380.000

390.000

400.000

410.000

420.000

430.000

440.000

0.000 1.000 2.000 3.000 4.000 5.000 6.000

length, m

tem

pe

ratu

re,

C

Case 3 390 C Coolant

Page 72: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.000 1.000 2.000 3.000 4.000 5.000 6.000

length, m

Eth

ane,

mo

l fr

acti

on

Case 3 390 C Coolant

Page 73: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Case 3 390 C Coolant

Page 74: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 75: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 76: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Basis 3818 kg mol/h ethaneConversion 90%Selectivity 90%

CO/CO2 1/1Production 2978.04 kg mol/h

1500.06 PPYScale 1.00 to 1.5 BPPY

<------------------------ kg mols/h --------------------->Component MW S1 S2 S3 S4 S5 S6

N2 28 0.00 11492.18 11492.18 11492.18 11492.18 11492.18O2 32 0.00 3054.40 477.25 0.00 0.00 0.00

C2H4 28 0.00 0.00 3092.58 3002.44 3002.44 3002.44C2H6 30 3818.00 0.00 381.80 371.79 371.79 371.79CO 28 0.00 0.00 343.62 0.00 0.00 0.00

CO2 44 0.00 0.00 343.62 887.53 887.53 0.00H2O 18 0.00 19815.42 23938.86 24149.23 2127.01 2127.01

Abs. Oil 142 0.00 0.00 0.00 0.00 0.00 0.00Total mol/h 3818.00 34362.00 40069.91 39903.17 17880.94 16993.41

kg/h 114540.00 776199.40 890739.40 890740.43 494340.40 455288.98

<------------------------ kg mols/h --------------------->Component MW S7 S8 S9 S10 S11 S12

N2 28 11492.18 11492.18 11492.18 11492.18 11492.18 11492.18O2 32 0.00 0.00 0.00 0.00 0.00 0.00

C2H4 28 3002.44 3002.44 3002.44 3002.44 3002.44 3002.44C2H6 30 371.79 371.79 371.79 371.79 371.79 371.79CO 28 0.00 0.00 0.00 0.00 0.00 0.00

CO2 44 0.00 0.00 0.00 0.00 0.00 0.00H2O 18 1076.03 550.14 550.14 265.93 0.00 0.00

Abs. Oil 142 0 0 0 0 0 0Total mol/h 15942.43 15416.54 15416.54 15132.33 14866.40 14866.40

kg/h 436371.323 426905.28 426905.279 421789.6 417002.838 417002.8381

<------------------------ kg mols/h --------------------->Component MW S13 S14 S15 S16 S17 S18

N2 28 10799.59 427971.84 0.00 0.00 692.59 0.00O2 32 0.00 0.00 0.00 0.00 0.00 0.00

C2H4 28 11.34 114621.71 2978.04 2978.04 11.34 0.00C2H6 30 0.01 14194.76 0.00 0.00 0.00 371.87CO 28 0.00 0.00 0.00 0.00 0.00 0.00

CO2 44 0.00 0.00 0.00 0.00 0.00 0.00H2O 18 0.00 0.00 0.00 0.00 0.00 0.00

Abs. Oil 142 0.00 0.00 0.00 0.00 0.00 0.00Total mol/h 10810.94 556788.30 2978.04 2978.04 703.92 371.87

kg/h 302706.446 15618462 83385.12 83385.12 19709.8905 11156.196

Page 77: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Basis 100 kg mol/h ethaneConversion 90%Selectivity 90%

CO/CO2 1/1Production 78 kg mol/h

39.29 PPYScale 38.18 to 1.5 BPPY

<------------------------ kg mols/h --------------------->Component MW S1 S2 S3 S4 S5 S6

N2 28 0.00 0.00 0.00 0.00 0.00 0.00O2 32 0.00 3040.00 0.00 3040.00 475.00 0.00

C2H4 28 0.00 0.00 0.00 0.00 3078.00 2988.30C2H6 30 3800.00 0.00 0.00 3800.00 380.00 370.00CO 28 0.00 0.00 0.00 0.00 342.00 0.00

