shock-tube data - ars.els-cdn.com · shock-tube data table a-1. shock-tube data for mixtures 1...

24
Shock-Tube Data Table A-1. Shock-tube data for mixtures 1 through 3 T (K) P (atm) τ ign (μs) Mixture 1 1670 1.03 119 1596 1.07 213 1575 1.05 203 1571 1.13 253 1520 1.09 317 1446 1.17 551 1429 1.08 653 1426 0.90 806 1351 1.18 1561 1291 1.10 1874 Mixture 2 1571 1.28 78 1536 1.30 124 1490 1.46 130 1481 1.47 134 1473 1.45 156 1464 1.44 167 1441 1.34 222 1431 1.44 202 1406 1.50 295 1398 1.34 365 1335 1.39 540 1330 1.52 506 1328 1.30 568 1305 1.61 780 1302 1.39 678 1268 1.42 1002 1259 1.61 1298 1248 1.59 1425 Mixture 3 1700 1.28 55 1564 1.28 155 1519 1.35 191 1457 1.39 363 1452 1.31 353 1395 1.36 578 1368 1.36 740 1324 1.39 1032

Upload: trinhthu

Post on 10-Aug-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Shock-Tube Data

Table A-1. Shock-tube data for mixtures 1 through 3

T (K) P (atm) τign (μs)

Mixture 1 1670 1.03 119

1596 1.07 213

1575 1.05 203

1571 1.13 253

1520 1.09 317

1446 1.17 551

1429 1.08 653

1426 0.90 806

1351 1.18 1561

1291 1.10 1874

Mixture 2 1571 1.28 78

1536 1.30 124

1490 1.46 130

1481 1.47 134

1473 1.45 156

1464 1.44 167

1441 1.34 222

1431 1.44 202

1406 1.50 295

1398 1.34 365

1335 1.39 540

1330 1.52 506

1328 1.30 568

1305 1.61 780

1302 1.39 678

1268 1.42 1002

1259 1.61 1298

1248 1.59 1425

Mixture 3 1700 1.28 55

1564 1.28 155

1519 1.35 191

1457 1.39 363

1452 1.31 353

1395 1.36 578

1368 1.36 740

1324 1.39 1032

Table A-2. Shock-tube data for mixtures 4 through 8

T (K) P (atm) τign (μs)

Mixture 4 2248 1.13 70

2097 1.14 138

2013 1.34 210

1994 1.21 229

1988 1.19 211

1897 1.21 476

1801 1.27 831

1790 1.20 911

1773 1.36 994

1764 1.44 1043

1750 1.38 1257

1735 1.37 1249

1726 1.25 1447

1705 1.41 1611

1689 1.36 1690

1686 1.35 1714

Mixture 5 1592 0.84 104

1537 0.88 147

1494 0.90 230

1485 0.95 246

1417 1.02 400

1340 1.00 1007

1312 1.03 1243

Mixture 6 1464 1.02 43

1432 0.98 172

1400 0.96 238

1381 0.97 288

1377 0.95 283

1344 1.03 419

1297 1.03 574

1258 1.00 952

Mixture 7 1377 1.00 131

1329 0.97 189

1305 0.98 272

1298 1.02 290

1241 1.01 602

1234 1.07 656

1223 1.10 784

Mixture 8 1802 0.76 152

1731 0.82 224

1684 0.85 304

1635 0.88 400

1628 0.85 486

1543 0.87 876

Table A-3. Shock-tube data for mixtures 9 through 14

T (K) P (atm) τign (μs)

Mixture 9 1475 1.19 76

1450 1.24 46

1401 1.25 163

1350 1.32 165

1338 1.31 179

1319 1.31 166

1310 1.30 279

1291 1.30 281

1274 1.28 553

1269 1.31 474

1260 1.31 301

1257 1.31 505

1228 1.32 1183

1204 1.33 685

1201 1.33 1402

1198 1.33 1000

1185 1.33 1097

Mixture 10 1399 1.23 68

1368 1.28 83

1333 1.26 112

1303 1.27 133

1268 1.28 256

1246 1.36 425

1225 1.24 609

1180 1.30 1487

Mixture 11 1524 10.76 98

1457 10.95 195

1390 11.13 416

1314 11.81 923

1255 11.65 1633

1234 12.14 2167

Mixture 12 1395 11.27 131

1358 11.68 199

1291 11.56 422

1264 11.97 533

1229 12.16 1034

1209 12.56 1252

1172 12.59 2331

Mixture 13 1254 11.41 306

1251 12.28 324

1227 11.89 481

1195 12.78 813

1186 11.93 907

1154 12.38 1471

Mixture 14 1377 30.77 162

1330 30.95 260

1259 31.23 601

1212 32.33 998

1190 32.75 1334

Table A-4. Shock-tube data for mixtures 15 through 20

T (K) P (atm) τign (μs)

Mixture 15 1389 15.21 153

1347 15.65 217

1315 15.82 316

1283 16.08 408

1248 16.16 654

1234 16.61 850

1226 16.81 901

Mixture 16 1775 27.87 135

1713 27.37 209

1626 26.75 475

1597 28.26 520

1589 28.23 610

1533 28.25 825

1496 28.31 1131

1470 29.00 1817

Mixture 17 1513 25.60 63

1438 26.38 92

1306 28.39 382

1241 29.96 481

1175 30.85 845

1143 30.70 1276

Mixture 18 1366 14.64 128

1255 14.46 333

1196 15.21 641

1156 15.90 1042

1094 15.97 2417

Mixture 19 1266 30.07 103

1252 28.99 127

1230 30.73 198

1227 29.15 125

1225 30.97 134

1214 30.09 263

1184 37.49 263

1169 30.94 316

1166 30.65 259

Mixture 20 1728 13.33 63

1583 13.79 224

1539 14.46 320

1467 14.52 739

1336 14.43 2068

Table A-5. Shock-tube data for mixtures 21 and 22

T (K) P (atm) τign (μs)

