ship project a report3 hull jle - aalto

39
Kul24.4110: Ship project A Arctic Bulk Carrier Assignment 3: Hull Structures 20.10.2014 Markus Mälkki, 84343C Jesse Lehtonen, 84692L

Upload: others

Post on 16-Oct-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ship Project A Report3 Hull JLe - Aalto

   

 

 

Kul-­‐24.4110:  Ship  project  A  

 

Arctic  Bulk  Carrier    

   

Assignment  3:  Hull  Structures  

 20.10.2014  

 

Markus  Mälkki,  84343C  

Jesse  Lehtonen,  84692L    

Page 2: Ship Project A Report3 Hull JLe - Aalto

 

CONTENTS  1   Introduction  ..........................................................................................................................................  1  

2   Loads  .....................................................................................................................................................  2  

2.1   Rule  design  loads  ............................................................................................................................  2  

2.1.1   Still  water  bending  moment  and  shear  force  ..........................................................................  2  

2.1.2   Wave  bending  moment  and  shear  force  .................................................................................  4  

2.2   NAPA  design  loads  .........................................................................................................................  5  

2.3   Design  pressures  ............................................................................................................................  7  

2.3.1   Sea  pressures  ..........................................................................................................................  7  

2.3.2   Deck  pressures  ........................................................................................................................  7  

2.3.3   Bulkhead  pressures  .................................................................................................................  8  

2.3.4   Ice  pressures  ...........................................................................................................................  8  

3   Local  strength  ........................................................................................................................................  9  

3.1   Section  modulus  using  analytical  beam  theory  ..............................................................................  9  

3.2   Structural  spacing  ...........................................................................................................................  9  

3.3   Beam  end  supporting  .....................................................................................................................  9  

3.4   Pressures  into  line  loads  ..............................................................................................................  10  

3.5   Beam  end  supporting  ...................................................................................................................  10  

3.5.1   Effective  breadth  ...................................................................................................................  10  

3.5.2   Analytical  section  modulus  ...................................................................................................  11  

3.6   Plating  ..........................................................................................................................................  12  

3.6.1   Corrosion  addition  ................................................................................................................  12  

3.6.2   Bottom  plating  ......................................................................................................................  13  

3.6.3   Side  plating  ............................................................................................................................  14  

3.6.4   Deck  plating  ...........................................................................................................................  14  

3.7   Stiffeners  ......................................................................................................................................  15  

3.7.1   Section  moduli  ......................................................................................................................  15  

3.7.2   Bottom  longitudinals  .............................................................................................................  15  

3.7.3   Side  longitudinals  ..................................................................................................................  15  

3.7.4   Strength  deck  longitudinals  ...................................................................................................  15  

3.7.5   Side  girders  ............................................................................................................................  15  

Page 3: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      iii  

3.7.6   Deckhouse  Deck  Longitudinals  ..............................................................................................  15  

3.7.7   Machinery  Deck  Longitudinals  ..............................................................................................  16  

4   Response  .............................................................................................................................................  17  

4.1   Normal  stress  ...............................................................................................................................  17  

4.2   Shear  stress  ..................................................................................................................................  18  

4.3   Torsion  .........................................................................................................................................  19  

5   Buckling  ...............................................................................................................................................  20  

5.1   Stiffeners  and  girders  ...................................................................................................................  20  

5.2   Plating  ..........................................................................................................................................  20  

5.3   Maximum  allowable  hull  girder  bending  .....................................................................................  21  

6   Fatigue  .................................................................................................................................................  23  

7   Vibrations  ............................................................................................................................................  24  

7.1   Beams  ...........................................................................................................................................  24  

7.2   Plates  ............................................................................................................................................  25  

8   Ultimate  strength  ................................................................................................................................  26  

9   Optimization  .......................................................................................................................................  28  

9.1   Reliability  analysis  ........................................................................................................................  28  

9.2   Optimization  of  structures  ...........................................................................................................  28  

References  .................................................................................................................................................  29  

Appendix  A:  MATLAB  -­‐  Shear  Stress  Calculation  .......................................................................................  30  

Appendix  B:  Stiffener,  Girder  and  Plate  Properties  ...................................................................................  31  

Appendix  C:  Mid-­‐Ship  Section  ...................................................................................................................  33  

Appendix  D:  Engine  Room  Section  ............................................................................................................  34  

 

Page 4: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      1  

1 INTRODUCTION  The   ship  will   be  operating   in   extremely   cold   temperatures,  which  needs   to   be   taken   into   account  when   selecting  material   grades   for   the   hull   structures.   As   the   temperature   in   the   arctic   can   drop  below  -­‐30°C,  the  design  temperature  for  the  material  properties  is  assumed  to  be  -­‐40°C.  

Due  to  the  arctic  climate,  the  hull  needs  to  be  designed  to  withstand  extremely  high  ice  pressures  on  the   sides,   bow   and   stern.   The   long   parallel   mid-­‐ship   section   of   the   ship   with   vertical   sides   is  especially  vulnerable  to  compressive  ice  fields.  This  needs  to  be  compensated  by  strengthening  the  ice  belt  sufficiently.  As  the  ship  is  carrying  heavy  bulk  cargo,  especially  the  bending  of  the  hull  girder  and  more  locally  bending  of  the  double  bottom  below  the  cargo  holds  needs  to  be  analysed.  

The  ship  has  following  class  notations:  

Bulk  Carrier  ESP  

POLAR-­‐10  

The  ship  has  a  mixed  framing  system,  which  means  that  the  sides  have  transversal  frames  known  to  be   better   for   ice   loads.   Rest   of   the   hull   is   longitudinally   stiffened,   which   is   considered   better  especially  in  the  double  bottom  for  long  ships  [DNV  Pt.3  Ch.1  Sec.6  A402].  

Cargo  holds  are  separated  from  each  other  by  transversal  self-­‐stiffened  corrugated  bulkheads.  Collision  bulkhead  and  machinery  space  bulkheads  are  vertically  stiffened.  Locations  of  different  bulkheads  are  presented  in  Figure  1.    

 

Figure  1  Locations  of  bulkheads.  Corrugated  bulkheads  are  shown  in  red  and  vertically  stiffened  bulkheads  in  green.  

 

Page 5: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      2  

2 LOADS  

2.1 RULE  DESIGN  LOADS  Classification   society   (DNV)   gives   bending  moment   and   shear   force   values   in   still  water   and  wave  conditions   that  are   to  be   treated  as   the  upper   limits  with   respect   to  hull  girder   strength.  The  sign  conventions  of  vertical  bending  moments  and  shear  forces  at  any  ship  transverse  section  are  shown  in  Figure  2.    

 

Figure  2  Sign  conventions  for  shear  forces  and  bending  moments  

 

The  vertical  bending  moments  MS  are  positive  when  they  induce  tensile  stresses  in  the  strength  deck  (hogging   bending  moment)   and   are   negative   in   the   opposite   case   (sagging   bending  moment)   the  vertical   shear   forces   QS   positive   in   the   case   of   downward   resulting   forces   preceding   and   upward  resulting   forces   following   the   ship   transverse   section   under   consideration,   and   is   negative   in   the  opposite  case.  Effects  of  horizontal  bending  moments  are  not  considered  at  this  design  stage.  

2.1.1 Still  water  bending  moment  and  shear  force  According  to  DNV  Pt.3  Ch.1  Sec.5  B,  the  design  still  water  bending  moments  amidship  are  not  to  be  taken  less  than:  

MS  =  MSO  (kNm)  

MSO  =  –  0.065  CWU  L2B  (CB  +  0.7)  (kNm)  in  sagging  

=  CWU  L2B  (0.1225  –  0.015  CB)  (kNm)  in  hogging  

Where  Cwu   =  9.20   is   the  wave   coefficient   for   the  project   ship   according   to  DNV  Pt.3  Ch.1   Sec.4  B.

Page 6: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      3  

When   required   in   connection   with   stress   analysis   or   buckling   control,   the   stillwater   bending  moments  at  arbitrary  positions  along  the  length  of  the  ship  are  normally  not  to  be  taken  less  than:    

MS  =  ksm  MSO  (kNm)  

ksm  =  1.0  within  0.4  L  amidships  

=  0.15  at  0.1  L  from  A.P.  or  F.P.  

=  0.0  at  A.P.  and  F.P  

Between  specified  positions  ksm   shall  be  varied   linearly.  Calculated  still  water  bending  moments   in  hogging  and  sagging  are  shown  in  Figure  3.  

 

Figure  3  Design  still  water  bending  moment  distribution  

DNV  states  in  Pt.3  Ch.1  Sec.5  B  that  design  values  for  stillwater  shear  forces  along  the  length  of  the  ship  shall  not  be  less  than:  

QS  =  ksq  QSO  (kN)  

QSO  =  5  MSO/L  (kN)  

Where  

MSO  =design  stillwater  bending  moments  (sagging  or  hogging).  

ksq  =  0  at  A.P.  and  F.P.  

               =  1.0  between  0.15  L  and  0.3  L  from  A.P.  

               =  0.8  between  0.4  L  and  0.6  L  from  A.P.  

               =  1.0  between  0.7  L  and  0.85  L  from  A.P.  

Between  specified  positions  ksq  shall  be  varied  linearly.  Calculated  still  water  shear  force  in  hogging  and  sagging  are  shown  in  Figure  4.  

 

0  

100  

200  

300  

400  

500  

600  

700  

800  

0,0   0,2   0,4   0,6   0,8   1,0  

 Ben

ding  m

omen

t  [MNm]  

L  from  A.P.  

SLll  water  bending  moment  

Sagging  

Hogging  

Page 7: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      4  

 

Figure  4  Design  wave  shear  force  distribution  

2.1.2 Wave  bending  moment  and  shear  force  Vertical  wave  bending  moments  at  arbitrary  positions  along  the  length  of  the  ship  are  normally  not  to  be  taken  less  than:  

MW  =  MWO  (kNm)  

MWO  =  –  0.11  α  CW  L2  B  (CB  +  0.7)  (kNm)  in  sagging  

=  0.19  α  CW  L2  B  CB  (kNm)  in  hogging  

α  =  1.0  for  seagoing  conditions  

Calculated  wave  bending  moment  in  hogging  and  sagging  are  shown  in  Figure  5.  

 

Figure  5  Design  wave  bending  moment  distribution  

   

0  

5  

10  

15  

20  

25  

0,0   0,2   0,4   0,6   0,8   1,0  

Shear  force  [M

N]  

L  from  A.P.  

SLll  water  shear  force  

Sagging  

Hogging  

0  

200  

400  

600  

800  

1000  

1200  

0,0   0,2   0,4   0,6   0,8   1,0  

 Ben

ding  m

omen

t  [MNm]  

L  from  A.P.  

