short electron pulses from rf photoinjectors massimo ferrario infn - lnf

39
1 Short Electron Pulses from RF Short Electron Pulses from RF Photoinjectors Photoinjectors Massimo Ferrario Massimo Ferrario INFN - LNF INFN - LNF

Upload: neila

Post on 12-Jan-2016

23 views

Category:

Documents


1 download

DESCRIPTION

Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF. Schematic View of the Envelope Equations (HOMDYN model). Emittance Compensation: Controlled Damping of Plasma Oscillation. 100 A ==> 150 MeV. Brillouin Flow. L. Serafini, J. B. Rosenzweig, Phys. Rev. E 55 (1997). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

1

Short Electron Pulses from RF Short Electron Pulses from RF PhotoinjectorsPhotoinjectors

Massimo FerrarioMassimo FerrarioINFN - LNFINFN - LNF

Page 2: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

2

Schematic View of the Envelope Schematic View of the Envelope EquationsEquations

(HOMDYN model)(HOMDYN model)′ σ

′ γ γ

+σΩ2 ′ γ 2

γ2

I2I Aσγ3 +

εn,sl2

σ 3γ2

′ ϑ =−Ksol +pϑ ,o

mcβγR2

KzRF ϕ( )σ z

KzSC

σ z

′ ′ σ

′ ′ σ z

Page 3: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

3

′ γ = 2

σ w

ˆ Ι

3I0γ

γ= 8

3

ˆ I

2Ioε th ′ γ

σ ' = 0

Emittance Compensation: Emittance Compensation:

Controlled Damping of Plasma OscillationControlled Damping of Plasma Oscillation

Brillouin FlowBrillouin Flow

Hokuto IijimaHokuto Iijima

L. Serafini, J. B. Rosenzweig, Phys. Rev. E 55 (1997)

100 A ==> 150 MeV

Page 4: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

4

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10Z_[m]

GunLinac

rms beam size [mm]

rms norm. emittance [um]

-0.04

-0.02

0

0.02

0.04

0 0.001 0.002 0.003 0.004 0.005 0.006

z=0.23891

Pr

R [m]

-0.05

0

0.05

0 0.0008 0.0016 0.0024 0.0032 0.004

z=1.5

Pr

R [m]

-0.04

-0.02

0

0.02

0.04

0 0.0008 0.0016 0.0024 0.0032 0.004

z=10

pr_[rad]

R_[m]

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

z=0.23891

Rs [m]

Zs-Zb [m]

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

Z=10

Rs [m]

Zs-Zb [m]

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-0.003 -0.002 -0.001 0 0.001 0.002 0.003

z=1.5

Rs [m]

Zs-Zb [m]

Final emittance = 0.4 m

Matching onto the Local Emittance Max.,

Example of an optimized matchingExample of an optimized matching

M. Ferrario et al., “HOMDYN Study For The LCLS RF Photo-Injector”, Proc. of the 2nd ICFA Adv. Acc. Workshop on “The Physics of High Brightness Beams”, UCLA, Nov., 1999, also in SLAC-PUB-8400

Page 5: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

5

Coherent Synchrotron Radiation in bending magnets

Coherent Synchrotron Radiation in bending magnets

Powerful radiation generates energy spread in bendsPowerful radiation generates energy spread in bends Powerful radiation generates energy spread in bendsPowerful radiation generates energy spread in bends

Causes bend-plane emittance growth (DESY experience)Causes bend-plane emittance growth (DESY experience) Causes bend-plane emittance growth (DESY experience)Causes bend-plane emittance growth (DESY experience)

Energy spread breaks achromatic systemEnergy spread breaks achromatic system Energy spread breaks achromatic systemEnergy spread breaks achromatic system

x = Rx = R1616((ss))E/EE/E

bend-plane emittance growthbend-plane emittance growth

ee––RR

σσzz

coherent radiation coherent radiation forfor σσzz

overtaking length:overtaking length: L L00 (24 (24σσzzRR22))1/31/3

ssxx

LL00

Page 6: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

6

Pulsed photodiodes

Ballistic bunching

Velocity bunching

Bunch slicing

Talk OutlineTalk Outline

Page 7: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

7

Q = 20-100 pC

σz < ~ 250 m ==> σz = 20 m

σx ~ 20-30 m ==> nx < 5 m

γγ < 1 %

γ ~ γ ~150 MeV

ee-- beam requirements beam requirements

Page 8: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

8

QMAX ∝ ′ γ σ 2

maximum amount of charge that can be extracted from a photocathode illuminated by a laser

γγ

∝Q′ γ σ 2

−σ φ cosϕ the induced rms energy spread on the electron bunch:

I ∝ ′ γ σ sinϕ ( )

2

f Al ,γ( )

the actual beam current at the gun exit will be almost

independent on the initial peak current

L. Serafini, “The Short Bunch Blow-out Regimein RF Photoinjectors”

Pulsed photodiode + femtoseconds laser

′ γ ≅ eE0

2mc2High gradient required !

