simulation of em wave pppg gropagating in a in a ...εε ∞ ω ≡ ωω⎝⎠ 33 ... 100 1.25 1.50...

16
Simulation of EM wave propagating Simulation of EM wave propagating in a in a nanocylinder nanocylinder-base localized base localized surface plasma resonance senor surface plasma resonance senor surface plasma resonance senor surface plasma resonance senor Po-Han Chen, and Bing-Hung Chen Institute of Electronic Engineering, National Dong Hwa University Taiwan National Dong Hwa University , Taiwan

Upload: others

Post on 18-Feb-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Simulation of EM wave propagating Simulation of EM wave propagating p p g gp p g gin a in a nanocylindernanocylinder--base localized base localized surface plasma resonance senorsurface plasma resonance senorsurface plasma resonance senorsurface plasma resonance senor

    Po-Han Chen, and Bing-Hung Chen

    Institute of Electronic Engineering, National Dong Hwa University TaiwanNational Dong Hwa University , Taiwan

  • OutlinesIntroduction of surface plasmon resonanceE i lExperimental setupelectronic resonance in single or pair of cylindersField enhancement in Cylinder array Sensitivity enhancementMagnetic resonance conclusionsconclusions

  • IntroductionDispersion Relations of SPsDispersion Relations of SPs

    SPs at metal-dielectric interface

    Introduction

    From Maxwell’s equations & E and H fields continuity relations

    P-polarized: Ex, Ez, Hy

    Dispersion relation (DR)

    )](exp[0 tzkxkiEE zx ω−±+=±

    0,0 ≤−≥+ zforzfor

    imaginarykz :

    z

    Plasmon dispersive relation

  • Excitation of SPsExcitation of SPsATR (attenuated total

    reflection) coupler

    SP sensor

  • Experimental SystemExperimental System

    1⎡ ⎤

    Jones vectors

    0i t11P= e12

    ω⎡ ⎤⎢ ⎥⎣ ⎦

    1 11 ⎡ ⎤t

    1 11analyzer AN =1 12⎡ ⎤⎢ ⎥⎣ ⎦

    pir e 0φ⎡ ⎤s

    p

    is

    r e 0SPR=

    0 r e φ⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

    tω⎡ ⎤ti2

    t-i2

    e 0EO=

    0 e

    ω

    ω

    ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦t tE =AN SPR EO P⋅ ⋅ ⋅ t t tI =E E∗ ⎣ ⎦

    ( )2 2

    p st p s p s

    r + r1I = + r r cos t+ -4 2

    ω φ φ⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

    In general

    1 constantφ⎣ ⎦ sr =1 s constantφ ∼

    ( )tan expp rp ips rs is

    r E Ei

    r E Eρ ψ= = = Δ

  • ModeNanoscale cylinder arrayNanoscale cylinder array

    Interaction between localized and delocalized surface plasmaon polarition modes in a metal photonic crystal (A. Christ etal, Phys. Stat. sol. (b) 243. No.10 2344- Corning 1737 glass

    2.5cm

    0.1cm

    2348)

    Plasmon resonance coupling in metallic nanocylinders(Kottmann etal, Optics Express Vol.8 No.12 P655

    2.5cm

    Nano-cylinder array

    (Kottmann etal, Optics Express Vol.8 No.12 P655 2001, Sburlan etal, Physical Review B 73 035403 2006)

    N i b d h t f l li d f

    BK7 prismIndex match oil

    Coring glass slideNanowire-based enhancemant of localized surface plasmon resonance for highly sensitive detection (K.Kim, Optics Express Vol.14, No.25, 12419 2006)

    Coring glass slide

    gold nano-cylinderDielectric (alalyte )

    Resonance light interaction with plasmonicnanocylinder system (ref: Viktor A. Podolskiy etal J. of Optics A 7 P32-37 2005)

  • Macroscopic permittivities

    Maxwell’s equation in the metallic cylinderMaxwell s equation in the metallic cylinder

    ( )4 4D =4 = J= E E =0i iπ πσπρ εω ω

    ⎛ ⎞∇ ⋅ ∇ ⋅ ∇ ⋅ ⇒∇⋅⎜ ⎟⎝ ⎠

    4-iπσε εω∞

    ≡i iω ω⎝ ⎠

    ( ) ( ) ( ) ( )3 31 1 11= - ( ) -

    2 4 8i iM d r r r J r D r d r r r E r

    cV cω ωθ ε θπ π

    ⎡ ⎤⎛ ⎞× = ×⎡ ⎤⎜ ⎟⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦∫ ∫2 4 8cV cπ π⎝ ⎠⎣ ⎦

    ( ) ( ) - 4cB k E e E H B Mε μ μ μ π= × = × ≡ = E Eε ε≡( ) ( )

    ( )

    - 4

    -1 -14 4

    e e k e e

    e ee e k

    B k E e E H B M

    M B e E

    ε μ μ μ πω

    μ μ ε μ

    = × = × ≡ =

    ⇒ = = ×

    eE Eε ε≡

    2p

    e 21- iω

    ε ε∞⎛ ⎞

    ≡ ⎜ ⎟⎜ ⎟

    Enhanced E-field make contribution εe, but μe limited.

