silicon nitride band splitter based on multimode bragg

14
Silicon Nitride Band Splitter Based on Multimode Bragg Gratings Jonathan Cauchon 1 , Jonathan St-Yves 1,2 , Francois Menard 2 , Wei Shi 1 1 Centre d’optique, photonique et laser (COPL), Université Laval, QC, Canada 2 AEPONYX inc., 33 Prince St. #200A, Montreal, QC, Canada June 2021

Upload: others

Post on 26-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Silicon Nitride Band Splitter Based on Multimode Bragg Gratings

Jonathan Cauchon1, Jonathan St-Yves1,2, Francois Menard2, Wei Shi1

1Centre d’optique, photonique et laser (COPL), Université Laval, QC, Canada

2AEPONYX inc., 33 Prince St. #200A, Montreal, QC, Canada

June 2021

Outline

1. Motivation

The Si3N4 platform, broadband Filters, NG-PON2 transceivers

2. Design

Multimode Bragg grating, adiabatic directional coupler

3. Results

NG-PON2 diplexer and figures of merit

4. Conclusion

Accomplishment & potential improvements

[email protected] 2

Motivation: The Si3N4 Platform

Pros:

• Low-loss waveguides

• Wide transparency range (0.4– 2.35 µm)

• CMOS-compatible

• Low index contrast

Cons:

• Larger footprint

• Low index contrast

[email protected] 3

[1] Daniel J Blumenthal, Rene Heideman, Douwe Geuzebroek, Arne Leinse, and Chris Roeloffzen. Silicon nitride in silicon photonics. Proceedings of the IEEE, 106(12):2209–2231, 2018.

SiO2 (n = 1.45)

Si3N4 (n = 2.05)

45

0 n

m

Motivation: NG-PON2 Broadband Filters

[email protected] 4

Next-Generation Passive Optical Network 2

• 2 Symmetric 4-channel DWDM (Tx & Rx)

• 2-channel CWDM to diplex Rx from Tx

• CWDM filter figures of merit (FOM):

1. Bandwidth

2. Insertion loss

3. Top flatness

4. roll-off sharpness

5. Out-band suppression ratio

DW

DM

DW

DM

CW

DM

Tx

𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜆6

𝜆7

𝜆8

Rx

1

23

4

5

Motivation: NG-PON2

Target Application

• 4 transmission DWDM channels

(195.3 – 195.6 THz)

• 4 reception DWDM channels

(187.5 – 187.8 THz)

• Filter requirements:• 4-port

• Super-channel diplexing

• Figures of merit of CWDM filter

[email protected] 5

Design: Proposed Solution

[email protected] 6

Drop

Input Thru

Add

Multimode Bragg Gating (MBG)• Reflection• Wavelength selectivity• Mode conversion(Forward TE0 → Backward TE1)

Input Adiabatic Directional Coupler (ADC)

• Mode conversion• Couple reflection into drop

port

Output ADC• Couple through-put power to

thru port• Identical to Input ADC for add-

drop operation

Design: Multimode Bragg Grating

7

TE1

X

𝑦

𝑥TE0

TE0

TE1

X✓

𝛥w

w…

𝛬

𝑎2

• Coupled Mode Theory:

𝜅𝑚𝑛 =𝜔

4ඵ 𝜑𝑚

∗ 𝑥, 𝑦 Δℰ 𝑥, 𝑦 𝜑𝑛 𝑥, 𝑦 𝑑𝑦𝑑𝑥

z

x

X

• Phase-Matching Condition:

𝜆𝐵 = 2 Λ ത𝑛𝑒𝑓𝑓Apodization

Design choice: w = 1500 nm, 𝛬 = 484 nm

600

Design: Adiabatic Directional Coupler (ADC)

Input ADC

[email protected] 8

Input

DropTE0

TE1

TE0

TE0

MBG TE1

TE0

Thru

Add

TE0

TE0

500 400

70 𝜇m

1500 nm

750800 nm

Output ADC

- 1.25 dB

Results: NG-PON2 Diplexer

[email protected] 9

Wavelength (nm)

Results: Figures of Merit

[email protected] 10

Bandwidth: 12.8 nm (1500 GHz) C-band ChannelsInsertion loss: 2.7 dBExtinction Ratio: 20.4 dBDrop port roll-off: 6.1 dB/nm

2.7

20.4 20.3

3.3

L-band ChannelsInsertion loss: 3.3 dBExtinction Ratio: 20.3 dBThru port roll-off: -5.0 dB/nm

solution: Phase Apodization

[email protected] 11

(a) (b)

27.0 22.4

5.076.89

22.2

11.7

[2] Cheng, Rui, and Lukas Chrostowski. "Apodization of silicon integrated bragg gratings through periodic phase modulation." IEEE Journal of Selected Topics in Quantum Electronics 26.2 (2019): 1-15.

𝜅𝑚𝑛 =𝜔

4ඵ 𝜑𝑚

∗ 𝑥, 𝑦 Δℰ 𝑥, 𝑦 𝜑𝑛 𝑥, 𝑦 𝑑𝑦𝑑𝑥 …

No coupling max. coupling• Phase apodization avoids coupling-dependent chirp [2]

TE experimental TM experimental

Conclusion

• Broadband add-drop filter on Si3N4-SiO2

• Suitable for NG-PON2 super-channel diplexing• Channel isolation > 20 dB

• Insertion loss < 3.5 dB

• Future improvements• Extinction ratio: Cascade devices

• Insertion Loss: Design non-linear ADC

• Make polarization-insensitive

[email protected] 12

Acknowledgements

[email protected] 13

Additional: Polarization Insensitivity

• Polarization insensitivity can be achieved by counter-balancing waveguide birefringence [3]

• All figures from [3]

[email protected] 14

[3] Tabti, B., Nabki, F., & Ménard, M. (2017, July). Polarization insensitive Bragg gratings in Si3N4 waveguides. In Integrated Photonics Research, Silicon and Nanophotonics (pp. IW2A-5). Optical Society of America.