simulations of solid-liquid suspensions from dilute to...

57
Kramers Laboratorium voor Fysische Technologie Simulations of solid-liquid suspensions from dilute to dense Jos Derksen Department of Multi-Scale Physics Delft University of Technology, Delft, Netherlands [email protected]

Upload: others

Post on 19-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Simulations of solid-liquid suspensions

from dilute to dense

Jos DerksenDepartment of Multi-Scale Physics

Delft University of Technology, Delft, Netherlands

[email protected]

Page 2: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Acknowledgement Harrie van den AkkerAndreas ten Cate

Élisabeth GuazzelliPaul KellyLi-Shi Luo

Sankaran Sundaresan

Page 3: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Outline• Introduction

liquid-solid examples (why do we do this work?)→ industrial crystallization, fluidization, ...

• Dilute systems– a point-particle approach– stirred suspensions

• DNS with solid-liquid interface resolution– methodology– particle-particle interactions in turbulent flow

• Liquid-solid fluidization– inhomogeneities– bulk viscosity in Euler/Euler closure

• Sheared suspensions

~1% solids vol.

~10% solids vol.

~50% solids vol.

Page 4: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Transport physics• turbulent flow• multiphase (gas/liquid/solid) system

• heat and mass transfer

Micro-scale physics• primary nucleation• growth• agglomeration• attrition (secondary nucleation)

(G)LS example: industrial crystallization11

00 L

dra

ft tu

be, b

affle

d cr

ysta

llize

r

feed

fines removal

fines inlet

boiling zone

product

collisions (particle-particle and particle-impeller)

particle-turbulence interaction

Page 5: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

air

GS/LS example: fluidizationflat fluidized beds

air-polystyrene system 1000≈ρρ

f

s

water-steel 8≈ρρ

f

s

courtesy É. Guazelli(IUSTI, CNRS-UMR)

inhomogeneities• mixing• transfer processes

Page 6: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

LS example: sheared granular bed

u0

w g

courtesy François Charru (IMFT)

sedimentation and resuspension

glass beads in water 52.f

s ≈ρρ

Page 7: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Agitated liquid-solid flowIssues:

– attrition, formation of fines (role of collisions)

– power consumption– scale-up– ...

A starting point:just-suspended experiments: Zwietering (1958); Baldi et al. (1978)

with s≈15 for 3==DT

CT

(Rushton turbine in baffled tank)

( )850550

1304501020

..L

.m

..L

.p

jsD

gdsN

ρ

φρ∆µ=

hydrodyn. interactioncollisions2way coupling

Page 8: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Single-phase flow: LESvtip

average flow single realization

Smagorinsky SGS model (cS=0.1)

Lattice-Boltzmann discretization

single realization: magnitude ofGS and SGS velocity

0.005 0.01

0.16

0.02

0.04 0.08

0.32 0.64

1.28

v/vtip

52

10=ν

=ND

Re

Page 9: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Solid phase dynamics: Lagrangian Equations of motion for the spherical particles

Collisions:

• hard-sphere particle-particle and particle-wall collisions

• 2 parameters: restitution coefficient e (=1 mostly)friction coefficient µf (=0 mostly)

pp v

x=

dt

d

( ) ∑=+ pp F

v

dt

dmm ap

∑= pp T

?

dt

dI

forces:gravity, drag, lift, stress gradients

particle rotation:Magnus forcerotational slip velocities

added mass

dp<∆ ∆

} from single-particle correlations

Derksen, AIChE J 49 (2003)

Page 10: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Results: impressions10 liter vessel, dp=0.3 mm,

ρpart/ρliq=2.5, φV=3.6%, np=2.4 107

vertical cross section horizontal cross section

52

10=ν

=ND

Re

( )118

62

ONd

St p

liq

part =νρ

ρ=

Page 11: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

c/cav

0.10

0.23

0.50

1.14

2.56

time averages

5.4 liter

dp=0.5 mm

ρpart/ρliq=2.5

Intermezzo: unbaffled tank

side

vie

wcr

oss

sect

ion

experimental particle

concentration(thanks to A.