CO2 44 0.00 0.00 0.00 0.00 342.00 883.30H2O 18 0.00 0.00 31160.00 31160.00 35264.00 35473.00Total kg mol/h 3800.00 3040.00 31160.00 38000.00 39881.00 39714.60

kg/h 114000.00 97280.00 560880.00 772160.00 772160.00 772151.60

<------------------------ kg mols/h --------------------->Component MW S7 S8 S9 S10 S11 S12

N2 28 0.00 0.00 0.00 0.00 0.00 0.00O2 32 0.00 0.00 0.00 0.00 0.00 0.00

C2H4 28 2988.30 0.00 2988.30 2988.30 0.00 2988.30C2H6 30 370.03 0.00 370.00 370.00 0.00 370.00CO 28 0.00 0.00 0.00 0.00 0.00 0.00

CO2 44 883.30 0.00 0.00 0.00 0.00 0.00H2O 18 477.20 3836.00 1177.22 186.97 290.25 186.97Total kg mol/h 4718.83 3836.00 4535.52 3545.27 290.25 3545.27

kg/h 142228.1 69048 115962.4 98137.86 5224.5 98137.86

<------------------------ kg mols/h --------------------->Component MW S13 S14 S15 S16 S17

N2 28 0.00 0.00 0.00 0.00 0.00O2 32 0.00 0.00 0.00 0.00 0.00

C2H4 28 2988.30 0.00 2988.30 2986.90 1.37C2H6 30 370.00 0.00 370.03 0.00 370.02CO 28 0.00 0.00 0.00 0.00 0.00

CO2 44 0.00 0.00 0.00 0.00 0.00H2O 18 5.09 79.15 0.00 0.00 0.00Total kg mol/h 3363.39 79.15 3358.33 2986.90 371.39

kg/h 94864.02 1424.7 94773.3 83633.2 11138.96

Page 78: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

water69048

ethane114000 CO2

38865.2

oxygen water 11,14,1597280 8589.96

ethylene83633.2

ethane11139

211280 211275.4

overall material balance

ethane 1.229906 -1.229906305oxygen 1.163174 -1.163174433water 0.928315 0.928315071

ethane recycleethylene 1 1

CO2 0.46471 0.464710187

-5.54804E-05

CASE 3

Page 79: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

(LEL/LFL) (UEL/UFL) LEL UEL LEL UEL(%) (%) O2/fuel O2/fuel fuel/O2 fuel/O2

Acetaldehyde 4 60 5.04 0.14 0.20 7.14Acetylene 2.2 85 9.34 0.04 0.11 26.98Ammonia 15 28 1.19 0.54 0.84 1.85Benzene 1.3 7.1 15.94 2.75 0.06 0.36Butane 1.8 8.4 11.46 2.29 0.09 0.44

Butylene 1.98 9.65 10.40 1.97 0.10 0.51Carbon Monoxide 12 75 1.54 0.07 0.65 14.29

Ethane 3 12.4 6.79 1.48 0.15 0.67Ethylene 2.7 36 7.57 0.37 0.13 2.68

Ethyl Alcohol 3.3 19 6.15 0.90 0.16 1.12Fuel Oil No.1 0.7 5 29.79 3.99 0.03 0.25Hydrogen 4 75 5.04 0.07 0.20 14.29Isobutane 1.8 9.6 11.46 1.98 0.09 0.51Isobutene 1.8 9 11.46 2.12 0.09 0.47Isooctane 0.79 5.94 26.37 3.33 0.04 0.30Isopentane 1.32 9.16 15.70 2.08 0.06 0.48Gasoline 1.4 7.6 14.79 2.55 0.07 0.39Kerosine 0.7 5 29.79 3.99 0.03 0.25Methane 5 15 3.99 1.19 0.25 0.84

n-Heptane 1.05 6.7 19.79 2.92 0.05 0.34n-Hexane 1.1 7.5 18.88 2.59 0.05 0.39n-Pentene 1.65 7.7 12.52 2.52 0.08 0.40Pentane 1.5 7.8 13.79 2.48 0.07 0.40Propane 2.1 10.1 9.79 1.87 0.10 0.53

Propylene 2 11.1 10.29 1.68 0.10 0.59Styrene 1.1 6.1 18.88 3.23 0.05 0.31Toluene 1.2 7.1 17.29 2.75 0.06 0.36p-Xylene 1.1 7 18.88 2.79 0.05 0.36