Wave    bending  moment  

Sagging  

Hogging  

Page 8: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      5  

The  rule  value  of  vertical  wave  shear  force  is  given  in  DNV  Pt.3  Ch.1  Sec.5  B  by:  

QWV = 30 FQ fp Cw L B (CB +0.7) 10-2

Where  FQ  is  a  distribution  factor  defined  in  DNV  Pt.8  Ch  4  Sec.3.  The  shear  force  will  get  a  positive  value  when  there  is  a  surplus  of  buoyancy  forward  of  section  considered,  and  negative  value  when  there  is  a  surplus  of  weight.  Calculated  wave  shear  force  distribution  is  shown  in  Figure  6.  

 

Figure  6  Design  wave  shear  force  distribution  

2.2 NAPA  DESIGN  LOADS  As  the  rules  don’t  take  the  lightweight  distribution  or  different  loading  conditions  into  account,  still  water   bending   moment   and   shear   force   distributions   are   also   calculated   using   NAPA.   Strength  curves   are   plotted   using   same   lightweight   distribution   and   loading   conditions   as   in   the   earlier  stability  check.  Figures  Figure  7  to  Figure  9  show  bending  moment  and  shear  force  along  the  length  of  the  ship.  

0  

5  

10  

15  

20  

0,0   0,2   0,4   0,6   0,8   1,0  

Shear  force  [M

N]  

L  from  A.P.  

Wave  shear  force  

Posilve  

Negalve  

Page 9: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      6  

 

Figure  7  Load  curves  in  full  cargo  loading  condition  

 

Figure  8  Load  curves  in  ballast  condition  1  

Page 10: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      7  

 

Figure  9  Load  curves  in  ballast  condition  2  

Page 11: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      8  

Table   1   shows   maximum   values   of   shear   forces   and   bending   moments   in   different   loading  conditions.   As   can   be   seen,   these   values   are   slightly   lower   than   those   given   by   the   classification  rules.  However,  at  this  design  stage  rule  values  are  to  be  used  as  the  lightweight  distribution  and  cog  are  very  preliminary  estimations.  

Page 12: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      9  

Table  1  Maximum  load  values  in  different  loading  conditions  

    Cargo   Ballast  1   Ballast  2  Shear  force  min  (MN)   -­‐12.14   -­‐14.31   -­‐17.99  Shear  force  max  (MN)   14.00   14.43   14.60  Sagging  moment  (MNm)   -­‐353.20   -­‐481.87   -­‐584.01  Hogging  moment  (MNm)   84.80   148.86   30.73  

 

2.3 DESIGN  PRESSURES  

2.3.1 Sea  pressures  External  sea  pressures  for  mid-­‐ship  section  are  calculated  with  equations  in  DNV  pt.  3  Ch.  1  Sec.  4.  Pressures  are  evaluated  at  five  points  around  the  mid-­‐ship  hull:  weather  deck,  top  of  the  side,  side  at  the   design   waterline,   bilge   and   bottom   of   the   ship.   The   resulting   pressure   distributions   are  presented  in  the  mid-­‐ship  section  figure  in  Appendix  C.  

2.3.2 Deck  pressures  Pressures   acting   on   decks   are  mainly   caused   by   iron   ore   cargo   in   the   holds   and  water   inside   the  ballast   tanks.  Design   loads   for  upper  and   lower  ballast  water   tank  bottoms  as  well  as  cargo  holds'  bottom  are  calculated  according  to  DNV  pt.  3  ch.  1  sec.  6  B.  For  dry  cargo  in  cargo  holds:  

!!"#!" = !!"#$% ! + 0,5!! !! ≈ !"#.!  !"#,  

where  ρcargo    =  2,5  t/m3  for  crushed  iron  ore,  HC  =  10m  is  the  loading  height  of  the  cargo  hold  and  av  is  combined  vertical  acceleration  

!! =!!!!!!!

≈ 2.67   !!!  ,  

where  kv  =  0,7  between  0.3L  and  0.6L  from  AP  and  ao  is  common  acceleration  parameter  

!! =!!!!+ !

!"≈ 0.299    

As  a   small  bulldozer   (Liebherr  724)  has  a   track  pressure  of   about  60  kN/m2,   a   small   bulldozer   can  easily  operate  in  the  cargo  hold  without  having  to  strengthen  the  cargo  hold  floor.  

For   ballast   tank   bottoms   the   same   equation   is   applied.   Ballast   water   density   is   the   same   as   sea  water’s   so  ρbw   =   1,025   t/m3  and   the  height   of   BW   tanks   in   the  double   sides  hbw  =   6  m.  Maximum  pressure  on  the  tank  bottom  when  ballast  tanks  are  full  is  

!!"# = !!" ! + 0.5!! ℎ!" ≈ !".!  !"#   .  

Pressure  decreases  linearly  from  its  peak  value  on  the  bottom  to  0  on  the  tank  top.  

DNV   Pt.3   Ch.1   Sec.8   defines   the   minimum   for   accommodation   deck   thickness   to   be   5   mm.   The  design   load   per   square   meter   is   to   be   0.35   tons,   which   gives   the   design   pressure   based   on   the  following  equation  

!!""#$"% = 0.35 ! + 0.5 ∙ !! = !.!  !"#  

where  av=  5.4  m/s2  is  the  vertical  acceleration  due  to  the  ship  motions  at  the  aft  ship  based  on  DNV  Pt.3  Ch.1  Sec.4.  

Page 13: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      10  

The  design  pressure  of  one  engine  is  calculated  based  on  weight  of  one  engine  and  the  base  area  of  the  engine  with  the  following  equation  

!!"#$!%& =89  t

5.5  m ∙ 2  m! + 0.5 ∙ !! = !""  !"#  

2.3.3 Bulkhead  pressures  On  ballast  water   tank   bulkheads   the   value   of   pressure   decreases   from   its  maximum  value   on   the  bottom  to  zero  on  tank  top.  Maximum  value  is  pbw  =  68.5  kN/m2  as  calculated  in  the  decks  section.  Ballast  tanks  will  be  arranged  with  overflow  pipes,  so  Δpdyn  =  0.  All  the  ballast  tanks  are  rectangular  shaped,  which  means  b  =  bt    and  l  =  lt.  In  this  phase  of  design  the  roll  and  pitch  angles  are  considered  to  be  0.  

Angle   of   repose   for   iron   ore   is   35   degrees   [1].   Pressures   acting   on   cargo   hold   bulkheads   are  calculated  with  equation  for  p2  presented  in  appendix  3.  Parameters  for  the  pressure  on  the  bottom  of  the  vertical  part  of  the  bulkhead  are  the  height  HC  =  9  m  and  angle  α1  =  90°  between  the  panel  and  horizontal  plane.  Maximum  value  of   the  pressure  on  the  bottom  of  the  vertical  part   is  306  kN/m2.  Pressure   value   decreases   linearly   as   a   function   of   distance   from   the   cargo   hold   bottom.   Pressure  acting  on  the  inclined  bottom  part  of  the  hold  is  calculated  in  the  same  way  with  an  angle  α1  =  45°  and  HC  =  11  m.  

2.3.4 Ice  pressures  The  basic   ice  pressures   for   the  midship   section  are  calculated  according   to   the   selected  POLAR-­‐10  notation  by  DNV.  The  design  pressure  is  in  general  pice  =  4.2  MPa  for  midship    and  2.8  MPa  for  lower  transition  area  according  to  DNV  Pt.5  Ch.1  Sec.4  Critical  width  of  the  contact  area  is  at  this  state  of  design  assumed  to  be  w  =  600mm,  which  is  the  transversal  frame  spacing.  

Page 14: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      11  

3 LOCAL  STRENGTH  3.1 SECTION  MODULUS  USING  ANALYTICAL  BEAM  THEORY  The  effects  of  various  pressures  on  the  stiffeners,  girders  and  web  frames  are  taken  into  account  by  approximating  pressures  as  constant  line  loads.  Line  load  q  is  calculated  by  multiplying  the  pressure  p  in  question  with  the  spacing  s  between  the  corresponding  structural  members.  

3.2 STRUCTURAL  SPACING  Spacing   of   the   structures   is   defined   based   on   the   initial   designs   done   on   the   Conceptual   Design  course.  All  the  stiffeners  are  bulb  flats  and  web  frames  and  girders  are  T-­‐  or  I-­‐beams.  Mixed  framing  system  is  used   in  the  side  plating.  Web  frame  spacing   in  the  sides   is  2400  mm  and  for  stiffeners  a  third  of  that  resulting  in  600  mm.  Close  spacing  is  used  because  of  the  expected  heavy  ice  loads  on  side  plating.  Spacing  for  the  longitudinal  side  girders  at  the  ice  belt  region  is  2000  mm.  

The  decks  between  the  BW  tanks  and  the  weather  deck  are  longitudinally  stiffened  with  spacing  of  800  mm.  Longitudinal  stiffening  is  used  to  improve  the  total  longitudinal  stiffness  of  the  ship.  While  the  length-­‐height  ratio  of  the  ship  is  small,  the  importance  of  longitudinal  stiffness  is  pronounced.  If  the  size  of  the  stiffeners  is  getting  too  big  when  trying  to  achieve  the  desired  section  modulus,  few  bigger   girders   are   applied   to   make   the   structure   stiffer.   Same   stiffening   system   is   used   in   the  longitudinal  bulkheads.  

Both  inner  and  outer  part  of  the  double  bottom  is  stiffened  with  spacing  of  700  mm.  Double  bottom  includes  longitudinal  bulkheads  and  they  are  considered  as  I-­‐beam  girders  with  the  height  of  double  bottom  and   spacing  of   1500   -­‐   2000  mm.   Same   system   is   applied   in   the  higher   central   part   of   the  double  bottom.  One  part  of  the  cargo  hold  bottom  is   inclined,  but   it   is  considered  as  a  flat  area  to  simplify  calculations.  The  inclined  part  makes  the  structure  stiffer  than  an  even  deck  so  the  structure  will   in   reality  be  stronger   than   the  calculated  approximation.   Inclined  cargo  hold  bottom  parts  are  longitudinally  stiffened  with  spacing  of  700  mm.  