Brucato)

sim

ulat

ion

velo

city

vec

tors

p-co

ncen

trat

ion

(log-

scal

e)

Page 12: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

The quest for (just) suspended

(1) gravity, drag, added mass

(2) see (1) & lift forces, stress-gradient forces

(3) see (1) & (2) & particle-particle collisions

(4) see (1) & (2) & (3) & two-way coupling

vertical concentration profiles at 2r/T=0.45

z/D

0

1

2

30

1

2

3

c/cav0 10 20 30 40 50 60 70 80

c/cav

0

1

2

30

1

2

3z/D

0 2 4 6 8 10 12 14 16 18 20

closest packing of spheres:ccp/cav=78

νω

≈2

10 p

drag

lift d.

FF

e.g. if ω=10N: Flift≈0.5Fdrag

ratio drag and lift force

N=16.5 rev/sNjs=13.5 rev/s

Page 13: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Particle-particle collisions

23

34

Mdr pSm,coll γ= &refer collision rates to

Von Smulochowski: νε

=γ&

dp=0.3 mm, φV=0.95%

1 9

rcoll/rcoll,Sm

dp=0.47 mm, φV=3.6%

collision intensities

dp=0.3 mm, φV=0.95%

dp=0.47 mm, φV=3.6%

0.02 0.1 0.18

vrel2/vtip

2

0o

55o

0o

55o

collision frequencies(color scale

according to Von

Smulochowski)

Page 14: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Particle-impeller collisionscollision intensities

probability density function (pdf) of particle-impeller

collision velocitiesdp=0.3 mm, φV=0.95%

dp=0.47 mm, φV=3.6%

tiprel v/v0.02 0.1 0.18

101

100

10-1

10-2

10-3

10-4

10-5

0 0.2 0.4 0.6 0.8 1.0

tiprel v/vpd

f(a.

u.)

dp=0.3 mm

dp=0.47 mm

front surface of impeller blade

Page 15: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Collision mechanics

t=t0

elastic, frictionlesscollision

t=t0+∆t t=t0+∆t

elastic, frictionalcollision

pdf of the particle’s angular velocity(single realization, entire vessel)

/ 2 Nπ?0 1 2 3 4

10lo

g(pd

f) 0

-1

-2

-3

-4

-5

no friction

friction (µf=0.325)

Page 16: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

One- and two-way couplingphase-averaged turbulent kinetic energy in the impeller outstream

2z/W

0

1

-1

k/vtip2

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

1way2way, 0.95%2way, 3.6%

2r/D=1.2 2r/D=1.5

k/vtip2

0.01 0.03 0.05 0.07 0.09

1 way

2 way, 3.6%

trailing vortex system30o

45o

1 way

1 way

2 way, 3.6%

2 way, 3.6%

ω/2πN-4 0 4

Page 17: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

How to proceed?

Gore & Crow 1989

Experimental validationparticle concentration profilesparticle-impeller collisions......

Solid-liquid system with density ratio≈2.5many concepts borrowed from solid-gas systems• point particles• neglect history force• neglect lubrication• simple two-way coupling

We need to investigate finite-particle-size effects

z D/

-1

0

1

2

c c/ av

0 1.0 2.0 3.0

LES compared to experimental data of Michelettti et al. 2003

impact tests Kee & Rielly 2004

Page 18: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

DNS with interface resolution1

O(103) particles in a periodic box

Particles:Lattice-Boltzmann simulation Fully resolved particles

Turbulence:Fluctuating bodyforce2

Particle interactions:Through LB fluidLubrication forcesHard-sphere p-p collisions

•Particle – turbulence interaction•Collision statistics

1 Ten Cate et al. JFM 20042 Alvelius PoF 1999

Page 19: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Lattice-Boltzmann (LB) discretization

Particles move from one latticesite to the other and collide:

Space, time, and velocityare discretized:

local operations:good parallel efficiency

uniform, cubic lattice

αβ

α

α

β

βαβα

β

α +

∂ρ∂

+∂ρ∂

∂∂

ν+∂

ρ∂−=ρ

∂∂

+∂ρ∂

fxu

xu

xxuu

xtu

31

( ) ( ) ( )Nxcx iiii t,Nt,N Γ+=++ 1

2nd order (space and time) representation of a Navier-Stokes-like equation, e.g.:

this is incompressible Navier-Stokes if 22soundc<<u

31

3=→

ρ= soundcp

∑=ρ αα i ii Ncu

velocity/physical time-stepconstraint

Page 20: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Forced turbulence within LB

0.1 1

E(k

)

k

10 -2

10 -4

10 -6

k -5/3

F(k)

single-phase flow

Re↑

∆=η

=

5.0

000,18**

K

forcinglu

Re

5123 cubic grid

colors: velocity magnitude

Andreas ten Cate

Page 21: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

DNS of decaying homogeneous, isotropic turbulence

courtesy Li-Shi Luo

condition initial same from started time in moments 2 atcontoursu×∇

spectralLB( )

352

03=

νλ=

=λtK

Re

LB is a competitive tool for (single-phase) turbulence simulations

Page 22: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Boundary conditions: forcing method(1,2)

no-slip at the surface of the moving, spherical particles

at determine the fluid local velocity by interpolation from

= − + ×( )fluid particle particle?u u u ? r

+ = α − βi 1 iF F ?u

distribute Fi+1 at to the lattice-nodes

–ΣF is the fluid to particle force

(1) Goldstein et al., J. Comp. Phys. 105 (1993)applied within spectral method

(2) Ten Cate et al., Phys. Fluids 14 (2002)applied within LB method

the particle has internal fluid

α=0.95; β=1.8

Page 23: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Single-particle testsStart-up of a sphere falling under gravity (Rep<1)

analytical*

LB

t/τrel

0 1 2 3

v/v∞

0

1

* Maxey & Riley, Phys. Fl., 26 (1983)

0 2 4 6

v/v∞

0

1

32=pRe

L

dp

PIV experiment of a falling sphere in a closed box*

3251 .....dU

Re p,pp =

ν= ∞

150.L

dp =

LB simulation PIV exp*Ten Cate et al., Phys. Fluids 14 (2002)

11.f

s =ρρ

02.f

s =ρρ

νρρ

=τ18

2p

f

srel

d

Page 24: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Lubrication forces (and torques)*

Example: radial lubrication force

v0

v1=0

Flub,rad

−Flub,rad

For particles in close proximity to another particle or a wall

* Kim & Karrila: Microhydrodynamics (1991)Nguyen & Ladd, Phys. Rev. E, 66 (2002)

sdp

radial lubrication force ∝

tangential lubrication force ∝

ds

lnds

lubrication switched on once s≤δwith δ=0.1dp (≈∆)

lub,radp pd d

Fs

∝ −δ

lub,tang ln lnp pd dF

s

∝ − δ limit the lubrication force if s≤εwith ε=10-4dp(surface roughness)

Page 25: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Hard-sphere collisions

t=t0

t=t0+∆t

A two parameter model*

• restitution coefficient e• Coulomb friction coefficient µf

default settings: e=1, µf=0

no overlap between particles is allowed:

event-driven simulation of particle motion

* Yamamoto et al., JFM, 442 (2001)

Page 26: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Settings for solid-liquid simulationsParticle diameter in grid units: 8Kolmogorov scale in grid units: 1.2

1.728

1.146

1.414

1.414

1.414

ρp/ ρf

2200

2200

3868

2200

773

Np

5

5

10

Vol %

5

2

Page 27: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Particle-turbulence interaction

0.1 1k/kd

2 vol%5 vol%10 vol%

0 vol%

kd=2π /dp

Page 28: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Energy dissipation rateln(ε/P)

Flo

w fi

eld

cros

s se

ctio

n1.45

-2.10

Page 29: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Short range interactions

tcontact trelease

primarycollision

secondarycollisions

Multiple collisions

PDF of time between particle-particle contacts

1e-08

1e-06

0.0001

0.01

0 1 2 3δt/Te

PDF

uncorrelated collisions (Poisson stats)

correlated collisions

Page 30: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Short range interactions (2)