ODH Case 3 O2/C2 feed 0.8O2/C2 exit 0

Page 80: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

"Lower Explosive or Flammable

Limit"

"Upper Explosive or Flammable

Limit"

(LEL/LFL) (UEL/UFL) LEL UEL(%) (%) Fuel/O2 Fuel/O2

Butane 1.8 8.4 0.087285 0.436681Butylene 1.98 9.65 0.09619 0.508604

Ethane 3 12.4 0.147 0.674Ethylene 2.7 36 0.132139 2.678571Hydrogen 4 75 0.198413 14.28571Isobutane 1.8 9.6 0.087285 0.505689Isobutene 1.8 9 0.087285 0.470958Gasoline 1.4 7.6 0.067613 0.391672Kerosine 0.7 5 0.033568 0.250627Methane 5 15 0.250627 0.840336

Methyl Alcohol 6.7 36 0.341959 2.678571n-Hexane 1.1 7.5 0.052964 0.3861n-Pentene 1.65 7.7 0.07989 0.397255

% C2 C2/O2ABB 10 > 1

Wang 30 1Lopez 30 1Suzaki 10 1

EO Reactor 90 9

Fuel Gas

Page 81: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Section 100Duty, MM kJ/h SA m2 per 1.5 in tube n tubes TIC, $ MM

R-101 ODH Primary Reactor 704 26107 0.96 27195 56.17R-102 ODH Trim Oxidizer 245 9075 0.96 9453 19.53E-101 ODH Primary Reactor Cooler 704 6519 0.96 7.01E-102 ODH Trim Oxidizer Cooler 245 2269 2.44E-103 Effluent Cooler # 1 175 1620 1.74E-104 Effluent Cooler # 2 175 1620 1.74F-101 Ethane Preheat Furnace 108 10.84F-102 O2 Preheat Furnace 35 3.53F-103 PS Preheat Furnace 1710 25.65D-101 ODH Primary Reactor Cooler Steam Drum 30000 gal 0.75D-102 ODH Trim Oxidizer Cooler Steam Drum 10440 gal 0.25D-103 Effluent Cooler # 1 Steam Drum 7500 gal 0.2D-104 Effluent Cooler # 2 Steam Drum 7500 gal 0.2

net energy, MM kJ/h (upper end) 555 130.07$/lb C2H4 0.024

Section 200

D-201 Quench Drum (2 reqd) 60000 gal 1.5E-201 Quench Water Coolers 1650 60000 13E-202 Amine Interchanger package 10E-203 CO2 Stripper Reboiler package 20T-201 Amine Scrubber package -T-202 Amine CO2 Stripper package -P-201 Quench Water Pump 2150 SHP 1P-202 Amine Interchange Pump package -P-203 Amine Recycle Pump package -

45.5

Section 300

C-301 Charge Gas Compressor Stg 1 5500 BHP 4.1C-302 Charge Gas Compressor Stg 2 4400 BHP 3.3E-301 Stage 1 After Cooler 26.7 320 1E-302 Stage 2 After Cooler 16.1 200 0.65E-303 Stage 2 After Chiller 11.1 135 0.5D-301 C2 Gas KO Pot #1 4000 gal 0.08D-302 C2 Gas KO Pot #2 2500 gal 0.06D-303 C2 Gas KO Pot #3 2500 gal 0.06T-301 Caustic Gas Scrubber package 3P-301 Caustic Solution Circulating Pump package -

DR-301 C2 Gas Primary Dryer 3000 gal 20 ton dscnt 0.5DR-302 C2 Gas Guard Dryer 3000 gal 20 ton dscnt 0.5DR-303 C2 Gas Dryer - Regen Cycle 3000 gal 20 ton dscnt 0.5

14.25

Section 400

T-401 Ethylene Fractionator 5 m x 60 m 80 stages 5C-401 Heat Pump 6000 4E-401 Ethylene Fractionator Condenser 160 2400 m2 1E-402 Ethylene Product Heater 18 0.25E-403 Ethylene Fractionator Reboiler 140 -E-404 Ethane Recycle Heater 2 0.15P-401 Ethylene Product Pump 400 SHP 0.05P-402 Ethane Recycle Pump 25 SHP 0.02P-403 Reflux Pump (may not be required)D-401 Ethylene Product Drum 0.15D-402 Ethylene Fractionator Reflux Drum 0.25