3.3 BEAM  END  SUPPORTING  To   simplify   calculations   it   is   assumed   that   the   beams   are   either   simply   supported   or   clamped.   In  reality  the  cases  are  something  in  between  those  two  situations.  For  instance  a  simple  support  with  some  kind  of   spring  attached   to   it.  However,   in   this  phase  of  design  defining   the   spring   constants  would   just   be   waste   of   time,   while   the   structure   isn’t   final.   All   the   deck   and   bottom   beams   and  stiffeners  are  clamped  on  both  ends,  while  the  load  acting  on  them  is  near  to  constant  on  each  sides  of   limiting   bulkheads   and   crossing   frames  when   the   holds   and   tanks   are   full.   Thus   they  will   have  same  deformations  and  the  ends  of  the  beams  will  have  zero  rotation.  

On  the  side  plating  loadings  over  the  whole  height  aren’t  close  to  constant  by  nature.  That’s  why  the  transversal  side  stiffeners  and  beams  of  the  lower  BW  tank  are  assumed  to  be  clamped  on  the  lower  end,   which   is   connected   to   the   double   bottom,   and   simply   supported   on   the   upper   end.   The  transversal  beams   in   the  side  of  upper  BW  tanks  are  simply  supported  on  both  ends.  Longitudinal  stiffeners  and  girders  are  assumed  as  clamped  on  both  ends,  because  the  loading  is  more  constant  in  that  direction.  

Page 15: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      12  

3.4 PRESSURES  INTO  LINE  LOADS  Pressures  are  calculated  in  the  Design  loads  section.  Hydrostatic  and  other  linearly  varying  pressures  in   on   the   hull   sides,   BW   tanks   and   cargo   hold   sides   are   approximated   to   be   uniform   with   the  maximum  magnitude  over  the  entire  length  of  the  structure.  Structure  will  become  heavier  that  way,  but   approximation   simplifies   and   makes   the   calculations   faster   at   this   stage.   Changes   to   the  structures  can  be  made  later  on  when  the  design  gets  more  precise  and  the  overall  loads  are  better  known.  Ice  load  is  taken  into  account  on  ice  belt  region  as  an  additional  loading.  Plate  and  stiffener  thicknesses   shall   be   greater   due   to   extra   loading.   The   extent   of   ice   loading  will   be   between   next  longitudinal  girders  above  and  below  the  ice  belt  area.  

3.5 BEAM  END  SUPPORTING  To   simplify   calculations   it   is   assumed   that   the   beams   are   either   simply   supported   or   clamped.   In  reality  the  cases  are  something  in  between  those  two  situations.  For  instance  a  simple  support  with  some   kind   of   spring   attached   to   it.   However,   in   this   phase   of   design,   the   definition   of   the   spring  constants  would   be   just   a  waste   of   time,  while   the   structure   isn’t   final.   All   the   deck   and   bottom  beams  and  stiffeners  are  clamped  on  both  ends,  while  the  load  acting  on  them  is  near  to  constant  on  each  sides  of   limiting  bulkheads  and  crossing   frames  when   the  holds  and   tanks  are   full.  Thus   they  will  have  same  deformations  and  the  ends  of  the  beams  will  have  zero  rotation.  

On  the  side  plating  loadings  over  the  whole  height  are  not  close  to  constant  by  nature.  That’s  why  the  transversal  side  stiffeners  and  beams  of  the  lower  BW  tank  are  assumed  to  be  clamped  on  the  lower  end,  which  is  connected  to  the  double  bottom,  and  simply  supported  on  the  upper  end.  The  transversal  beams   in   the  side  of  upper  BW  tanks  are  simply  supported  on  both  ends.   Longitudinal  stiffeners  and  girders  are  assumed  as  clamped  on  both  ends,  because  the  loading  is  more  constant  in  that  direction.  

3.5.1 Effective  breadth    

 

Figure  10  Effective  breadth  coefficient  C  

From   lecture   slides   of   the   structural   design   course   is   gotten   a   simplified   approach   of   DNV   for  evaluating  the  effective  breadth.  It  is  calculated  with  a  simple  equation  

!! = ! ∙ !  

Page 16: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      13  

where  b   is  web   frame,   stiffener  or   girder   spacing  and  C   is  defined   from  Figure  10  with  distance  a  between   the   zero   values   at   bending  moment   diagram   and   r  which   is   the   number   of   point   loads  acting  on  the  structural  member.  In  all  of  our  cases  loads  are  distributed  line  loads  so  r  -­‐>  ∞  which  is  clearly   greater   than   6   so   the   curve   used   for   the   definition   of   C   is   the   uppermost.   For   defining  a,  equations   for  moment   distributions   of   clamped   and   half   clamped   beams   loaded   with   distributed  load  are  used.  

For  clamped  beam:      

!!"#!"#$ ! =!2(!" − !! −

!!

6)  

!!"#$%&' ! = 0,  

when    ! = !!3 ± 3 !,  

where  can  be  calculated  that    !!"#$%&' =!!3!  

For  half  clamped  beam:  

!!!"#$" ! =3!"8! −

!2!!  

!!!"#$" ! = 0,  

when  x  =  0  and  x  =  3/4L  

where  is  gotten:  

 !!!"#$" =!!!.  

After  the  C  values  are  defined,  the  section  modulus  for  different  structural  parts  can  be  calculated.  

3.5.2 Analytical  section  modulus  For  section  modulus  calculation  also  equations  for  1st  area  moment  SZ,  2nd  moment  of  inertia  IZ  and  Steiner  inertia  moment  Is  are  needed.  

For  1st  area  moment  

!! = !!!  

where  A  is  the  area  of  the  structural  member  and  ey  is  the  centre  of  mass  in  y-­‐direction  from  the  top  of  the  plating.  For  2nd  moment  of  inertia  

!! =!!!ℎ!

12  

where  n  is  the  number  of  the  structural  elements,  be  is  the  effective  breadth  and  h  is  the  structural  member  height.  For  Steiner  inertia  moment  

!! = !!!!  

The  moment  of  inertia  around  the  neutral  axis  

!! = !! + !!  

The  moment  of  inertia  around  the  zero-­‐plane  (plate  top)  

Page 17: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      14  

! = !! − !.!.!∙ !  

where  N.A.  is  the  location  of  bending  neutral  axis  from  the  plate  surface.  Finally  section  modulus  Z  is  gotten  

! =!!  

where   c   is   the   distance   of  N.A   from   either   top   or   bottom  of   the   structural   element.   Z   values   are  calculated  with  both  distance  from  top  and  bottom.  Whichever  value  is  smaller   is  used  as  a  design  value.  

3.6 PLATING  

3.6.1 Corrosion  addition  In  ballast  water   tanks,  cargo  holds  and  hull  exteriors   the  plates,   stiffeners  and  girders  shall  have  a  corrosion  addition  thickness  tt  as  specified  in  DNV  Pt.3  Ch.1  Sec.2  D.  Total  corrosion  addition  t'k  =  tk  +  tc  can  be  calculated  from  Table  2  and  Table  3.

Table  2  Corrosion  additions  for  plating  

 

Page 18: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      15  

Table  3  Corrosion  addition  

 

3.6.2 Bottom  plating  Plate  thicknesses  for  the  double  bottom  are  defined  in  DNV  Pt.3  Ch.1  Sec.6.  For  the  keel  plating  that  shall  extend  over  the  complete  length  of  the  ship,  the  minimum  thickness  is:  

 

where  L1  is  the  length  of  the  ship,  f1  material  factor  and  tk  corrosion  addition.  Thickness  requirement  for  the  bottom  and  bilge  plating  is  given  by:  

 

For  the  inner  bottom  plating,  the  thickness  shall  not  be  less  than:  

 

where   t0   =   7.0   in   cargo   holds   and   5.0   elsewhere.   For   the   plating   in   double   bottom   floors   and  longitudinal  girders,  the  plate  thickness  shall  not  be  less  than:  

 

where  k  =  0.04L  for  centre  girder  and  0.02L  for  other  girders  and  floors.  The  resulting  requirements  are  presented  in  Table  4.  

Page 19: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      16  

3.6.3 Side  plating  Plate   thickness   for   the   side   structures   is  mainly   determined   by   the   ice   class   rules   and   the   lateral  pressure  caused  by  the  iron  ore  cargo  on  the  cargo  hold  sides.  For  the  cargo  hold  side  plating,  the  minimum  thickness  is  given  in  DNV  Pt.3  Ch.1  Sec.7:  

 

where  !  =  140f1  within  0.4L  amidship  and  ka  =  (1.1  -­‐  0.25  s/l)2  is  a  correction  factor  for  aspect  ratio  of  plate  field.  

Vertical  extent  for  the   ice-­‐reinforced  areas   is   from  the  upper   ice  waterline  (UIWL)  to  the   lower   ice  waterline  (LIWL)  and  the  additional  extent  required  by  the  ice  class  notation.  For  the  midship  section  the  required  vertical  extend  is  from  T  =  12.6m  to  T  =  2.6m.  When  considering  the  plate  division,  this  basically  means  that  the  whole  vertical  side  of  the  midship  has  to  be  ice-­‐reinforced.  

The  thickness  of  plating  directly  exposed  to  local  ice  pressure  is  generally  not  to  be  less  than:  

 

where  h  =  0.4  hice  =  0.8m,  

 kw  =  influence  factor  for  narrow  strip  of  load  =  0.87,  

mp  =  bending  moment  factor  =  2.68.  

3.6.4 Deck  plating  Thickness  of  the  strength  deck  plating  is  given  in  DNV  Pt.3  Ch.1  Sec.8.  The  thickness  shall  not  be  less  than:  

 

where  t0  =  5.5  for  unsheathed  weather  deck  and  k  =  0.02  in  vessels  with  single  continuous  deck.  

Table  4  Plate  thicknesses  calculated  from  DNV  rules.  

Plating   Material   Required  t  [mm]   Selected  t  [mm]  Keel  plating   NV-­‐NS,  E   14,9   20,0  Bottom  plating   NV-­‐NS,  E   11,3   20,0  Bilge  plating   NV-­‐NS,  E   11,3   20,0  Cargo  hold  bottom  plating   NV-­‐27,  EH   12,5   20,0  Upper  BW  bottom   NV-­‐NS,  E   12,7   15,0  Lower  BW  bottom   NV-­‐NS,  E   11,7   20,0  Weather  deck  plating   NV-­‐NS,  E   9,6   25,0  Outer  shell  plating,  Ice  belt  region   NV-­‐36,  EH   31,0   32,0  Outer  shell  plating,  Outside  Ice  belt   NV-­‐NS  E   26,6   27,0    

Page 20: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      17  

3.7 STIFFENERS  

3.7.1 Section  moduli  Section  moduli  are   first  calculated   for   the  structural   locations  with  analytical  equations   from  basic  beam  theory.  Then  the  values  required  by  DNV  are  evaluated  with  the  equations  from  rules.  The  two  values  are  then  compared.  Analytical  value  should  exceed  the  value  from  the  rules.  

