silicon microfluidic scintillation detectors

26
SILICON MICROFLUIDIC SCINTILLATION DETECTORS 1 Physics Department, European Organization for Nuclear Research (CERN), Switzerland 2 Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 3 Sezione di Roma 1, Istituto Nazionale di Fisica Nucleare (INFN), Italy 10.10.2013 // [email protected] 13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013 1 P. Maoddi 1,2 , A. Mapelli 1 , P. Bagiacchi 3 , B. Gorini 1 , M. Haguenauer 1 , G. Lehmann Miotto 1 , R. Murillo Garcia 1 , F. Safai Tehrani 3 , L. Serex 1 , S. Veneziano 3 , P. Renaud 2

Upload: hadley-emerson

Post on 03-Jan-2016

27 views

Category:

Documents


2 download

DESCRIPTION

Silicon Microfluidic Scintillation Detectors. 1 Physics Department , European Organization for Nuclear Research (CERN), Switzerland 2 Microsystems Laboratory , Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

1

SILICON MICROFLUIDIC SCINTILLATION

DETECTORS

1 Physics Department, European Organization for Nuclear Research (CERN), Switzerland2 Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3 Sezione di Roma 1, Istituto Nazionale di Fisica Nucleare (INFN), Italy

10.10.2013 // [email protected]

P. Maoddi1,2, A. Mapelli1, P. Bagiacchi3, B. Gorini1, M. Haguenauer1, G. Lehmann Miotto1, R. Murillo Garcia1, F. Safai Tehrani3, L. Serex1, S.

Veneziano3, P. Renaud2

Page 2: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

2

OUTLINE

• Introduction• Microfluidic scintillation detectors: concept and previous work• Advantages and applications

• Single layer devices• Fabrication technology• Experiments

• Double layer devices• Fabrication technology• Experiments

• Conclusions and outlook

10.10.2013 // [email protected]

Page 3: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

3

OPERATING PRINCIPLE

10.10.2013 // [email protected]

• Microfluidic channel filled with liquid scintillator defining an array of waveguides• Photodetector pixel coupled to each channel end• Scintillation light guided along microchannel and detected

For fine spatial resolution:small channels (10 µm – 1 mm)

microfluidicsPhotodetector array

Microchannel

Scintillation

Page 4: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

4

FIRST PROTOTYPE

10.10.2013 // [email protected]

DAQ syste

m

A. Mapelli PhD thesis (2011)Photo: J. Daguin

20 mm

15 mm

First prototype ( first shown at IPRD08 )

• Microchannels made by SU-8 photolithography

• Gold reflective coating

𝑁 𝑝𝑒=1.6(200 µm deep channel)

MAPMT

~8 mm-1

Page 5: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

5

ADVANTAGES AND APPLICATIONS

Advantages• Increased radiation resistance

(liquid scintillator can be easily circulated in microchannels)• Microfabrication technology allows to make very thin

detectors

Potential applications individuated• Tracking/calorimetry in high energy physics• Beam monitoring in hadron therapy

10.10.2013 // [email protected]

Page 6: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

6

Thin microfluidic detector

Particle beam

Patient under treatment

ONLINE BEAM MONITORING• Hadron therapy

• Cancer treatment using hadron beams

• Microfluidic detectors• Very thin detectors can be made with

microfabrication techniques• Very good radiation resistance expected

10.10.2013 // [email protected]

Real-time monitoring of the beamduring patient irradiation

• Safer treatment• Optimized beam time use• Treatment cost reduction

Page 7: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

7

WHY SILICON?