10.87

Total TIC 200.69

Page 82: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

capital cost BTPB cost/y tax rate ATCF project life inflation100 4.5 22.22222 45% 12.22222222 15 3%

1 2 3 4 5 6 7year 1 year 2 year 3 year 4 year 5 year 6 year 7

12.22222222 12.58888889 12.96656 13.35555 13.75621879 14.16891 14.5939710.96118488 10.12516374 9.352907 8.639551 7.980603081 7.371914 6.80965

8 9 10 11 12 13 14 15year 8 year 9 year 10 year 11 year 12 year 13 year 14 year 15

15.03179169 15.48274544 15.94723 16.42564 16.91841398 17.42597 17.94875 18.487216.290271167 5.810505544 5.367332 4.95796 4.579811215 4.230504 3.907839 3.609784

ROR 0.115045714 Procedure: define a PB period, inflation rate and tax rateROR 11.50 goal seek cell B20 to be 1 by changing

PW capital 100 cell A16PWCF 99.99498133Ratio 1.000050189

BTPB ATROI, %4.5 11.514 13.58

3.5 16.113 19.31

2.5 23.57

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

2 2.5 3 3.5 4 4.5 5

ATROR, %

BT

PB

, y

Page 83: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Production Economics - Ethane ODH 9090 RNB 0.324 $/lb C2H4O2 Case

Variable Costs raw material, utilitiesFixed Costs labor, overhead, depreciation, taxes, insuranceCapital Recovery amount of cost associated with the capital equipment

[MARR; hurdle rate]

Production Capacity 1500 MMPPYPlant Costs $201 MM IBL

$80 MM OBLIBL+OBL $281 MM+20% $338 MM

Property/Value Bases Fuel $8.00 per MMBTUHydrogen 190 SCF/lbEthane 3.1 lb/galFG, LHV 18 MBTU/lbFuel eff 85 % firing efficiency

Production CostsRaw Materials/By-products Basis Unit, $ lb/lb C2H4 $/lb C2H4Ethane 3.1 lbs/gal lb 0.18 1.230 0.221O2 lb 0.02 1.17 0.023Process Steam lb na 0 0.000Nitrogen lb na 0 0.000CO2 lb na 0 0.000Process Water lb na 0 0.000Cat/Chem miscellaneous lb 1.00 0.001 0.001

Total Raw Material Costs 0.2214

Utilities usage $/unit $/lb C2H4Power, KWH 0.08 0.1 0.008Cooling Water, M Gal 0.03 0.15 0.005Steam, M lb 0 10 0.000Refrigeration, MM BTU 0 10 0.000Natural Gas, lbs (net) 0.15 0.1 0.015

Total Utility Costs 0.028

Total Variable Cost 0.249

Fixed Costs usage shifts rate $/lb C2H4Labor 6 4 50000 0.0008Foremen (@ 33 %) 0.00026Supervision (@ 7.5 %) 0.00006Maintenance Matl & Labor (6 % 0f ISBL) 0.00804Direct Overhead (50 % of L & S) 0.00056Plant Overhead (65 % L & M) 0.00596Insurance (1.5 % Plant Investment) 0.00338

Total Fixed Costs 0.01906

Total Cash Costs (FC + VC) 0.268

Capital Recovery (ATROI based on BTPB)

BT Payback, y 4.500 4 3.5 3

ATROI, % 11.500 13.6 16.1 19.3

Capital Recovery 0.05003 0.05628 0.06432 0.075

Total Cost of Production (minus SGA) 0.318 0.324 0.332 0.343

plus 2 % SGA 0.32435 0.33072 0.338925 0.3499

Required Netback 0.324 0.331 0.339 0.350

420

C C

oola

nt

Page 84: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Production Economics - Ethane ODH 9090 RNB 0.338 $/lb C2H4O2 Case

Variable Costs raw material, utilitiesFixed Costs labor, overhead, depreciation, taxes, insuranceCapital Recovery amount of cost associated with the capital equipment

[MARR; hurdle rate]