3.7.2 Bottom  longitudinals    The  section  modulus  required  for  the  bottom  longitudinals  is  given  in  DNV  Pt.3  Ch.1  Sec.6  by:  

 

where  !  =  maximum  allowable  stress  =  160f1  and  section  modulus  corrosion  factor  wk=1.  Inner bottom longitudinals have similar requirements.

3.7.3 Side  longitudinals  Side  longitudinals  in  longitudinal  bulkheads  between  the  cargo  hold  and  water  ballast  tanks  have  a  section  modulus  requirement  of:  

 

Thicknesses  of  web  and  flange  have  similar  requirements  as  for  bottom  longitudinals.  

3.7.4 Strength  deck  longitudinals  

 

where ! = maximum allowable stress = 160f1.

3.7.5 Side  girders  Longitudinal  girders  that  support  transversal  stiffeners  in  ice  strengthened  sides  have  section  modulus  requirement  given  by  Pt.3 Ch.1 Sec.7 D for simple girders:  

 

where  S  is  girder  spacing.  

Achieved  section  modulus  values  and  plate  thicknesses  are  presented  in  table  3.  Required  Z  is  calculated  from  DNV  rules  and  after  that  the  structure  is  designed  so  that  the  final  section  modulus  exceeds  the  requirement.  

3.7.6 Deckhouse  Deck  Longitudinals  The   design   pressure   of   4.4   kPa   calculated   in   the   previous   section   results   in   section   modulus  requirement  with  the  following  equation  from  DNV  Pt.3  Ch.1  Sec.8  

Page 21: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      18  

!!""#$"% =83  !!  !  !!""#$"%

160= 11.8  !"!  

where   l   =   2.4  m   is   the   stiffener   span   s   =   0.9  m   is   the   stiffener   spacing   and   160   is   the  maximum  allowable   stress   for   normal   grade   steel.   Minimum   requirement   by   DNV   is   15   cm3,   which   is   used  because  the  result  from  the  equation  is  smaller  than  the  minimum  requirement.  Some  extra  capacity  is  reserved  and  a  combined  section  modulus  of  Z  =  36.3  cm3  is  acquired  by  using  the  required  5  mm  plate  and  B*100*5  stiffeners.  

3.7.7 Machinery  Deck  Longitudinals  The  deck  thickness  of  15  mm  for  the  engine  room  deck  is  taken  from  the  Wärtsilä  Project  Guide  [2].  

Based   on   the   design   pressure   calculated   in   the   previous   section   the   required   section  modulus   is  gotten  

!!"#$!%& =83  !!  !  !!"#$!%&

160= 272  !"!  

This  value  is  greater  than  15  cm3  so  it  is  used.  Again  some  reserve  is  taken  into  account  and  a  section  modulus  Z  =  344.6  cm3  is  acquired,  with  B*220*10  stiffeners  with  spacing  s  =  0.9  m  and  span  l  =  2.4  m.  

All   the   calculated   stiffener   requirements   are   presented   in   Table   5.   Full   spreadsheet   of   the   cross-­‐section  calculations  is  presented  in  Appendix  B.  

Table  5  Section  moduli  of  the  stiffeners  and  double  bottom  girders  

 Stiffener  type   Material   Required  Z  [cm3]   Achieved  [cm3]  

Bottom  longitudinals   B*180*8   NV-­‐NS,  E   171,4   196,3  Keel  longitudnials   B*180*8   NV-­‐NS,  E   171,4   196,3  In  BW  bottom  long   B*140*8   NV-­‐NS,  E   99,5   108,2  In  cargo  bottom  long   B*240*12   NV-­‐NS,  E   444,5   1199,27  Strength  deck  long   B*200*12   NV-­‐NS,  E   20,6   399,1  Upper  BW  bottom   B*140*8   NV-­‐NS,  E   99,5   99,5  Side  longitudinals   B*140*8   NV-­‐NS,  E   99,5   99,5  Longitudinal  girders   I*15*2000*15*2000   NV-­‐NS,  E   21350,0   28499,1    

Page 22: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      19  

4 RESPONSE  4.1 NORMAL  STRESS  In  last  section  the  local  cross-­‐section  values  were  calculated  for  different  structural  parts  separately.    Those  values  were  used  to  calculate  same  values  for  the  whole  mid-­‐ship  section.  Deck  values  were  easy  to  apply  for  the  bending  around  the  transversal  axis,  while  all  the  neutral  axes  of  the  stiffeners  are  at  the  same  height  from  the  baseline.  However,  on  the  longitudinal  bulkheads  and  side  plating  the   case   is   a   bit   more   complicated,   while   each   stiffener   and   girder   is   at   different   heights   and  therefore   affect   the   bending   differently.   With   the   longitudinal   bulkheads   and   side   plating   some  simplifications   were   made   to   ease   the   calculations.   Longitudinal   stiffeners   were   taken   into  calculations  as  an  added  thickness  on  the  plating.  Equation  for  equivalent  thickness  is  

!!" =!!  

where   A   is   the   cross   sectional   area   of   the   stiffener   or   girder   and   s   is   the   spacing   between  corresponding   beams.   Assumption  may   cause   some   error   into   the   calculated   values.   Longitudinal  stiffeners  on  a   longitudinal  bulkhead  are  wide  but   low  and  thus  the  effect   in  bending   is  somewhat  smaller  than  when  they  would  be  melted  onto  the  plate  and  the  height-­‐width-­‐relation  changes,  as  in  the  made  simplification.  Error  caused  is  however  considered  small  enough  to  be  made.  Locations  of  the  stiffeners  and  girders  are  not  yet  final  so  some  error  would  be  made  that  way  in  any  case.  

After  calculating   the  cross  sectional  values   for  different  members  separately,   they  were  multiplied  by   the   number   of   corresponding   parts   and   then   summed   to   get   the   total   values   for   the  mid   ship  section.  The  distance  of  the  horizontal  neutral  axis  from  the  baseline  was  evaluated  with  equation  

!.!.=!!!!

= 5.91  !  

where  ST  is  the  total  1st  are  moment  for  the  mid  ship  and  AT  is  the  total  mid  ship  cross  section  area.  The  2nd  moment  of  inertia  I  could  then  be  calculated.  

! = !! + !! − !.!.! !! = 69.3  !!  

where  Is  is  the  total  Steiner  moment  of  inertia  and  IZ  is  the  sum  of  local  second  moments  of  inertia.  As  I  and  N.A.  are  known,  the  section  moduli  for  the  mid  ship  section  are  gotten.  

!!"#$ =!

! − !.!= 8.57  !!  

!!"##"$ =!

!.!.= 11.73  !!  

where  D  is  the  total  height  of  the  ship.  Smaller  of  the  values  is  just  above  the  value  that  DNV  rules  require.  DNV  Pt.  3  Ch.  1  Sec.  5  offers  two  equations  for  minimum  value  of  mid-­‐ship  section  modulus.  One  of  them  is  based  on  main  dimensions  of  the  ship  and  the  other  is  based  on  the  still  water  and  wave  bending  moments.  They  give  us  

!! =!!"

!!!!! !! + 0.7 = 8.52  !!  

!! =|!! +!!|

!10!! = 8.51  !!  

Page 23: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      20  

where  CWO  =  9.04  is  the  wave  coefficient  and  f1  =  1  is  the  material  factor.  Both  Z  values  are  almost  the   same   perhaps   mostly   because   also   the   bending   moment   values   are   calculated   with   DNV  equations  based  on  main  dimensions.  

Total  bending  moment  MT  acting  on  the  main  frame  can  be  calculated  by  summing  up  still  water  and  wave   bending   moments   MT   =   Mw   +   Ms.   Normal   stress   acting   on   the   mainframe   can   then   be  calculated  from  basic  beam  theory:    

!! =  !!

!=!!!!

 

where  z   is  distance   from  the  neutral  axis  and   I   the  second  moment  of   inertia  of   the  cross-­‐section.  This  will  assume  that  the  normal  stress  changes  linearly  along  the  height  of  the  cross-­‐section.  This  is  not   exactly   the   case   in   reality,   but   corresponds  pretty  well   to   normal   stress   distribution   in   simple  cross-­‐sections  with  few  decks  and  no  superstructure.  Vertical  normal  stress  distributions  for  sagging  and  hogging  are  presented  in  Figure  11.  

 

Figure  11    Normal  stress  distribution  across  the  mid-­‐ship  cross-­‐section  

As   can   be   seen,   normal   stresses   caused   by   bending  moment   have  maximum   values   far   from   the  neutral   axis.   This   should   be   taken   into   account   by   adding   more   material   to   double   bottom   and  strength  deck.  

4.2 SHEAR  STRESS  Shear   stress   distribution   of   the   main   frame   cross-­‐section   is   based   on   the   design   shear   forces  calculated  earlier  for  the  still  water  and  wave  conditions.  Total  maximum  shear  force  is  taken  as  the  sum  of  maximum  still  water  and  maximum  wave  shear  forces.  

The  main   frame   is   simplified   to  be  a  box   shaped   thin-­‐walled   section  with   same  dimensions  as   the  mainframe.  Static  moments  are  calculated  first  to  get  the  shear  stresses  for  each  side  of  the  cross-­‐section.   As   the   horizontal   members   have   constant   distance   to   neutral   axis,   the   static   moment   is  increasing   linearly   towards   the   edge   of   the   section.   More   detailed   calculations   are   presented   in  Appendix  A.  At  the  sides  the  static  moment  is  parabolic  and  the  maximum  is  at  neutral  axis.  

0  

2  

4  

6  

8  

10  

12  

14  

-­‐160   -­‐110   -­‐60   -­‐10   40   90   140  

DISTAN

CE  FOR  BA

SELINE  [M

]  

NORMAL  STRESS  [KPA]  

NORMAL  STRESS   Sagging   Hogging  

Page 24: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      21  

Shear  stresses  can  be  calculated  from  the  static  moments  with  following  formula:  

! =   !  !!  !  ,  

where  S  is  static  moment,  Q  is  shear  force,  t  is  plate  thickness  and  I  is  second  moment  of  inertia  of  the  cross-­‐section.    Calculated  shear  stress  distribution  is  presented  in  Figure  12.  

 

 

Figure  12  Shear  stress  distribution  across  the  mainframe  cross-­‐section  

4.3 TORSION  Pressure   variation   around   the   hull   can   cause   torsional   moment   to   the   hull   girder.   It   can   cause  significant  normal  and  shear  stresses.  Transversal  bulkheads   restrict   the  “warping“  or  out-­‐of-­‐plane  deformation  during   torsion   loading.   This  will   produce   additional   normal   stresses  on   the   structure,  but  also  makes  it  more  resistant  against  the  torsion.  