SU-8 photosensitive polymer• Easy micropatterning (one-step photolithography)

• Good radiation resistance (comparable to Kapton)

• Main challenge: incompatible with high temperature processing(required for other materials in the device, e.g. metal bonding)

Silicon• Many reliable microfabrication techniques available

• Better thermal and mechanical resistance

• Possibility of tight integration of microchannels withsemiconductor devices (photodetectors, electronics, …)

All microfabrication activities performed at theEPFL Center for Micronanotechnology cleanroom

10.10.2013 // [email protected]

Photo: V. Floraud

Page 8: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

8

DRY ETCHING AND SMOOTHING

• RF plasma reactor alternating SF6 (etching) and C4F8 (polymer coating) plasmas

• Vertical etching profile but resulting in «scalloping»

• Wet oxidation SiO2 has larger volume than Si surface features loss

• SiO2 removal with hydrofluoric acid smooth silicon

10.10.2013 // [email protected]

2 µm 5 µm

Page 9: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

9

DRY ETCHING OF MICROCHANNELS

• Starting substrate: silicon wafer• Etching of microchannels via DRIE process

10.10.2013 // [email protected]

2. Deep Reactive Ion Etching(alternated etching and passivation steps)

3. Smoothing by thick SiO2 growthand removal surfaces with suitable optical quality

1. Patterning of silicon oxide asetching mask 200 µm

Microchannels etched in silicon

Page 10: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

10

OPTICAL COATING AND BONDING

• Deposition of reflective aluminum layer• Wafer-level bonding of metallized glass top

10.10.2013 // [email protected]

5. Preparation of top cover(aluminum patterning on glass wafer)

6. Anodic bonding

4. Reflective coating by aluminumsputtering

0.5 mm

0.5 mm

Bonded channels section

Pyrex 100 µm

Total thickness~0.96 mm

Two devices superimposed and staggered

Page 11: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

11

20 m

m15 mm

OPTICAL AND FLUIDIC PACKAGING

10.10.2013 // [email protected]

7. DicingChannel ends are cut open

8. «Packaging»Thin glass window and fluidicconnectors glued on chip

Finished device

Microchannels cut open

Page 12: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

12

CHARACTERIZATION WITH PMTS

10.10.2013 // [email protected]

PMT

PMT

QDC

β-

Radioactivesource (90Sr )

Scintillating fiber(trigger)

Photoelectron spectrum fitted with:

𝑆=𝑃+𝒫∗𝒩Signal Pedestal Gaussians

convoluted with Poisson distribution(PMT response)

𝑁 𝑝𝑒=1.4

Charge signal

Event

count

(180µm deep channel)

~7.8 mm-1

Page 13: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

13

LIGHT YIELD

• Expected light yield consistent with PMT measurements

10.10.2013 // [email protected]

2.07 (measured: 1.42)

Average scintillation photons (~307)

Light transport efficiency (~0.03)

Interface optical efficiency (~0.9)

PMT quantum efficiency (~0.25)

Needs improvement!

Possible solution:low refractive indexdielectric cladding

50 µm

Effects of surface roughness and defects at the liquid/glue/glass interface (lowering ) not calculated!

Page 14: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

14

BEAM MONITORING

10.10.2013 // [email protected]

Particle beam

x

x

Energy distribution

• High flux of relatively high energy particles

• High light output expected

• No need for high sensitivity photodetectors

Hamamatsu S8866-128-02 photodiode array

Page 15: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

15

EXPERIMENTS WITH PHOTODIODES

10.10.2013 // [email protected]

Plastic support

Microchannels

Microchannels windowon photodiodes

Hamamatsu S8866-128-02photodiode array(connected to DAQ board)

90Sr source(2.4 MBq)

β-

Readout system developed incollaboration with INFN Rome

x

0.8

0.7

0.8

(mm)

. . . 0.18

Microchannel section

Photodiode (pixel)

Pixel number(0 … 127)

Inte

gra

ted lig

ht

signal

Long integration time used (1 sec)

Page 16: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

16

EXPERIMENTS WITH PHOTODIODES

Problem: flux from radioactive source too low for scintillation photons to «sum-up» in the photodiodes• Test setup 90Sr source: ~104 e-/sec @ ~2 MeV/e-

• For comparison, proton therapy: ~1011 p+/sec @ ~100 MeV/p+

Conclusions:• Test setup with 90Sr source not suitable for readout with

photodiodes• Test with actual beam envisioned to validate this kind of

application10.10.2013 // [email protected]