Production Capacity 1500 MMPPYPlant Costs $240 MM IBL

$96 MM OBLIBL+OBL $336 MM+20% $403 MM

Property/Value Bases Fuel $8.00 per MMBTUHydrogen 190 SCF/lbEthane 3.1 lb/galFG, LHV 18 MBTU/lbFuel eff 85 % firing efficiency

Production CostsRaw Materials/By-products Basis Unit, $ lb/lb C2H4 $/lb C2H4Ethane 3.1 lbs/gal lb 0.18 1.230 0.221O2 lb 0.02 1.17 0.023Process Steam lb na 0 0.000Nitrogen lb na 0 0.000CO2 lb na 0 0.000Process Water lb na 0 0.000Cat/Chem miscellaneous lb 1.00 0.001 0.001

Total Raw Material Costs 0.2214

Utilities usage $/unit $/lb C2H4Power, KWH 0.08 0.1 0.008Cooling Water, M Gal 0.03 0.15 0.005Steam, M lb 0 10 0.000Refrigeration, MM BTU 0 10 0.000Natural Gas, lbs (net) 0.15 0.1 0.015

Total Utility Costs 0.028

Total Variable Cost 0.249

Fixed Costs usage shifts rate $/lb C2H4Labor 6 4 50000 0.0008Foremen (@ 33 %) 0.00026Supervision (@ 7.5 %) 0.00006Maintenance Matl & Labor (6 % 0f ISBL) 0.0096Direct Overhead (50 % of L & S) 0.00056Plant Overhead (65 % L & M) 0.00697Insurance (1.5 % Plant Investment) 0.00403

Total Fixed Costs 0.02229

Total Cash Costs (FC + VC) 0.271

Capital Recovery (ATROI based on BTPB)

BT Payback, y 4.500 4 3.5 3

ATROI, % 11.500 13.6 16.1 19.3

Capital Recovery 0.05973 0.0672 0.0768 0.0896

Total Cost of Production (minus SGA) 0.331 0.338 0.348 0.361

plus 2 % SGA 0.33754 0.34516 0.354948 0.368

Required Netback 0.338 0.345 0.355 0.368

390

C Co

olan

t

Page 85: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Production Economics - Ethane Steam Cracker

results of analysis: RNB 0.348 $/lb C2H4

Variable Costs raw material, utilitiesFixed Costs labor, overhead, depreciation, taxes, insuranceCapital Recovery amount of cost associated with the capital equipment

[MARR; hurdle rate]

Production Capacity 1500 MMPPYPlant Costs $405 MM IBL

$162 MM OBLIBL+OBL $567 MM+20% $680 MM

Property/Value Bases Fuel $8.00 per MMBTUHydrogen 190 SCF/lbEthane 3.1 lbs/galFG, LHV 18 MBTU/lbFuel eff 85 % firing efficiency

Production CostsRaw Materials/By-products Basis Unit, $ lb/lb C2H4 $/lb C2H4Ethane 3.1 lbs/gal lb 0.18 1.275 0.230Hydrogen 380 SCF/lb mol lb 0.50 -0.072 -0.036Fuel Gas 18MBTU/lb, 85% lb 0.12 -0.163 -0.020Propylene < Chem grade lb 0.35 -0.020 -0.007Cat/Chem miscellaneous lb 1.00 0.001 0.001

Total Raw Material Costs 0.167

Utilities usage $/unit $/lb C2H4Power, KWH 0.008 0.1 0.001Cooling Water, M Gal 0.036 0.15 0.005Steam, M lb 0 10 0.000Refrigeration, MM BTU 0 10 0.000Natural Gas, lbs 0.3 0.1 0.030

Total Utility Costs 0.036

Total Variable Cost 0.203

Fixed Costs usage shifts rate $/lb C2H4Labor 10 4 50000 0.001Foremen (@ 33 %) 4E-04Supervision (@ 7.5 %) 1E-04Maintenance Matl & Labor (6 % 0f ISBL) 0.016Direct Overhead (50 % of L & S) 9E-04Plant Overhead (65 % L & M) 0.012Insurance (1.5 % Plant Investment) 0.007

Total Fixed Costs 0.038

Total Cash Costs (FC + VC) 0.241

Capital Recovery ( Linked ATROI and BTPB)Before Tax Pay Back, y 4.5 4 3.5 3ATROI, % 11.5 13.8 16.1 19.3