Because  of  the  large  openings  on  the  deck,  the  torsion  rigidity  is  significantly  decreased  compared  to  the   case   where   hatch   covers   could   also   carry   loads.   However,   the   closed   side   structures   greatly  contribute   to   torsional   stiffness   of   the   cross   section.   Upper   ballast   water   tanks  will   act   as   closed  “torsion  boxes”  that  compensate  the  openings  in  the  weather  deck.  These  tanks  will  have  increased  plate   thicknesses   to   make   them   carry   more   loads,   especially   in   torsion.   However   more   detailed  torsion  calculations  are  ignored  in  this  work.  

Page 25: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      22  

5 BUCKLING  5.1 STIFFENERS  AND  GIRDERS  For  longitudinal  girders  and  stiffeners  the  critical  buckling  loads  are  calculated  with  equations  from  DNV  Pt.  3  Ch.  1  Sec.  13  C.  Critical  buckling   load  σc,   including   the   ideal  Euler  buckling  and  plasticity  correction,  is  evaluated  from  DNV  equations  and  is  the  stress  value  that  causes  the  structural  part  to  buckle.  Required  minimum  buckling  stress  value  σcreq  is  the  minimum  value  of  critical  buckling  stress  the   classification   society   requires   for   the   structure   in   order   to   have   a   safe   structure  under   design  load  conditions.  It  is  calculated  by  dividing  the  design  normal  stress  value  by  a  usage  factor  η  given  for  various  locations  in  DNV  Pt.  3  Ch.  1  Sec.  13.  σc  is  the  value  when  the  structural  part  buckles.  So  σc  

should  be  greater  than  σcreq  to  have  a  safe  structure.    

Equations  are  based  on  the  main  dimensions,  calculated  normal  stresses  in  corresponding  locations  and   2nd   moment   of   inertia   of   the   beams.   The   values   for   these   are   calculated   in   the   structural  response  part.  Required  critical  buckling   loads   for   longitudinal  bulkhead  stiffeners  and  side  plating  girders   are   calculated   only   for   the   uppermost  members.   That   is   because   the   compressive   normal  stress   caused   by   total   bending   moment   is   there   at   its   maximum   value   as   the   distance   from   the  neutral  axis  of  bending  is  the  greatest  and  thus  the  risk  of  buckling  is  the  greatest.  Buckling  can  occur  only   in   case   of   compressive   normal   stress.   Evaluated   values   for   critical   buckling   loads   σc   and   the  required  minimum  values  are  presented  in  Table  6.  

Table  6  Buckling  stress  values  for  stiffeners  and  side  girders  

Beam   σc   σc,req   Safety  

 N/mm2   N/mm2   factor  

Weatherdeck  stiff   255,29   158,46   1,90  Bottom  side  stiff   247,90   143,15   2,04  

Keel  stiff   247,90   143,15   2,04  Inner  bottom  center  stiff   262,26   73,41   4,20  Inner  bottom  side  stiff   228,98   96,66   2,79  

BW  tanktop  stiff   233,61   37,22   7,38  Long  bh  stiff   223,93   158,46   1,66  

Side  long  beam   264,87   158,46   1,97    

5.2 PLATING  Critical  buckling  stresses  for  plates  are  calculated  with  equations  from  DNV  pt.  3  ch.  1  sec.  13B.  Same  approximation   for   longitudinal   bulkhead   and   girders   is   applied   as   in   the   calculations   for   beam  buckling:   values   are   calculated   for   uppermost   parts   only.   Evaluated   values   for   plate   buckling   are  presented  in  Table  7.  

Page 26: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      23  

 

Table  7  Critical  buckling  stresses  for  plate  sections  

Plating   σc   σc,req   Safety       N/mm2    N/mm2   factor  

Keel   212,19   135,20   1,74  Bottom  side   212,19   135,20   1,74  Inner  bottom  center   232,87   69,33   3,73  Inner  bottom  side   206,84   91,29   2,52  BW  tanktop   152,26   39,55   4,81  Maindeck   214,31   168,36   1,59  Long  bh  (uppermost  part)   211,58   134,69   1,57  Side  (uppermost  part)   324,66   134,69   2,41  

 

All  the  critical  buckling  values  presented  in  table  two  fulfill  the  required  value,  so  the  design  is  good  enough  from  that  point  of  view.  

5.3 MAXIMUM  ALLOWABLE  HULL  GIRDER  BENDING  The  maximum  value  for  the  hull  girder  bending  can  be  evaluated  by  first  checking  the  most  critical  part  of  the  ship  considering  normal  stresses.  As  the  biggest  value  of  normal  stress  is   located  in  the  uppermost  part  of  the  ship  or  on  the  main  deck,  the  critical  buckling  stress  there  should  be  taken  as  the  limiting  parameter.  Buckling  stress  value  and  the  location  of  uppermost  part  of  the  longitudinal  bulkhead   are   used   when   calculating   maximum   bending   moment   as   an   example.   The   moment  needed  to  achieve  the  critical  stress  on  the  main  deck  is  calculated  using  backwards  the  equation  for  σa  and  using  the  critical  stress  at  longitudinal  bulkhead  as  the  stress  value.  

!!"#$ = !!"#$ +!!"#$ =!!"!!!

= 2,03 ∙ 10!  !"#  

where   IN   is   the   2nd  moment   of   inertia   of   the  mid-­‐section   and   z   is   the   vertical   distance   from   the  neutral  axis  to  the  load  point.  The  total  hogging  moment  is  MT  =  1.295  ·∙  106  kNm  so  the  difference  to  the  maximum  is  735·∙103  kNm.  

In   the   same   manner   as   above,   hull   girder   moment   values   for   all   the   other   buckling   cases   are  calculated  and  presented   in   table  6   in  ascending  order  of  hull  girder  bending  moments.  As  can  be  seen,   the   order   of   buckling   is   right   as   plates   buckle   at   lower   bending   moment   values   as   the  corresponding  stiffeners.   It  can  be  seen  also  that  the  longitudinal  bulkhead  plate  is  the  first  one  to  buckle   in   excessive   sagging   situation   and   the   bottom   side   plate   in   case   of   hogging.   The   smallest  critical   bending   moments   are   about   1.5   times   the   total   wave   and   still   water   bending   moments  combined.  That  should  be  enough.  

Page 27: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      24  

Table  8  Critical  hull  girder  moments  

Structural  member   Hull  girder  bending  moment    Inner  bottom  center  stiffener   -­‐6,26E+06   kNm  

Inner  bottom  center  plate   -­‐5,56E+06   kNm  Inner  bottom  side  stiffener   -­‐4,15E+06   kNm  Inner  bottom  side  plate   -­‐3,75E+06   kNm  Bottom  side  stiffener   -­‐3,04E+06   kNm  Keel  stiffener   -­‐3,04E+06   kNm  Keel  plate   -­‐2,60E+06   kNm  Bottom  side  plate   -­‐2,60E+06   kNm  Long  bulkhead  plate  (uppermost  part)   2,03E+06   kNm  Main  deck  plate   2,06E+06   kNm  Longitudinal  bulkhead  stiffener  (uppermost)   2,15E+06   kNm  Main  deck  stiffener   2,46E+06   kNm  Side  plate  (uppermost  part)   3,12E+06   kNm  Side  longitudinal  girder  (uppermost)   3,42E+06   kNm  BW  tank  top  plate   6,23E+06   kNm  BW  tank  top  stiffener   9,56E+06   kNm  

 

   

Page 28: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      25  

6 FATIGUE  Fatigue  stress  levels  are  checked  for  weather  deck  and  bottom  longitudinals  using  simplified  fatigue  calculations   by   DNV.   It   is   considered   sufficient   to   only   inspect   those   structural   details   as   those  locations   have   the   highest   stresses.   Also,   bottom  or   deck   plating  will   fail  when   the   stiffener   fails.    When   a   one-­‐slope   S-­‐N   curve   is   used,   the   fatigue   damage   D   can   be   calculated  with   the   following  formula:  

 

 

 

Where  a  and  m  are  S-­‐N  parameters  that  are  gotten  for  base  materials  for  corrosive  environment.  η  is  a   usage   factor   that   is   not   to   exceed   1.0.   This   kind   of   S-­‐N   curve   based   fatigue   design   is   based   on  97.6%  probability  of   survival.   Td  =  20  years   is   the  design   lifetime  of   the   ship  and  p   is   a   fraction  of  design  life  in  each  load  condition.  In  this  case  it  is  assumed  to  be  1.0  as  only  dynamic  wave  bending  moment   is   considered.   Δσ0   is   the   stress   range   from  minimum   to  maximum   stress   in   the   specific  stress  condition.  In  a  case  of  wave  bending,  this  means  the  sum  of  absolute  stresses  in  hogging  and  sagging.   Resulting   fatigue   damages   are  D   =   0.39   for   deck   longitudinals   and  D   =   0.15   for   bottom  longitudinals.  They  are  both  well  below  the  maximum  allowed  value  of  1.0,  so  there  should  be  no  fatigue  issues  in  the  hull  girder.  The  values  for  the  fatigue  calculations  are  presented  in  Table  9.  

Table  9  Fatigue  calculations  

Fatigue  calculations                          Length   L   157,00  

       Depth   D   14          Draught   T   10          Design  lifetime   T   9,46E+08          Zero-­‐crossing  frequency   v0   0,11          Deck  longitudinals            

Bottom  longitudinals      S-­‐N  parameter   a   5,46E+12  

 S-­‐N  parameter   a   5,46E+12  

S-­‐N  parameter   m   3,00    

S-­‐N  parameter   m   3,00  fraction   p   1,00  

 fraction   p   1,00  

stress  range  scale   q   15,33    

stress  range  scale   q   11,19  no  of  cycles   n   8,31E+09  

 no  of  cycles   n   8,31E+09  

stress  range   σ   325,12    

stress  range   σ   237,43  shape  parameter   h0   1,02  

 shape  parameter   h0   1,02  

gamma  function    

5,49    

gamma  function    

5,49  Fatigue  damage   D   0,39  

 Fatigue  damage   D   0,15  

 

Page 29: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      26  

7 VIBRATIONS  Main   sources   of   vibration   are   the  main   engines,   propulsion   and  different  wave-­‐induced   loads   like  slamming.   In  this  study  the  focus  is  on  controlling  vibrations  caused  by  the  engines  and  propulsion  system.    Speed  of  the  main  engine  is  750  rpm  or  12.5  Hz.  Four  bladed  propeller  speed  is  about  150  rpm,  which  means  that  the  frequency  of  pressure  shocks  when  a  blade  is  in  uppermost  position  is  10  Hz.    