    ( )4 4π π e 2 -iω ωγ∞ ⎜ ⎟⎝ ⎠

  • Mathematic Description

    Single cylinderz L=

    Single cylinderL>>a, λ>L, the standing waves are good approximation to the eigenstates: L

    ε1 , k1ε2 , k2

    M 1≥

    ( ) ( ) ( )-2 22 -1

    -cos( ) ( ) i M qM z z q M qq

    E r k z q signM k k e J e ϕαρ=±

    = +∑

    ( ) ( )2+ i 2 iMk k k i M J ϕ0z =

    ( ) ( )22 0+sin 2 iMz z Mk z k k signM e J e ϕα αρ

    22 2 2 1 2x y

    e iek k iω

    ±

    B.C.

    EM = 0 at z = 0, L2 2 21 0 2, ; , 1,22

    x yz i i i ze e e k k ic

    ε α± ≡ = ≡ = + =∓

    , zk L nπ=

    2 2

    ,/ , / 1, ...

    z

    n k z k zπ π= +

    TM Mode TE Mode

  • TM d ( ) fi ld h t i f ti f li dTM mode (p-wave) field enhancement is a function of cylinder dimension

    S.E. Sburlan Physical Review B 73. 035403 2006

  • Two cylindersρ  a

    ( ) ( ) ( )-2 2( ) ( ) Y i M qE k i M k k ϕ∑( ) ( ) ( )-2 22 - 21

    -cos( ) ( ) Y i M qM z z q M qq

    E r k z q signM k k e e ϕα ρ=±

    = +∑

    ( ) ( )2+sin 2 Y iMk z k k signM e e ϕα α ρ( ) ( )2 2 z 2+sin 2 Yz z Mk z k k signM e e ϕα α ρ

  • Coupled system has the same magnitude resonance as for the individual cylinder, but the coupling is much stronger and depends on the incident field

    Main resonance is red-shifted with d i di t ddecreasing distance d

  • Cylinder array3.00

    2.00

    2.25

    2.50

    2.75

    強度TM Mode

    1 00

    1.25

    1.50

    1.75

    電場

    y

    0 100 200 300 400 500 600 7000.75

    1.00

    (nm)

    xz

    TE Mode

  • Local Surface Plasmon Enhance Sensitivity

    Sensitivity Definition: Mathematic formula

    Local Surface Plasmon Enhance Sensitivity

    = hsn

    ΔΔ

    :nΔ

    :hΔ

    Refraction index variation

    Physical parameter variation (θ or λ)

    Resolutionσ :σ I t t R l ti

    Present

    RI = inssσσ

    :insσ Instrument Resolution

    Interrogation Angular Wave Intensity

    PhasePresent y

    σins 0.00010 0.02nm 0.2% 0.010

    Prism  5×10‐7 2×10‐5 5×10‐5 4 6×10‐7RI :σ Prism coupling

    5×10 7 2×10 5 5×10 5 4.6×10 7

    Grating coupling

    2×10‐6 6×10‐5 2×10‐4

    RI

    Can reach ~ 10-7 for using heterodyne interferometer p g

    J. Homola, S.S.Yee and G.Gauglitz “Surface plasma resonance sensors: Review” Sens. Actuators B 54, 3-15 (1999)

  • Local surface plasma resonance is accompanied by the broadening in dispersion relation which increase the damping term γ *Surface plasmon resonance consists of gold thin film part and nanocylinderpart, angular width is

    { }Im k γ γ+ ⎛ ⎞{ }Imcos cos

    sp i rsp

    s sp s sp

    k

    n nc c

    γ γθ ω ωθ θ

    +Δ = = 2p ' ''

    e 21- -i ca cai

    ωε ε ε ε

    ω ωγ∞⎛ ⎞

    ≡ = +⎜ ⎟⎝ ⎠

    { }( )

    ''' '

    2' ' 'Im AuAu caspk

    εω ε ε⎛ ⎞≈ ⎜ ⎟

    ⎝ ⎠

    ' ''Au Auε ε '' 0caε ≈{ }

    ( )2'2sp Au ca Auc ε ε ε⎜ ⎟+⎝ ⎠ Metallic photonic

    crystal

    ' 'Au caε ε∼

    ( )''' '

    2' ' '

    2=cos 2

    AuAu casp

    s sp Au ca Aun

    εε εθθ ε ε ε

    ⎛ ⎞Δ ⎜ ⎟+⎝ ⎠ ( )p Au⎝ ⎠

    * Kyujung Kim Optics Express Vol 14, No 25 12419 (2006)

  • Magnetic ResonanceTE Mode:

    Anti-symmetric polarition modeAnti-parallel current in the two cylinders induce magnetic dipole moment resonanceinduce magnetic dipole moment resonance

    TM Mode: Symmetric polarition will induce the y pelectric resonance, but magnetic resonance is limited

    1.672

    1.128

    1.357

    y

    0.232

    0.464

    0.714

    0.696

    x 0.000

    H in TE mode H in TM modeE in TE mode E in TM mode

  • ConclusionsConclusionsSignificant sensitivity increase is associated with larger field enhance.

    Field enhancement is achieved by nanocylinder based localized plasmonresonance mediated by nanocylinder and their coupling.

    Coupling has more contribution on the field enhance.

    Significant magnetic field enhancement is happen in TE mode due to anti-symmetric polarition mode.