Capital Recovery 0.101 0.1134 0.1296 0.1512

Total Cost of Production (minus SGA) 0.342 0.354 0.370 0.392

plus 2 % SGA 0.348 0.3612 0.3777 0.3997

Required Netback 0.348 0.361 0.378 0.400

SP H

2 Ch

em

Page 86: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Production Economics - Ethane Steam Cracker

results of analysis: RNB 0.366 $/lb C2H4

Variable Costs raw material, utilitiesFixed Costs labor, overhead, depreciation, taxes, insuranceCapital Recovery amount of cost associated with the capital equipment

[MARR; hurdle rate]

Production Capacity 1500 MMPPYPlant Costs $405 MM IBL

$162 MM OBLIBL+OBL $567 MM+20% $680 MM

Property/Value Bases Fuel $8.00 per MMBTUHydrogen 190 SCF/lbEthane 3.1 lbs/galFG, LHV 18 MBTU/lbFuel eff 85 % firing efficiency

Production CostsRaw Materials/By-products Basis Unit, $ lb/lb C2H4 $/lb C2H4Ethane 3.1 lbs/gal lb 0.18 1.275 0.230Hydrogen 380 SCF/lb mol lb 0.26 -0.072 -0.019Fuel Gas 18MBTU/lb, 85% lb 0.12 -0.163 -0.020Propylene < Chem grade lb 0.35 -0.020 -0.007Cat/Chem miscellaneous lb 1.00 0.001 0.001

Total Raw Material Costs 0.184

Utilities usage $/unit $/lb C2H4Power, KWH 0.008 0.1 0.001Cooling Water, M Gal 0.036 0.15 0.005Steam, M lb 0 10 0.000Refrigeration, MM BTU 0 10 0.000Natural Gas, lbs 0.3 0.1 0.030

Total Utility Costs 0.036

Total Variable Cost 0.220

Fixed Costs usage shifts rate $/lb C2H4Labor 10 4 50000 0.001Foremen (@ 33 %) 4E-04Supervision (@ 7.5 %) 1E-04Maintenance Matl & Labor (6 % 0f ISBL) 0.016Direct Overhead (50 % of L & S) 9E-04Plant Overhead (65 % L & M) 0.012Insurance (1.5 % Plant Investment) 0.007

Total Fixed Costs 0.038

Total Cash Costs (FC + VC) 0.258

Capital Recovery ( Linked ATROI and BTPB)Before Tax Pay Back, y 4.5 4 3.5 3ATROI, % 11.5 13.8 16.1 19.3

Capital Recovery 0.101 0.1134 0.1296 0.1512

Total Cost of Production (minus SGA) 0.359 0.371 0.388 0.409

plus 2 % SGA 0.366 0.3788 0.3953 0.4174

Required Netback 0.366 0.379 0.395 0.417

SP H

2 Fu

el

Page 87: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Production Economics - Ethane Steam Cracker

results of analysis: RNB 0.418 $/lb C2H4

Variable Costs raw material, utilitiesFixed Costs labor, overhead, depreciation, taxes, insuranceCapital Recovery amount of cost associated with the capital equipment

[MARR; hurdle rate]

Production Capacity 1500 MMPPYPlant Costs $350 MM IBL

$140 MM OBLIBL+OBL $490 MM+20% $588 MM

Property/Value Bases Fuel $8.00 per MMBTUHydrogen 190 SCF/lbEthane 3.1 lbs/galFG, LHV 18 MBTU/lbFuel eff 85 % firing efficiency

Production CostsRaw Materials/By-products Basis Unit, $ lb/lb C2H4 $/lb C2H4Ethane 3.1 lbs/gal lb 0.18 1.330 0.239Oxygen lb 0.02 1.890 0.038Hydrogen 380 SCF/lb mol lb 0.25 0.127 0.032Fuel Gas 18MBTU/lb, 85% lb 0.12 -0.300 -0.036Propylene < Chem grade lb 0.35 -0.057 -0.020Cat/Chem miscellaneous lb 1.00 0.001 0.001

Total Raw Material Costs 0.253

Utilities usage $/unit $/lb C2H4Power, KWH 0.008 0.1 0.001Cooling Water, M Gal 0.036 0.15 0.005Steam, M lb 0 10 0.000Refrigeration, MM BTU 0 10 0.000Natural Gas, lbs 0.3 0.1 0.030