Page 9: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

9

2 MV HV 1 ns pulse on a 2 mm diode gap:1 GV/m , 100 pC ==> 200 fs bunch,

Page 10: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

10

Provide a correlated energy spread enough to produce, in a drift of length Ldrift a path difference equal to half the bunch length Lo

Ldrift =γ 2L0

2Δγ γ ΔL =

Ldrift

γ 2⎡

⎣ ⎢

⎦ ⎥ Δγγ

Δγ

L0

z

γ γ

zΔγ

Lfin=εzΔγ

Bullistic Bunching

Page 11: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

11

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

Page 12: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

12

Bullistic Bunching experiment at UCLA (Rosenzweig)

Page 13: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

13

Page 14: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

14

Page 15: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

15

Velocity bunching conceptVelocity bunching concept

Page 16: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

16

Quarter wavelength synchrotron oscillation

Page 17: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

17

Limitation: longitudinal emitance growth induced Limitation: longitudinal emitance growth induced by RF non-linearitiesby RF non-linearities

Limitation: longitudinal emitance growth induced Limitation: longitudinal emitance growth induced by RF non-linearitiesby RF non-linearities

Page 18: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

18

Average current vs RF compressor phase

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

-95 -90 -85 -80 -75 -70 -65 -60

RF compressor phase (deg)

Average current (A)

LOW COMPRESSION

MEDIUM COMPRESSION

HIGH COMPRESSION

OVER-COMPRESSION

Page 19: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

19

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Page 20: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

20B. Spataro et al, PAC05 ==>B. Spataro et al, PAC05 ==>

Page 21: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

21

<I> = 860 A<I> = 860 A

nxnx = 1.5 = 1.5 mm

C. Ronsivalle et al. , “C. Ronsivalle et al. , “Optimization of RF compressor in the SPARX injector”, Optimization of RF compressor in the SPARX injector”, PAC05PAC05

Page 22: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

22

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Page 23: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

23

Page 24: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

24

Page 25: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

25

Page 26: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

26

To be published on JJAP

Page 27: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

27

Streak Images of Electron BunchStreak Images of Electron Bunch

Injected Phase -70O

Minimum!

200 psec range 50 psec range

Injected Phase -1O

Page 28: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

28

Stability of Velocity Bunching (-1 degree)Stability of Velocity Bunching (-1 degree)

Streak images at injection phase of –1 degree. Fluctuation is 0.4 ps (rms) for 30 shots. Streak images at injection phase of –1 degree. Fluctuation is 0.4 ps (rms) for 30 shots.

1.1 psec 1.4 psec 0.9 psec

0.5 psec 1.1 psec 0.8 psec

Page 29: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

29

Current sensitivity for 1 degree error in Current sensitivity for 1 degree error in the RF compressor phase with IV harmonic the RF compressor phase with IV harmonic

cavitycavity

D. Alesini, PAC05D. Alesini, PAC05

Page 30: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

30

Page 31: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

31

Rectilinear Bunching Experiments Rectilinear Bunching Experiments SummarySummary

BNLBNL UCLAUCLA BNL-DUVFELBNL-DUVFEL UTNL-18LUTNL-18L LLNLLLNL

MethodeMethode Ballistic BallisticVelocity Bunching

Velocity Bunching

Velocity Bunching

Acc. Acc. StructureStructure

S-band PWT 4 S-band 1 S-band 4 S-band

MeasurementMeasurement

zero-phasing method

CTRzero-phasing

methodFemotsecond

Streak CameraCTR

ChargeCharge 0.04 nC 0.2 nC 0.2 nC 1 nC 0.2 nC

Bunch Bunch widthwidth

0.37 ps(rms)

0.39 ps(rms)

0.5 ps(rms)

0.5 ps (rms) < 0.3 ps

Comp. Comp. RatioRatio

6 15 > 3 > 13 10

Solenoid Solenoid fieldfield No No No Yes Yes

Page 32: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

32

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

==> D. Giulietti talk tomorrow

Page 33: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

33

Exercise for this workshopExercise for this workshop

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

Bz_[T]

Bz_[T]

Z_[m]

σz = 200 m ==> < 25 m

σx =175 m ==> < 20 m

γγ = 0.2% , nx < 0.3 m

Q = 20 pC

Page 34: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

34

QuickTime™ and aAnimation decompressor

are needed to see this picture.

HOMDYN movieHOMDYN movie

Page 35: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

sigma_z_[mm]sigma_x_[mm]

sigma_z_[mm]

Z_[m]

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

enx_[um]dg/g_[%]

enx_[um]

Z_[m]

0

50

100

150

200

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

I_[A]T_[MeV]

I_[A]

Z_[m]

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

HBUNCH.OUT

elz_[KeVmm]

elz_[KeVmm]

Z_[m]

Page 36: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

36

Page 37: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

37

C. Vaccarezza et al., EPAC_04

Bunch slicingBunch slicing

Q = 1nC ==> 25pCQ = 1nC ==> 25pC

LLbb=10 ps ==> 100 fs=10 ps ==> 100 fs

σσxx = 0.5 mm ==> 5 = 0.5 mm ==> 5 mm

γγ γγ < 0.2%< 0.2%

Page 38: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

38

Short pulses delivered by RF photoinjectors could meet the plasma acceleretor requirements

Within a quite short time more experimental data will be available on RF compression in optimized layout

ConclusionsConclusions

Page 39: Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF

39

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Physics and Applications Physics and Applications of High Brightness Electron of High Brightness Electron

BeamsBeams

Organizers: L. Palumbo (Univ. Roma), J. Rosenzweig (UCLA), L. Serafini (INFN-Milano).