1e-08

1e-06

0.0001

0.01

0 1 2 3

1e-05

0.001

0.1

0 0.1 0.2 0.3 0.4

2 vol %

10 vol % low

high

pdf

δt/Te

pdf

δt/Te

primary collisions:

exponential behavior of the PDF (Poisson-process)

effect of number density effect of solids density

Page 31: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

What did we learn?• Turbulence modulation by particles• Primary and secondary collision mechanism demonstrated• Collision time depends on volume fraction

Primary/Secondary collision ratio depends on particle inertia

To docompare point-particle LES/DNS and full DNS on periodic domains

relative particle velocitiescollisions statistics....

Page 32: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Much denser systems: liquid-solid fluidizationwater-steel 8≈

ρρ

f

s

φs≈0.5no turbulence

Same methodology as for turbulent suspensionLattice-Boltzmann method for the fluid flow

with immersed boundary technique for no-slip at solid-liquid interface

Hard-sphere collision algorithm

Lubrication forces g

3D flat beds (depth=12dp)100dp

40dp

g

8=ρρ

f

s

φ/φav

0.4

0.6

0.8

1.0

1.2

φav=0.49

Page 33: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Detailed view of void formationOnset of 2D instabilities in a flat bed

φav=0.505 16=ρρ

f

s

g

3D domain: 20dpx24dpx6dp

Compare to the scenario as

measured by Duru &

Guazzelli*

* JFM 470 (2002)

g

e=1, µf=0 1 cm (dp=1 mm)

Page 34: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Voids in flat beds (ctd)

1 cm

Experiments*

1 mm steel beads in water 8=ρρ

f

s

bubble formation

particle velocities (PIV)

Simulations0.7 mm beads in water 16=

ρρ

f

s

g

* Duru & Guazzelli JFM 470 (2002)

g

particle velocities

Page 35: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

One step simpler: 1D (narrow) beds

1360dp/v∞

125d

p

t

z

zφav=0.540

15.6 dp2/ν

Experimental result*: planar wave instability

liquid flow * Duru et al., JFM 452 (2002)

43dp

φav=0.57

space-time plot of φs

φs-wave shapes

c

typically 1 mm glass beads in water

g

32dp

φav=0.49

10dp

Page 36: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Modeling step

z

liquid flow

g

fully periodic 3D box20dpx6dpx6dp

z( ) zp ef gmixtures ρ−ρ−=

( ) zf ef gfmixture ρ−ρ=

( ) fsssmixture ρφ−+ρφ=ρ 1

Page 37: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Simulation of L-S fluidization

φav=0.505 14.f

s =ρρ

gravitybody force on fluid

Cross-section from fully periodic, 3D domain

6dp

20dp

Page 38: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Wave-speed and wave-shape

φav=0.580

φav=0.505

φav=0.488

20d p

1.04 dp2/ν

φ/ φav

0.84

1.16

1.0

time-shift

z

time-averaging

z/dp0

φ0.6

φav=0.505

t

0.5

0.4

10 20

43dp

experimental results

(Duru et al.)

φav=0.57

233129 ±=

ν

±=

ν num

p

exp

p dcdc

Simulated space-time plots

Wave speeds

Page 39: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Collision parameters (φav=0.505)

z/dp

0

φ0.6

0.5

0.24 20

frictionless collisions (µf=0.0)

e=1.0

e=0.9

e=0.8

8 12 16

0.4

0.3

e=1.0e=0.9e=0.8

elastic collisions (e=1.0)

µf=0.0

µf=0.1

µf=0.2

φ0.6

0.5

0.2

0.4

0.3

z/dp

0 4 208 12 16

µf=0.0µf=0.1µf=0.2

Page 40: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Momentum transfer (stress)