Total Utility Costs 0.036

Total Variable Cost 0.289

Fixed Costs usage shifts rate $/lb C2H4Labor 10 4 50000 0.001Foremen (@ 33 %) 4E-04Supervision (@ 7.5 %) 1E-04Maintenance Matl & Labor (6 % 0f ISBL) 0.014Direct Overhead (50 % of L & S) 9E-04Plant Overhead (65 % L & M) 0.01Insurance (1.5 % Plant Investment) 0.006

Total Fixed Costs 0.033

Total Cash Costs (FC + VC) 0.322

Capital Recovery ( Linked ATROI and BTPB)Before Tax Pay Back, y 4.5 4 3.5 3ATROI, % 11.5 13.8 16.1 19.3

Capital Recovery 0.087 0.098 0.112 0.1307

Total Cost of Production (minus SGA) 0.409 0.420 0.434 0.453

plus 2 % SGA 0.418 0.4286 0.4429 0.4619

Required Netback 0.418 0.429 0.443 0.462

Dow

ATR

E-1

Page 88: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

ComparisonRequired Netback, cents/lbconventional ODH

4.5 0.3483317 0.3243464 0.3611837 0.330724

3.5 0.3777077 0.3389253 0.3997397 0.349859

0.3

0.32

0.34

0.36

0.38

0.4

0.42

3 3.5 4 4.5

Payback, y

Eth

yle

ne

RN

B, c

ts/lb

conventional

ODH

Page 89: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

ComparisonRequired Netback, cents/lbconventional ODH

4.5 0.3666917 0.3243464 0.3795437 0.330724

3.5 0.3960677 0.3389253 0.4180997 0.349859

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

3 3.2 3.4 3.6 3.8 4 4.2 4.4

BTPB, y

Eth

ylen

e R

NB

, ct

s/lb

conventional

ODH

Fuel Value Hydrogen

Page 90: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Summary Economics – Cash Costs

• Conventional Pyrolysis – Byproduct value result in lower CC than Case 3– With byproduct H2 (conventional) taken as fuel,

then the CCs are approximately equivalent

• ODH - Case 3– No byproducts and significant heat is rejected to

the atmosphere during recovery of process water– Potential for heat pump on the quench system

Page 91: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Suggestions for Economic Improvement of the ODH Process

• Low level heat upgrade– power and/or steam generation

• Higher reactor operating pressure– higher level of waste heat– lower capital due to reduced compression

• Reduced excess oxygen required – reduced oxidation required beyond CO conversion

to CO2

• Reduced process steam

Page 92: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Waste Heat Upgrade

• Many Options– Rankine cycle– Thermo-electric Exchangers– Chemical Heat Pump– Absorptive Refrigeration– Stirling Engine

Page 93: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Waste Heat Upgrade

• Rankine Cycle– Compressor– Condenser (high level heat recovery)– Let-down Valve– Evaporator (waste heat)

Page 94: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

0

1000

2000

3000

4000

5000

6000

50 60 70 80 90 100

Quench Temperature, C

kg

mo

ls/h

wate

r . 1.8 bar

5 bar

10 bar

Impact of Reactor Pressure on the Temperature of the Quench Water

Conclusion – higher pressure will allow a hotter quench water with the same amount of water going forward

X-axis Quench TemperatureY-axis Amount of water in the product gas

Page 95: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Temperature of Waste Heat 79.5 C

Temperature of Heat Recovery Energy Spent per 100 kJ recovered114 17.88127 27.19139 39.46150 61.56

0.00

20.00

40.00

60.00

80.00

110 120 130 140 150

Temperature Upgrade, C

En

erg

y C

os

t, k

J/1

00

k

J r

ec

ov

ere

d

Page 96: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

DOE Data - First Purchase Prices

Crude Nat Gas Ratio$/crude $/MCF

1977 22.2 2.05 10.829271982 50.2 4.3 11.674421987 23.17 2.51 9.2310761992 20.3 2.21 9.185521997 19.72 2.66 7.4135342002 23.74 3.11 7.6334412005 50.3 7.51 6.697736

average 29.94714 3.478571 8.952142

average 8.952142std dev 1.837358

% std dev 20.52422

0

2

4

6

8

10

12

14

1970 1990 2010

Page 97: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 98: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