Mixture 21 1291 15.45 101

1249 15.70 212

1165 15.55 423

1126 16.19 928

1082 16.68 1581

Mixture 22 1304 15.74 77

1269 15.81 159

1269 15.79 111

1234 16.79 233

1199 15.72 237

Methane/Ethane Ignition Delay Time Predictions

For all plots AramcoMech_1.0 refers to the mechanism described in this work, GRI 3.0 as described

in [1], the Leeds mechanism is outlined in [2], Ranzi 1201 can be found in [3], while the San Diego

and USC II mechanisms are described in references [4]and [5], respectively.

Shock Tube

Target 1. This work

Figure 1. Methane/Ethane shock tube ignition delays mixtures 1–6. Symbols are experimental points, lines are model

predictions from AramcoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 2. Methane/Ethane shock tube ignition delays mixtures 7–12. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 3. Methane/Ethane shock tube ignition delays mixtures 13–18. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 4. Methane/Ethane shock tube ignition delays mixtures 19–22. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Target 2. J. Herzler; C. Naumann(2009)[29]

Figure 5. Methane/Ethane shock tube ignition delays. Symbols are experimental points, lines are model predictions

from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 6. Methane/Ethane shock tube ignition delays. Symbols are experimental points, lines are model predictions

from AramcoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 7. Methane/Ethane shock tube ignition delays. Symbols are experimental points, lines are model predictions

from AramcoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Flame Speeds

Target 3. W. Lowry; J. d. Vries; M. Krejci; E. Petersen; Z. Serinyel; W. Metcalfe; H. Curran;

G. Bourque (2011)[7]

Target 4. Y. Kochar; J. Seitzman; T. Lieuwen; W. K. Metcalfe; S. M. Burke; H. J. Curran; M.

Krejci; W. Lowry; E. Petersen; G. Bourque(2011)[8]

Figure 8. Methane/Ethane flame speed measurements. Solid symbols are experimental points, lines are model

predictions from ArmacoMech_1.0 (solid), GRI 3.0 (dashed), Ranzi 1201 (dash dot), San Diego (dotted/open symbols)

and USC II (dash dot dot) mechanisms.

Jet Stirred Reactor (Methane/Ethane & Methane/Ethane/Hydrogen)

Target 5. P. Dagaut; G. Dayma (2006)[9]

Figure 9. Methane/Ethane speciation profiles from a JSR. Symbols are experimental points, lines are model

predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 10. Methane/Ethane speciation profiles from a JSR. Symbols are experimental points, lines are model

predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 11. Methane/Ethane speciation profiles from a JSR. Symbols are experimental points, lines are model

predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 12. Methane/Ethane/Hydrogen speciation profiles from a JSR. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 13. Methane/Ethane/Hydrogen speciation profiles from a JSR. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 14. Methane/Ethane/Hydrogen speciation profiles from a JSR. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 15. Methane/Ethane/Hydrogen speciation profiles from a JSR. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 16. Methane/Ethane/Hydrogen speciation profiles from a JSR. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

Figure 17. Methane/Ethane/Hydrogen speciation profiles from a JSR. Symbols are experimental points, lines are

model predictions from ArmacoMech_1.0, GRI 3.0, Leeds, Ranzi 1201, San Diego and USC II mechanisms.

References

[1] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg,

C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, Jr., V.V. Lissianski, Z. Qin,

http://www.me.berkeley.edu/gri_mech/

[2] K.J. Hughes, T. Turanyi, M.J. Pilling. The Leeds methane oxidation mechanism

Version 1.5. 2001; Available from:

http://garfield.chem.elte.hu/Combustion/mechanisms/metan15.dat

[3] C1–C3 mechanism version 1201. 2012; Available from:

http://creckmodeling.chem.polimi.it/kinetic.html.

[4] Chemical-Kinetic Mechanisms for Combustion Applications, Mechanical and

Aerospace Engineering (Combustion Research), University of California at San

Diego. 2011; Available from: http://combustion.ucsd.edu.

[5] Hai Wang, X.Y., Ameya V. Joshi, Scott G. Davis, Alexander Laskin, Fokion

Egolfopoulos, Chung K. Law. USC Mech. Version II. High-Temperature Combustion

Reaction Model of H2/CO/C1-C4 Compounds. 2007; Available from:

http://ignis.usc.edu/USC_Mech_II.htm.

[6] J. Herzler, C. Naumann, Proc. Combust. Inst. 32 (2009) 213-220.

[7] W. Lowry, J. de Vries, M. Krejci, E. Petersen, Z. Serinyel, W. Metcalfe, H. Curran,

G. Bourque J Eng Gas Turb Power 133(9) (2011) 091501

[8] Y. Kochar, J. Seitzman, T. Lieuwen, W.K. Metcalfe, S.M. Burke, H.J. Curran, M.

Krejci, W. Lowry, E. Petersen, G. Bourque, ASME Paper GT2011-45122, 56th

ASME Turbo Expo, 2011.

[9] P. Dagaut, G. Dayma,. Int. J. Hydrogen Energy, 31 (2006) 505-515.