All  plates,  stiffeners  and  web  frames  should  be  designed  so  that  their  eigen  frequencies  are  above  the  frequencies  of  engines  and  propeller  to  avoid  resonance.    

7.1 BEAMS  For  beam  is  gotten  

! = !!"!  

where  λ  =  π/L  is  the  first  root  of  the  characteristic  equation  for  simply  supported  beam  and  m  is  the  weight  of  the  beam  of  length  of  one  meter.  Only  first  or  smallest  natural  frequencies  were  calculated,  because  they  are  the  most  critical  when  considering  resonance.  Vibration  wake  frequencies  should  be  below  those.  Calculated  angular  frequency  values  for  beams  are  presented  in  Table  10.  

Table  10  Beam  eigen  frequencies  

 

It  can  be  seen  that  the  lowest  eigen  frequency  of  34  Hz  is  for  the  stiffener  of  longitudinal  bulkheads.  This  value   is  well  above  the  frequencies  of   the  main  vibration  sources.   It  also  has  to  be  taken   into  account  that  these  frequencies  are  calculated  for  the  beam  members  only  and  the  plate  hasn’t  been  taken  in  consideration.  In  reality  the  frequency  will  be  higher  as  the  beams  are  welded  on  plates.  

   

Beams E I m L n λr ω f[Pa] [m^4] [kg/m] [m] nπ/L [rad/s] [Hz]

Bottom,  side,  stiff 2,10E+11 1,27E-­‐04 86 2,4 1 1,31 729 116Bottom,  side,  gird 2,10E+11 1,00E-­‐02 384 2,4 1 1,31 3061 487Bottom,  keel,  stiff 2,10E+11 8,59E-­‐05 79 2,4 1 1,31 624 99Bottom,  cent,  gird 2,10E+11 7,65E-­‐02 511 2,4 1 1,31 7339 1168Bottom,  keel,  gird 2,10E+11 7,65E-­‐02 511 2,4 1 1,31 7339 1168Inner  bottom,  cent,  stiff 2,10E+11 8,70E-­‐05 76 2,4 1 1,31 643 102Inner  bottom,  side,  stiff 2,10E+11 1,26E-­‐05 57 2,4 1 1,31 282 45Long  bulk,  stiff 2,10E+11 1,29E-­‐05 102 2,4 1 1,31 213 34Side,  stiff 2,10E+11 4,24E-­‐05 164 2 1 1,57 366 58Side,  gird 2,10E+11 1,93E-­‐02 451 2,4 1 1,31 3924 625Tank  top,  stiff 2,10E+11 1,27E-­‐05 62 2,4 1 1,31 272 43Main  deck,  stiff 2,10E+11 3,14E-­‐04 132 2,4 1 1,31 925 147

Page 30: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      27  

7.2 PLATES  For  plates  is  gotten  

 

where  L    is  the  longitudinal  side  of  the  plate  in  question,  v  =  0.3  is  the  Poisson  ratio  for  steel  and  ρ  is  the  area  mass  of  the  plate.  λ  is  a  coefficient  based  on  the  W/L  relationship  and  the  plates’  boundary  conditions  [3].  It  is  assumed  that  the  plates  are  clamped  at  all  ends  as  the  flexibility  of  the  welds  and  connections  with   the  stiffeners   is  assumed  to  be  very   stiff.  An  additional  2000  kg/m3   is   taken   into  account   to   the   steel   density   as   the   plates   are   in  most   cases   surrounded   by  water,   which   acts   as  added  mass  and  thus  reduces  the  frequency.  Calculated  eigen  frequencies  for  plates  are  presented  in  Table  11.  

Table  11  Plate  eigen  frequencies  

 

From   table   9   it   is   seen   that   all   the   eigen   frequencies   are   above   the   wake   frequencies   from   the  engines  and  propulsion.  The  most  critical   is   the  accommodation  deck  with   frequency  of  29  Hz  but  there  should  not  be  problems  related  to  vibrations  with  these  eigen  frequencies.  

Plates t L W Ea W/L λ^2 ν f[m] [m] [m] [Pa] -­‐ -­‐ -­‐ [Hz]

Keel 2,00E-­‐02 2,4 0,6 2,10E+11 0,25 23,65 0,3 174Bottom,  side 2,00E-­‐02 2,4 0,6 2,10E+11 0,25 23,65 0,3 174Inner  bottom,  center 1,50E-­‐02 2,4 0,6 2,10E+11 0,25 23,65 0,3 130Inner  bottom,  side 1,50E-­‐02 2,4 0,6 2,10E+11 0,25 23,65 0,3 130Long  bulkhead 1,50E-­‐02 2,4 0,8 2,10E+11 0,33 23,65 0,3 98Side 4,00E-­‐02 2 0,6 2,10E+11 0,30 23,65 0,3 348Tank  top 1,50E-­‐02 2,4 0,8 2,10E+11 0,33 23,65 0,3 98Main  deck 2,00E-­‐02 2,4 0,8 2,10E+11 0,33 23,65 0,3 130Accommodation  decks 5,00E-­‐03 2,4 0,9 2,10E+11 0,38 23,65 0,3 29Engine  room  deck 1,50E-­‐02 2,4 0,9 2,10E+11 0,38 23,65 0,3 87

Page 31: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      28  

8 ULTIMATE  STRENGTH  Ultimate  strength  of  the  hull  girder   is  determined  by  comparing  the  plastic  moment  with  the  yield  moment,   elastic   moment   or   buckling  moment.   The   plastic   moment   can   be   calculated   from   basic  beam  theory  with  the  following  formula:  

!! =  !!!2(!! + !!)  

Where  σy  is  the  yield  stress,  A  is  the  total  area  of  the  cross  section.  y1  and  y2  are  the  distances  of  the  upper   and   lower   cross   sections’   center   of   gravities   to   the   plastic   neutral   axis   that   splits   the   cross  section  horizontally  into  two  equally  large  areas  so  A1  and  A2    are  defined  so  that  A  =    A1  +  A2.  

Elastic  moment  ME  can  also  be  derived  from  the  basic  beam  theory:  

!!   =  σ!!!

 

where  I  is  the  second  moment  of  inertia  of  the  cross  section  and  z  the  distance  of  neutral  axis  from  the  deck  or  bottom.  Safety  ratio  ϕ   is  calculated  by  dividing  the  plastic  moment  with  the  smaller  of  the   elastic   moments.   As   elastic   moments   are   used   the   smallest   value   of   buckling   moments   and  elastic   moments   calculated   with   the   equation   for   ME   above.   Values   for   the   elastic   and   plastic  moments  are  presented  in  Table  12.  

Table  12  Calculated  elastic  and  plastic  moment  values  

σy   2,35E+08   Pa  Mp   2,68E+09   Nm  Me  (bottom)   2,60E+09   Nm  Me  (deck)   2,03E+09   Nm  ɸ   1,32    

 

The   value   for   the  Mp/Me   ratio  ϕ   should   be   around   1.5.   Our   value   is   a   bit   smaller   and   thus   some  arrangements  to  make  should  be  done.  However,  the  most  important  issue  concerning  the  ME  values  is  that  MP  value  is  always  bigger.  That  requirement  is  fulfilled.  Sketch  of  the  ultimate  strength  curve  based  on  the  first  fiber  yield  is  presented  in  Figure  13  Sketch  of  the  ultimate  strength  curve.  Strain  values  in  Figure  13  are  calculated  with  basic  strength  of  materials  equation  

! =!!  

Strain   values   are   calculated   at   mid-­‐ship   area   from   zero   moment   to   the   elastic   moments   in   both  sagging   and  hogging.   After   that   the   values   are   approximated   so   that   the   curve   shows   a   sketch  of  how  the  curve  would  continue  after  the  first  fiber  yield.  

Page 32: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      29  

 

Figure  13  Sketch  of  the  ultimate  strength  curve  

As  can  be  seen  from  figure  13,  the  elastic  moment  value  in  sagging  conditions  is  quite  close  to  the  plastic  moment.  That  is  however  not  a  huge  problem  as  the  moment  values  are  at  a  safe  distance  from  the  design  moment  values.  

-­‐3,0E+09  

-­‐2,0E+09  

-­‐1,0E+09  

0,0E+00  

1,0E+09  

2,0E+09  

3,0E+09  

-­‐0,12   -­‐0,07   -­‐0,02   0,03   0,08   0,13  

Hull  girder  ben

ding  m

omen

t  [Nm]  

deflecLon  at  midship  

Ullmate  strength  

Sagging   Hogging   Mt,hog   Mt,sag  

Mp   Mp   Me,  bo|om   Me,  deck  

Page 33: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      30  

9 OPTIMIZATION  

9.1 RELIABILITY  ANALYSIS  Reliability  of   the  structure   is  defined  with   safety   factors,  which  define   the  difference  between   the  critical  and  design  loadings.  They  are  calculated  by  dividing  the  critical  loading  by  the  design  value  of  the  loading  for  the  corresponding  structural  member.  

Safety   factors   are   in   this   case   chosen   to  be   at   least   1.5   for   all   structural   parts.   That   is   to  have   an  adequate  safety  marginal  between  the  critical  loading  of  the  structure  and  still  to  not  have  too  heavy  and   expensive   structure.   The   existence   of   the   safety   margin   improves   structure’s   capabilities   of  tolerance   in   case   the   design   loadings   are   exceeded.   As   the   defining   values   for   the   safety   factor,  critical   buckling   loads   are   used,  while   they   are   smaller   than   those   of   yielding,   and   are   thus  more  critical   when   concerning   hull   rigidity   and   endurance.   Calculated   safety   factor   values   after  optimization  for  different  structural  members  are  presented  in  Table  13.  

9.2 OPTIMIZATION  OF  STRUCTURES  The  main  frame  is  optimized  in  such  a  way  that  plate  thicknesses  and  stiffener  dimensions  are  varied  to  get  the  minimum  total  area  for  the  cross  section.  Total  area  is  chosen  to  be  the  minimized  value,  because   it   is   proportional   to   the   total   weight   and   cost   of   the   structure.   Plate   thicknesses   are  constrained   by   the   minimum   thicknesses   given   by   the   classification   rules   and   minimum   safety  factors.   Minimum   safety   factor   for   buckling   case   is   1.5   for   all   structural   members.   New   plate  thicknesses  and  stiffener  dimensions  are   then  checked  that   they   fulfil  also  minimum  requirements  for  section  moduli.  New  plate  thicknesses  will  be  then  rounded  up  to  the  nearest  producible  plate  thickness,  and  stiffeners  profiles  will  be  selected  to  be  the  closest  available  profile  in  stock.  Stiffener  dimensions   for   the   calculations   are   also   constrained   to   be   realistic.   Calculations   done   by   the  Microsoft  Excel  Solver–tool  are  presented  in  Table  13.  