%s σ% zzσ% xxσ% yy

1⋅103

2⋅103

3⋅103

4⋅103

φav=0.505

z/dp0 10 20z/dp0 10 20

φav=0.5052

2ch

uu

0

1⋅102

2⋅102

3⋅102

zxy

collisional stressp-stream

ing stress

relative magnitude of zz stresses

z/dp0

φ0.6

φav=0.505

0.5

0.4

10 20

(an)isotropy

pch

chf

du

u~

ν=

ρ= 2

ss

collisionalp streamingf streaminglubrication

%s

0

1⋅103

2⋅103

3⋅103

4⋅103

–1⋅103

z/dp0 10 20z/dp0 10 20

voidcompactiondilation

g

Page 41: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Momentum transfer (stress) (2)influence of collision parameters on σczz

e=1.0µf=0.0

e=1.0e=0.9e=0.8

µf=0.0µf=0.1µf=0.2

0

2000

4000

6000

pch

chf

du

u~

ν=

ρ= 2

ss

cxxs~

z/dp0 10 20z/dp0 10 20 z/dp

0 10 20z/dp0 10 20

Page 42: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Collisional pressure (φav=0.505)

negative φs-slopepositive φs-slope

cp~

( )

2

31

chf

cc

zz,cyy,cxx,cc

up

p~

p

ρ=

σ+σ+σ=

0

1·103

2·103

3·103

4·103

0.2 0.3 0.4 0.5 0.6 0.7φs

pc not a unique function of φs

result of granular temperature?(cannot be the only reason)

negative φs-slopepositive φs-slope

0.2 0.3 0.4 0.5 0.6 0.7φs

0

200

400sT~

2ch

ss u

TT~ =

negative φs-slope: compactionpositive φs-slope: dilation

voidcompactiondilation

g

Page 43: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Solids-phase viscosity (φav=0.505)

0.2 0.7

sφ0.3 0.4 0.5 0.6

0

40

80s

~µf

ss

~µµ=µ

negative φs-slope

positive φs-slope

dz

du p,zszz µ=τ

34

τzz: deviatoric solids-phase stress

(sum of collisional and p-streaming stress)

Page 44: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

φav=0.488

0 10 200.2

0.4

0.6

z/dp

φ φav=0.488

double hump wave relative magnitude of stressescollisionalp streamingf streaminglubrication

%s

0

1⋅103

2⋅103

3⋅103

4⋅103

–1⋅103

z/dp0 10 20z/dp0 10 20

deep voidshallow void

collisional pressure

negative φs-slopepositive φs-slope

0.2 0.3 0.4 0.5 0.6 0.7φs

cp~

2chf

cc u

pp~

ρ=

0

1·103

2·103

3·103

4·103

deep voidshallow voidg

Page 45: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Role of bulk viscosity

z

upp pz

ssc ∂

∂κ−=

collisional pressure under compaction much higher than under dilation

interpret this in terms of the solids-phase bulk viscosity

negative φs-slopepositive φs-slope

0.2 0.3 0.4 0.5 0.6 0.7φs

cp~

0

1·103

2·103

3·103

4·103

“baseline” solids pressure,estimate ps(φ) from dilation

κs from compaction in deep void

µs (compaction)µs (dilation)

collisionalviscositycollisionalstress

κs (compaction)

cp~

0

1·103

2·103

3·103

4·103

0.2 0.3 0.4 0.5 0.6 0.7φs

pc in shallow void estimated with κs

4·102

8·102

0

κs/µ f µs/µ f

Page 46: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Hydrodynamic forcesφav=0.505

z/dp0

φ0.6

0.5

0.4

10 20

z/dp0 10 20

slipRe

0

20

40

0

0.4

0.8fp,totalf

fdpdz

φ

fp,hydrf

s

ln β φ

%

1

f

ln φ

0 1-4

-2negative φs-slope

positive φs-slope

linear fit: N-2=1.45

0.2 0.4 0.6 0.8

-3

slip

hydr,fp

uf

( )( )

νφ∝

ρ−ρφν

β∞

−−

pp

Nf

pfss udgd2

( )gf

fs

fp

ρ−ρ

( )Nspsed vv φ−= ∞ 1

( )fs

ch

gu~

ρ−ρβ=β

Page 47: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Sheared granular beds2