(LEL/LFL) (UEL/UFL) LEL UEL LEL UEL(%) (%) O2/fuel O2/fuel fuel/O2 fuel/O2

Acetaldehyde 4 60 5.04 0.14 0.20 7.14Acetylene 2.2 85 9.34 0.04 0.11 26.98Ammonia 15 28 1.19 0.54 0.84 1.85Benzene 1.3 7.1 15.94 2.75 0.06 0.36Butane 1.8 8.4 11.46 2.29 0.09 0.44

Butylene 1.98 9.65 10.40 1.97 0.10 0.51Carbon Monoxide 12 75 1.54 0.07 0.65 14.29

Ethane 3 12.4 6.79 1.48 0.15 0.67Ethylene 2.7 36 7.57 0.37 0.13 2.68

Ethyl Alcohol 3.3 19 6.15 0.90 0.16 1.12Fuel Oil No.1 0.7 5 29.79 3.99 0.03 0.25Hydrogen 4 75 5.04 0.07 0.20 14.29Isobutane 1.8 9.6 11.46 1.98 0.09 0.51Isobutene 1.8 9 11.46 2.12 0.09 0.47Isooctane 0.79 5.94 26.37 3.33 0.04 0.30Isopentane 1.32 9.16 15.70 2.08 0.06 0.48Gasoline 1.4 7.6 14.79 2.55 0.07 0.39Kerosine 0.7 5 29.79 3.99 0.03 0.25Methane 5 15 3.99 1.19 0.25 0.84

n-Heptane 1.05 6.7 19.79 2.92 0.05 0.34n-Hexane 1.1 7.5 18.88 2.59 0.05 0.39n-Pentene 1.65 7.7 12.52 2.52 0.08 0.40Pentane 1.5 7.8 13.79 2.48 0.07 0.40Propane 2.1 10.1 9.79 1.87 0.10 0.53

Propylene 2 11.1 10.29 1.68 0.10 0.59Styrene 1.1 6.1 18.88 3.23 0.05 0.31Toluene 1.2 7.1 17.29 2.75 0.06 0.36p-Xylene 1.1 7 18.88 2.79 0.05 0.36

ODH Case 3

Inlet Inlet Inlet Outlet Outletkg/h kgmol/h mol % kgmol/h mol %

Ethane 114000 3800 10 380 0.95Oxygen 97280 3040 8 475 1.19Water 560880 31160 82 35264 88.42

sum 772160 38000 39881

O2/C2 0.8 1.25

Page 99: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

T, oF T, oC $/MM kJ613.4 323.0 14.7 SPS 1700485.6 252.0 9.0 HPS 600381.2 194.0 5.8 MPS 200280.4 138.0 3.6 LPS 5089.6 32.0 0.8 CW35.0 1.7 13.2 C3-5.0 -20.6 20.1 C3-40.0 -40.0 27.3 C3-75.0 -59.4 39.8 C2

-105.0 -76.1 50.1 C2-150.0 -101.1 71.9 C2-175.0 -115.0 99.5 C1-210.0 -134.4 133.5 C1

-20

0

20

40

60

80

100

120

140

160

-200 0 200 400 600

Level, F

Val

ue,

$/M

M k

J

Valu

e/Co

st in

Typ

ical

OP

Cycl

es

Page 100: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

CO2 Sequestration, Removal and Recovery/Removal Options

Amine

Membrane

CaO

Ryan Holmes

Page 101: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 102: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 103: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 104: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 105: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 106: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 107: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 108: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,
Page 109: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Comparison between base case catalyst (295-24CCG) and base case+ H2O2 treated catalyst

(240-15C )

86

88

90

92

94

96

98

20 30 40 50 60 70 80

Ethane conversion (%)

Eth

ylen

e se

lect

ivity

(%)

240-15Ccatalyst

Base casecatalyst

Target

Page 110: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Student Researchers – they do all the work

Page 111: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

and so on.............

Page 112: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,

Thank you

Page 113: Shale gas conversion: Processing and economics Gennaro J Maffia, gennaro.maffia@manhattan.edu, Alex Bertuccio. Chemical Engineering, Manhattan College,