Table  13  Optimized  dimensions  for  plates  and  stiffeners  

 t   bstiff   hstiff   ф  

Structural  member   mm   mm   mm    Keel  plate   15,00   8   280   1,54  

Bottom  side   14,18   11   317   1,50  Cargo  bottom   13,00   8   252   2,84  Inner  bottom  side   12,00   8   139   1,68  Tanktop   13,00   8   138   3,58  Main  deck   22,25   12   400   1,50  Long  bulkhead   23,73   8   128   1,50  

           

Microsoft   Excel   solver   can   be   used   to  minimize   or  maximize   desired   cell   values   by   giving   certain  boundary  conditions.  Boundary  conditions  in  this  case  are  the  rule-­‐based  minimum  values  for  plate  thicknesses  and  frame  cross-­‐sections.      

Page 34: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      31  

REFERENCES  [1]   Bulk  material  chart,  

http://www.unionironworks.com/engineering_calculator_detail.aspx?x=wZWr/QqjPORgDQ4VPL%2Bqn07XK8X1uqUw,  [17.10.2014]  

[2]   Wärtsilä  32,  Product  Guide,  Vaasa,  Finland,  2013  

[3]   Spijkers  J.M.J  et  al.,  Structural  Dynamics  Part  1  –  Structural  Vibrations,  Delft  University  of  Technology,  the  Netherlands,  January  2005  

   

Page 35: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      32  

APPENDIX  A:  MATLAB  -­‐  SHEAR  STRESS  CALCULATION  function [taud, taumax, taub, taubs, tauds] = shearstress

b = 13;

I = 75.42;

Qw = 15000*10^3;

Qs = 20000*10^3;

Q = Qw + Qs;

td = 25*10^-3;

ts = 40*10^-3;

tb = 20*10^-3;

h1 = 6.13;

h2 = 7.87;

Sd = h2*td*b;

Sb = h1*tb*b;

Ssmax = Sd+0.5*h2^2*ts;

taud = (Sd*Q)/(I*td);

taub = (Sb*Q)/(I*tb);

tauds = (Sd*Q)/(I*ts);

taubs = (Sb*Q)/(I*ts);

taumax = (Ssmax*Q)/(I*ts);

   

Page 36: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      33  

APPENDIX  B:  STIFFENER,  GIRDER  AND  PLATE  PROPERTIES  

 

Part No.  Parts Young's  modulus True  breadth Eff  breadth Height N.A Area 1.  Area  moment Local  I Steinern E b beff h e_y A Sz  =  A*e_y Iz  =  n*b*h^3/12 Is  =  A*e_y^2

-­‐ -­‐ [Gpa] [mm] [mm] [mm] [mm] [mm^2] [mm^3] [mm^4] [mm^4]

Outer  bottom  side  -­‐  B*180*8  &  20  mm  platePlate 1 210 700 469 14,1802225 7,09011123 6,65E+03 4,72E+04 1,11E+05 3,34E+05Stiffener  web 1 210 11 11,0338395 291 159,917299 3,22E+03 5,14E+05 2,28E+07 8,22E+07Stiffener  flange 1 210 33 33 25,5 318,404376 8,42E+02 2,68E+05 4,56E+04 8,53E+07

Total 331,154376 1,0708E+04 8,29E+05 2,29E+07 1,68E+08Eref 210 GpaN.A,  bending 7,75E+01 mm from  deck L B a a/b r CElement  Iz 2,29E+07 mm^4 2400 700 1385,6 1,979486637 >  6 0,67Element  Is 1,68E+08 mm^4I_n 1,91E+08 mm^4 around  deckI 1,27E+08 mm^4 around  N.A. Achieved  Z 498,93 cm^3Z_top 4,99E+05 mm^3 = 498,93 cm^3 Required  Z 171,395 cm^3Z_bottom 1,63E+06 mm^3 = 1634,22 cm^3 Difference 327,54 cm^3ωn 7,29E+02 rad/sfn 1,16E+02 Hz

Outer  bottom  keel  -­‐  B*180*8  &  20  mm  platePlate 1 210 700 469 15 7,5 7,04E+03 5,28E+04 1,32E+05 3,96E+05Stiffener  web 1 210 8 8 255 142,274045 2,04E+03 2,90E+05 1,10E+07 4,12E+07Stiffener  flange 1 210 33 33 25,5 282,29809 8,42E+02 2,38E+05 4,56E+04 6,71E+07

Total 295,04809 9,9129E+03 5,80E+05 1,1173E+07 1,09E+08Eref 210 GpaN.A,  bending 5,85E+01 mm from  deck L B a a/b r CElement  Iz 1,12E+07 mm^4 2400 700 1385,6 1,979486637 >  6 0,67Element  Is 1,09E+08 mm^4I_n 1,20E+08 mm^4 around  deckI 8,59E+07 mm^4 around  N.A. Achieved  Z 363,20 cm^3Z_top 3,63E+05 mm^3 = 363,20 cm^3 Required  Z 171,395 cm^3Z_bottom 1,47E+06 mm^3 = 1468,19 cm^3 Difference 191,81 cm^3ωn 6,24E+02 rad/sfn 9,94E+01 Hz

Inner  bottom  side  -­‐  B*140*8  &  15  mm  platePlate 1 210 700 469 12 6 5,63E+03 3,38E+04 6,75E+04 2,03E+05Stiffener  web 1 210 8 8 120 71,816242 9,57E+02 6,87E+04 1,14E+06 4,94E+06Stiffener  flange 1 210 27 27 19,7 141,482484 5,32E+02 7,53E+04 1,72E+04 1,06E+07

Total 151,332484 7,1170E+03 1,78E+05 1,23E+06 1,58E+07Eref 210 GpaN.A,  bending 2,50E+01 m from  deck L B a a/b r CElement  Iz 1,23E+06 mm^4 2400 700 1385,6 1,979486637 >  6 0,67Element  Is 1,58E+07 mm^4I_n 1,70E+07 mm^4 around  deckI 1,26E+07 mm^4 around  N.A. Achieved  Z 99,50 cm^3Z_top 9,95E+04 mm^3 = 99,50 cm^3 Required  Z 99,5 cm^3Z_bottom 5,03E+05 mm^3 = 503,38 cm^3 Difference 0,00 cm^3ωn 2,82E+02 rad/sfn 4,49E+01 Hz

Inner  bottom  center  -­‐  B*240*12  &  15  mm  platePlate 1 210 700 469 13 6,5 6,10E+03 3,96E+04 8,59E+04 2,58E+05Stiffener  web 1 210 8 8 216 121,06119 1,73E+03 2,09E+05 6,73E+06 2,53E+07Stiffener  flange 1 210 46 46 35,4 246,82238 1,63E+03 4,02E+05 1,70E+05 9,92E+07

Total 264,52238 9,4544E+03 6,51E+05 6,99E+06 1,25E+08Eref 210 GpaN.A,  bending 6,88E+01 m from  deck L B a a/b r CElement  Iz 6,99E+06 mm^4 2400 700 1385,6 1,979486637 >  6 0,67Element  Is 1,25E+08 mm^4I_n 1,32E+08 mm^4 around  deckI 8,70E+07 mm^4 around  N.A. Achieved  Z 444,50 cm^3Z_top 4,45E+05 mm^3 = 444,50 cm^3 Required  Z 444,5 cm^3Z_bottom 1,26E+06 mm^3 = 1263,45 cm^3 Difference 0,00 cm^3ωn 6,43E+02 rad/sfn 1,02E+02 Hz

Inclined  cargo  bottom  -­‐  B*240*12  &  15  mm  platePlate 1 210 700 469 15 7,5 7,04E+03 5,28E+04 1,32E+05 3,96E+05Stiffener  web 1 210 12 12 204,6 117,3 2,46E+03 2,88E+05 8,56E+06 3,38E+07Stiffener  flange 1 210 46 46 35,4 237,3 1,63E+03 3,86E+05 1,70E+05 9,17E+07

Total 255 1,11E+04 7,27E+05 8,87E+06 1,26E+08Eref 210 GpaN.A,  bending 6,54E+01 m from  deck L B a a/b r CElement  Iz 8,87E+06 mm^4 2400 700 1385,6 1,979486637 >  6 0,67Element  Is 1,26E+08 mm^4I_n 1,35E+08 mm^4 around  deckI 8,72E+07 mm^4 around  N.A. Achieved  Z 459,83 cm^3Z_top 4,60E+05 mm^3 = 459,83 cm^3 Required  Z 444,5 cm^3Z_bottom 1,33E+06 mm^3 = 1333,03 cm^3 Difference 15,33 cm^3ωn 6,43E+02 rad/sfn 1,02E+02 Hz

Side  long  girder  -­‐  T*1400*16*500*20  &  40  mm  platePlate 1 210 2000 600 40 20 2,40E+04 4,80E+05 3,20E+06 9,60E+06Web 1 210 16 16 1400 740 2,24E+04 1,66E+07 3,66E+09 1,23E+10Flange 1 210 500 500 20 1450 1,00E+04 1,45E+07 3,33E+05 2,10E+10

Total 1460 5,64E+04 3,16E+07 3,66E+09 3,33E+10Eref 210 GpaN.A,  bending 5,60E+02 mm from  deck L B a a/b r CElement  Iz 3,66E+09 mm^4 2400 2000 1385,6 0,7 >  6 0,3Element  Is 3,33E+10 mm^4I_n 3,70E+10 mm^4 around  deckI 1,93E+10 mm^4 around  N.A. Achieved  Z 21440,78 cm^3Z_top 2,14E+07 mm^3 = 21440,78 cm^3 Required  Z 21350 cm^3Z_bottom 3,45E+07 mm^3 = 34508,00 cm^3 Difference 90,78 cm^3ωn 3,92E+03 rad/sfn 6,25E+02 Hz

Girders  bottom  center  side  -­‐  I*15*3000*20*1500Plate 1 210 1500 540 15 7,5 8,10E+03 6,08E+04 1,52E+05 4,56E+05Web 1 210 15 15 3000 1515 4,50E+04 6,82E+07 3,38E+10 1,03E+11Flange 1 210 46 540 20 3025 1,08E+04 3,27E+07 3,60E+05 9,88E+10