0part

u0.2

wpd

Reγ = = γ ≡ ν

&& s

f

1.14ρ

0/ uu0 1http://www.imft.fr/recherche/interface/

english/theme7/op_2.html

Experiment (Charru et al.) Simulation

u0

w

Page 48: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Increase Repart: resuspenion in turbulent flow

0/ uu

0 1

perio

dic

perio

dic

u0

w

2p 0

part

d uw

Reγ = γ ≡ ν

&&

partV,solid

fluid

2 10%ρ

= φ =ρ

Repart=625 Repart=1250 → 2500

sedimentation and resuspension:

description of particle-wall interaction is critical

Page 49: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Sheared suspensionsMomentum transfer in granular-fluid flows

The elementary picture in simple shear due to Bagnold (1954):

“slow” flows: viscous effects dominate:

“rapid” flows: collisional stress dominates:

fluidσ ∝ γν&

2 2eff effσ ∝ γν → ν ∝ γ → σ ∝ γ& & &l

N ∝ γ&

∝ σBagnold’s experiment:Couette device

measurement of shear and normal stress

rapid(grain-inertia)

slow(macro-viscous)

Page 50: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Qualitative observations

/v∞u0 1

φsolid=0.46

perio

dic

perio

dic

u0

w

u0

perio

dic

perio

dic

u0

w

u0

φsolid=0.50

φsolid=0.55 bi-disperse systemdp,black=1.2dp,white

100

102

104

100 102 1040.5Stk ⋅λ

rapid

slow

0.5 100N=St ⋅λ ≈

σ td p

2 /ν2 λρ

φsolid=0.50

Shear-induced ordering• consequences for

stresses• polydispersity opposes

ordering

these are cross-sections of 3D simulations:

spherical particles move in en out of the plane

monodisperse systems

Page 51: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Shear stresses

collisional

p streaming

tang. lubr.fp-stress*viscous

rad. lubr.

2solid 0u

ss% φav=0.46

σ% xz

0

0.01

0.02

z/w0 0.5 z/w0 0.5 z/w0 0.5

St=45 ρs/ρf=1.2 St=56 ρs/ρf=1.5 St=180 ρs/ρf=1.2* fp-stress:

momentum transfer in z-direction due to traction at particle surface: finite-size effect

* Jackson, Chem. Eng. Sc. 52 (1997)

In Bagnold’s grain-inertia scaling the dimensionless

stresses would be independent of St

(fluid streaming stress): very smalluwρ

Page 52: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

• Point particle approach in turbulent liquid-solid systems: possibilities and limitations

• detailed information on particle motion and collisions in complex flows

• the physics of two-way coupling and turbulent scales versus particle size → finite size effects

• Lattice-Boltzmann-based methodology for the dynamics of (dense) suspensions

• Turbulent suspensions• turbulence modification• collision dynamics: primary and secondary

collisions

• Dense suspensions, fluidization• collisional stress dominates in the bulk• dilation and compaction behave differently

in terms of stresses

Summary

voidg

0.1 1k/kd

2 vol%5 vol%10 vol%

Page 53: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Simulation tool for complex fluids

Donev et al., Physical Rev. Lett. 92 (2004)

Non-spherical particlesfibrous materialsconcrete (high Stokes numbers)

Colloidal systemsself organization

Reservoir engineeringoil recovery by displacement with water

Page 54: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Page 55: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Bubble train

from the experiments by Duru & GuazzelliJFM 470 (2002)

Bubble train

Page 56: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

Levels in process simulation

coarser levels

Track every molecule in physical and composition space

Continuum approach: solve the transport equations including appropriate boundary conditions

Disparity of scales (turbulence: Re-3/4, particles,...): generalize the continuum approach to coarser levels

Compartmental approaches, population balances,...

LES, RANS, Euler/Euler, KTGM, micro-mixing models,...

finer levels

the interactions we call multi-scale modeling

derive closure from DNS

Page 57: Simulations of solid-liquid suspensions from dilute to denseweb.wpi.edu/academics/che/HMTL/CFD_in_CRE_IV/Derksen.pdf · and particle -impeller) particle-turbulence interaction. Kramers

Kramers Laboratorium voor Fysische Technologie

3D view