Page 17: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

17

DOUBLE LAYER MICROCHANNELS

10.10.2013 // [email protected]

x

y

• Adding an orthogonal microchannel layer XY position resolution

• Technological solution: patterning both sides of the silicon substrate

X side

Y side

Patent filed in 2012, PCT/EP2012001980

Page 18: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

18

WET ETCHING OF XY MICROCHANNELS

10.10.2013 // [email protected]

• Starting substrate: silicon wafer• Etching of microchannels on both sides

at the same time

2. Etching of both sides of the wafer

3. Reflective coating by aluminumSputtering on both sides

1. Patterning of etching mask on bothsides of the wafer

Page 19: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

19

PACKAGING OF DOUBLE LAYER CHIPS

• One-step bonding of 3 wafers stack• Dry etching for inter-layer connection

10.10.2013 // [email protected]

4. Bonding of 3 wafers stack byaluminum thermocompression

Si

Si

Al

Bonding interface

Fluid inlet

5. Channel cutting and gluing of two glass windows and fluidic connectors as before

200 nm

Top layer

Bottom layer 80 µm inter-layer Si

Silicon or pyrex cover wafers

Page 20: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

20

EXPERIMENTS WITH XY DEVICES

10.10.2013 // [email protected]

β-

Trigger PMT

Trigger fiber

Y PMT X PMT

Radioactivesource (90Sr )

X layer (150 µm)𝑁 𝑝𝑒=1.0

Y layer (150 µm)𝑁 𝑝𝑒=0.9

Data acquisition from both layers at the same time

(Glass windows and tubing not shown)

~6 mm-1

(preliminary)

(preliminary)

Page 21: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

21

CONCLUSIONS AND OUTLOOK

Conclusions• Different processes for microchannel patterning on silicon

developed• Single and double layer devices demonstrated with PMT

readout• Issues on tests with photodiode array readout

Perspectives• Beam tests with photodiode readout• Integration of on-chip a-Si:H photodiodes • Readout system based on SiPMs

10.10.2013 // [email protected]

Page 22: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

22

OTHER TECHNOLOGIES

10.10.2013 // [email protected]

110 µm total thickness(30 + 50 + 30)

200 µm

20 x 20 mm

... aside from silicon, research on polymeric microchannels also ongoing!

~0.03% X0

Page 23: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

23

THANK YOU

10.10.2013 // [email protected]

Page 24: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

24

STAGGERING

• Staggered channels for improved geometrical coverage

10.10.2013 // [email protected]

Pyrex grindedto 100 µm

(focal plane in the middle)Total thickness~0.96 mm

100 µm staggering

Page 25: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

25

MATERIAL BUDGETX0

(mm)Single layer thickness (mm)

Double layer thickness (mm)

Silicon 94 0.2 (0.21% X0) 0.58 (0.62% X0)

Pyrex 126 0.5 (0.4% X0) 0.5 (0.21% X0)

EJ-305 ~500 0.18 (0.04% X0) 0.3 (0.06% X0)

Aluminum 89 0.0002 (negligible) 0.0004 (negligible)

Total 0.65% to 0.8% X0 0.89% to 1.2% X0

10.10.2013 // [email protected]

0.5 mm Excess material can be ground down to 100 – 50 µm Single layer: 0.12% to 0.28% X0

Double layer: 0.24% to 0.5% X0

maxmin

Page 26: Silicon Microfluidic Scintillation  Detectors

13th Topical Seminar on Innovative Particle and Radiation Detectors, Siena 2013

26

FLUIDIC OPERATION

Detector area

(mm2)Depth(mm)

Width(mm)

N channels

Internal volume

(µL)

Hydraulic Resistance (bar s

µL-1)

Refill time @ ΔP = 1

bar

12.8 x 12.8 0.18 0.7 16 25.8 0.0042 ~ 100 ms

12.8 x 12.8 0.18 0.1 64 14.7 0.5 ~ 7 s

204.8 x 204.8

0.18 0.7 256 6450 1.1 ~ 2h

10.10.2013 // [email protected]

24h operation at ΔP = 1 bar:less than 80 mL of scintillator neededChannel section

width

depth