Total 3035 6,3900E+04 1,01E+08 3,38E+10 2,02E+11Eref 210 GpaN.A,  bending 1,58E+03 mm from  deck L B a a/b r CElement  Iz 3,38E+10 mm^4 2400 1500 1385,6 0,9 >  6 0,36Element  Is 2,02E+11 mm^4I_n 2,36E+11 mm^4 around  deckI 7,65E+10 mm^4 around  N.A. Achieved  Z 48457,75 cm^3Z_top 5,26E+07 mm^3 = 52559,67 cm^3 Required  Z cm^3Z_bottom 4,85E+07 mm^3 = 48457,75 cm^3 Difference 48457,75 cm^3ωn 7,34E+03 rad/sfn 1,17E+03 Hz

Page 37: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      34  

 

Part No.  Parts Young's  modulus True  breadth Eff  breadth Height N.A Area 1.  Area  moment Local  I Steinern E b beff h e_y A Sz  =  A*e_y Iz  =  n*b*h^3/12 Is  =  A*e_y^2

-­‐ -­‐ [Gpa] [mm] [mm] [mm] [mm] [mm^2] [mm^3] [mm^4] [mm^4]

Center  girder  -­‐  I*15*3000*20*1500Plate 1 210 1500 540 15 7,5 8,10E+03 6,08E+04 1,52E+05 4,56E+05Web 1 210 15 15 3000 1515 4,50E+04 6,82E+07 3,38E+10 1,03E+11Flange 1 210 540 20 3025 1,08E+04 3,27E+07 3,60E+05 9,88E+10

Total 3035 6,3900E+04 1,01E+08 3,38E+10 2,02E+11Eref 210 GpaN.A,  bending 1,58E+03 mm from  deck L B a a/b r CElement  Iz 3,38E+10 mm^4 2400 1500 1385,6 0,9 >  6 0,36Element  Is 2,02E+11 mm^4I_n 2,36E+11 mm^4 around  deckI 7,65E+10 mm^4 around  N.A. Achieved  Z 48457,75 cm^3Z_top 5,26E+07 mm^3 = 52559,67 cm^3 Required  Z cm^3Z_bottom 4,85E+07 mm^3 = 48457,75 cm^3 Difference 48457,75 cm^3ωn 7,34E+03 rad/sfn 1,17E+03 Hz

Bottom  side  girder  -­‐  I*15*2000*15*2000Plate 1 210 2000 600 15 7,5 9,00E+03 6,75E+04 1,69E+05 5,06E+05Web 1 210 15 15 2000 1015 3,00E+04 3,05E+07 1,00E+10 3,09E+10Flange 1 210 600 15 2022,5 9,00E+03 1,82E+07 1,69E+05 3,68E+10

Total 2030 4,8000E+04 4,87E+07 1,00E+10 6,77E+10Eref 210 GpaN.A,  bending 1,02E+03 mm from  deck L B a a/b r CElement  Iz 1,00E+10 mm^4 2400 2000 1385,6 0,7 >  6 0,3Element  Is 6,77E+10 mm^4I_n 7,77E+10 mm^4 around  deckI 2,83E+10 mm^4 around  N.A. Achieved  Z 27853,55 cm^3Z_top 2,79E+07 mm^3 = 27853,55 cm^3 Required  Z cm^3Z_bottom 2,79E+07 mm^3 = 27853,55 cm^3 Difference 27853,55 cm^3ωn 3,06E+03 rad/sfn 4,87E+02 Hz

Long  bulkhead  stiff  -­‐  B*140*8  &  15  mm  platePlate 1 210 800 480 23,7300525 11,8650263 1,14E+04 1,35E+05 5,35E+05 1,60E+06Stiffener  web 1 210 8 8 108 77,9398808 8,67E+02 6,76E+04 8,50E+05 5,27E+06Stiffener  flange 1 210 27 27 19,7 141,999709 5,32E+02 7,55E+04 1,72E+04 1,07E+07

Total 151,849709 1,28E+04 2,78E+05 1,40E+06 1,76E+07Eref 210 GpaN.A,  bending 2,18E+01 mm from  deck L B a a/b r CElement  Iz 1,40E+06 mm^4 2400 800 1385,6 1,7 >  6 0,6Element  Is 1,76E+07 mm^4I_n 1,90E+07 mm^4 around  deckI 1,29E+07 mm^4 around  N.A. Achieved  Z 99,50 cm^3Z_top 9,95E+04 mm^3 = 99,50 cm^3 Required  Z 99,5 cm^3Z_bottom 5,95E+05 mm^3 = 594,91 cm^3 Difference 0,00 cm^3ωn 2,13E+02 rad/sfn 3,40E+01 Hz

Tank  top  stiff  -­‐  B*140*8  &  15  mm  platePlate 1 210 800 480 13 6,5 6,24E+03 4,06E+04 8,79E+04 2,64E+05Stiffener  web 1 210 8 8 119 72,2966927 9,49E+02 6,86E+04 1,11E+06 4,96E+06Stiffener  flange 1 210 27 27 19,7 141,443385 5,32E+02 7,52E+04 1,72E+04 1,06E+07

Total 151,293385 7,7206E+03 1,84E+05 1,22E+06 1,59E+07Eref 210 GpaN.A,  bending 2,39E+01 mm from  deck L B a a/b r CElement  Iz 1,22E+06 mm^4 2400 800 1385,6 1,7 >  6 0,6Element  Is 1,59E+07 mm^4I_n 1,71E+07 mm^4 around  deckI 1,27E+07 mm^4 around  N.A. Achieved  Z 99,50 cm^3Z_top 9,95E+04 mm^3 = 99,50 cm^3 Required  Z 99,5 cm^3Z_bottom 5,31E+05 mm^3 = 530,83 cm^3 Difference 0,00 cm^3ωn 2,72E+02 rad/sfn 4,33E+01 Hz

Main  deck  stiff  -­‐  B*200*12  &  20  mm  platePlate 1 210 800 480 22,2541539 11,1270769 1,07E+04 1,19E+05 4,41E+05 1,32E+06Stiffener  web 1 210 12 12 368 206,204154 4,41E+03 9,10E+05 4,98E+07 1,88E+08Stiffener  flange 1 210 43 43 32,1 406,204154 1,38E+03 5,61E+05 1,19E+05 2,28E+08

Total 422,254154 1,6477E+04 1,59E+06 5,04E+07 4,17E+08Eref 210 GpaN.A,  bending 9,65E+01 mm from  deck L B a a/b r CElement  Iz 5,04E+07 mm^4 2400 800 1385,6 1,7 >  6 0,6Element  Is 4,17E+08 mm^4I_n 4,67E+08 mm^4 around  deckI 3,14E+08 mm^4 around  N.A. Achieved  Z 963,08 cm^3Z_top 9,63E+05 mm^3 = 963,08 cm^3 Required  Z 20,63 cm^3Z_bottom 3,25E+06 mm^3 = 3251,46 cm^3 Difference 942,45 cm^3ωn 9,25E+02 rad/sfn 1,47E+02 Hz

Side  trans  stiff  -­‐  B*180*8  &  40  mm  platePlate 1 210 600 462 40 20 1,85E+04 3,70E+05 2,46E+06 7,39E+06Stiffener  web 1 210 8 8 154,5 117,25 1,24E+03 1,45E+05 2,46E+06 1,70E+07Stiffener  flange 1 210 33 33 25,5 207,25 8,42E+02 1,74E+05 4,56E+04 3,61E+07

Total 220 2,0558E+04 6,89E+05 4,97E+06 6,05E+07Eref 210 GpaN.A,  bending 3,35E+01 mm from  deck L B a a/b r CElement  Iz 4,97E+06 mm^4 2000 600 1500,0 2,5 >  6 0,77Element  Is 6,05E+07 mm^4I_n 6,55E+07 mm^4 around  deckI 4,24E+07 mm^4 around  N.A. Achieved  Z 227,41 cm^3Z_top 2,27E+05 mm^3 = 227,41 cm^3 Required  Z cm^3Z_bottom 1,27E+06 mm^3 = 1265,51 cm^3 Difference 227,41 cm^3ωn 365,54 rad/sfn 5,82E+01 Hz

Accommodation  Decks  -­‐  B*100*5  &  5  mm  platePlate 1 210 900 495 5 2,5 2,48E+03 6,19E+03 5,16E+03 1,55E+04Stiffener  web 1 210 5 5 85 47,5 4,25E+02 2,02E+04 2,56E+05 9,59E+05Stiffener  flange 1 210 20,5 20,5 15 97,5 3,08E+02 3,00E+04 5,77E+03 2,92E+06

Total 105 3,2075E+03 5,64E+04 2,67E+05 3,90E+06Eref 210 GpaN.A,  bending 1,76E+01 mm from  deck L B a a/b r CElement  Iz 2,67E+05 mm^4 2400 900 1385,6 1,539600718 >  6 0,55Element  Is 3,90E+06 mm^4I_n 4,16E+06 mm^4 around  deckI 3,17E+06 mm^4 around  N.A. Achieved  Z 36,31 cm^3Z_top 3,63E+04 mm^3 = 36,31 cm^3 Required  Z 15 cm^3Z_bottom 1,81E+05 mm^3 = 180,66 cm^3 Difference 21,31 cm^3

Machinery  Deck  -­‐  B*220*10  &  15  mm  platePlate 1 210 900 495 15 7,5 7,43E+03 5,57E+04 1,39E+05 4,18E+05Stiffener  web 1 210 10 10 188 109 1,88E+03 2,05E+05 5,54E+06 2,23E+07Stiffener  flange 1 210 41 41 32 219 1,31E+03 2,87E+05 1,12E+05 6,29E+07

Total 235 1,0617E+04 5,48E+05 5,79E+06 8,57E+07Eref 210 GpaN.A,  bending 5,16E+01 mm from  deck L B a a/b r CElement  Iz 5,79E+06 mm^4 2400 900 1385,6 1,539600718 >  6 0,55Element  Is 8,57E+07 mm^4I_n 9,15E+07 mm^4 around  deckI 6,32E+07 mm^4 around  N.A. Achieved  Z 344,56 cm^3Z_top 3,45E+05 mm^3 = 344,56 cm^3 Required  Z 15 cm^3Z_bottom 1,22E+06 mm^3 = 1224,37 cm^3 Difference 329,56 cm^3

Page 38: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      35  

APPENDIX  C:  MID-­‐SHIP  SECTION    

   

Page 39: Ship Project A Report3 Hull JLe - Aalto

Kul-­‐24.4110:  Ship  Project  A     Markus  Mälkki,  84343C  Assignment  2:  GA     Jesse  Lehtonen,  84692L  

20.10.2014      36  

APPENDIX  D:  ENGINE  ROOM  SECTION