single input single output system

Upload: ndtruc

Post on 06-Jul-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Single Input Single Output System

    1/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion1

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-1

    054461 Process Control Laboratory

    LECTURE 1:

    COURSE INTRODUCTION

    Daniel R. Lewin

    Department of Chemical EngineeringTechnion, Haifa, Israel

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-2

    Lecture Objectives

    Be familiar with the course structure andobjectives.

    Have recalled all of the material you learned inthe introductory control course, and inparticular, be able to:

    a. Formulate a linear process model

    b. Sketch the response of a linear system

    c. Design a simple (PID) feedback controllerusing the Root Locus method

     On completing this section, you should:

  • 8/18/2019 Single Input Single Output System

    2/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion2

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-3

    Course Objectives

    Derive an empirical linear model for a realprocess by generating experimental data and itsanalysis.

    Design, tune and implement SISO controllers fora real process. The types of controllers that youshould be able to implement are: simple feedback(e.g. PID), cascade controllers, IMC and FF.

    Design and implement control system for MIMOprocesses.

     On completing this course, you should:

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-4

    Linear Systems – Review + More

    Modeling process transient behavior

    Linearization

    Laplace transforms

    Linear system response Root locus design of FB controllers

  • 8/18/2019 Single Input Single Output System

    3/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion3

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-5

    Modeling - Dead Sea Pond (1)

     Prepare a model describing an evaporating pond in the DeadSea Works.

    Feed brine [T/h]

     Brine conc. [kg salt/kg]

     Evap. Rate [T/h]

     Solution.

    rate of accumu- rate of input rate of out- rate of lossby evaporationlation w ith feed put w ith effluent

    f0 q q E

      = − − = − −

     Overall mass balance:

    fThus, q q E= −

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-6

    Modeling - Dead Sea Pond (2)

    ( )

    rate of accumu- rate of salt rate of saltout-

    lation of salt input with feed put with effluent

    f f

    dVc q c qc

    dt

    = −

    ρ = −

     The balance for salt gives:

    fUsing q q E, and noting that and V are constant:= − ρ

    ( )1 , 0ff

    dc E 1 c c c 0 cqdt

    +

    = − =τ

    ( )ff f c q Eq cdcV Vdt

      −−

    =ρ ρ

    fDefining V q :τ = ρ What is the sign of

    (E/qf – 1) ?

  • 8/18/2019 Single Input Single Output System

    4/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion4

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-7

    Linearization (1) Consider the general SISO nonlinear process:

    ( )dx

    f x,udt

     =

     Linearization around the stationary point (x0, u0) givesthe linear equation:

    ( ) ( ) ( )0 0 0 0

    0 0 0 0x ,u x ,u

    dx f ff x ,u x x u u

    dt x u

    ∂ ∂+ − + −

    ∂ ∂

     But:   ( )0 0 0dx

    f x , udt

      =

     Hence:   ( ) ( ) ( )

    0 0 0 0

    0 0 0 0

    00 0

    x ,u x ,u

    x ,u x ,u

    d x x f fx x u udt x u

    dx f fx u

    dt x u

    −   ∂ ∂− + −∂ ∂

    ∂ ∂+

    ∂ ∂

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-8

    Linearization (2) Extension to MIMO nonlinear process:

    ( )

    ( )

    dxf x,u

    dt y g x,u

    =

    =

     Linearization around the stationary point (x*, u*) gives

    the linear system:

     

    dxAx Bu

    dt y Cx Du

    = +

    = +

    ii,j

    fA a

    x

    ∂≡ =

     The matrices are Jacobian matrices, e.g.A,B,C and D

    *

    *

    x x x

    u u u

    = −

    = −

  • 8/18/2019 Single Input Single Output System

    5/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion5

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-9

    Linearization – Example (1)

    ( )   ( )1 , 0f f ff

    dc Ef c;q ,c ,E 1 c c c 0 cqdt

    +

    = = − =τ

     Continuing the Dead Sea Ponds example, we have:

     Data: qf = 10 T/h, E = 5 T/h, cf = 0.1 kg salt/kg brine, ρV = 100 T 

     At steady state:

    ( )= ⇒ = − =f fdc

    0 c c 1 E q 0.2 kg salt/kg brinedt

     Stationary point: c* = 0.2; qf* = 10; cf* = 0.1; E* = 5; τ* = 10 h.

     Linearization:

    ffss ssf fss ss

    dc f f f fc q c E

    dt c q c E

    ∂ ∂ ∂ ∂= + + +

    ∂ ∂ ∂ ∂

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-10

    Linearization – Example (2)

    -1*

    *ss f*

    Ef 11 0.05 h

    c q

    ∂= − = −

    ∂ τ -1*f*

    f ss

    c cf0.001 T 

    q V

    −∂= = −

    ∂ ρ

    -1

    *f ss

    f 10.1 h

    c

    ∂= =

    ∂ τ-1*

    ss

    cf0.002 T 

    E V

    ∂= =

    ∂ ρ

    ( )ffdc

    0.05c 0.001q 0.1c 0.002E, c 0 0dt

     = − − + + =

    ff

    ss ssf fss ss

    dc f f f fc q c E

    dt c q c E

    ∂ ∂ ∂ ∂= + + +

    ∂ ∂ ∂ ∂

  • 8/18/2019 Single Input Single Output System

    6/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion6

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-11

    Laplace Transforms General MIMO linear process is:

     

    dxAx Bu

    dt y Cx Du

    = +

    = +

    *

    *

    x x x

    u u u

    = −

    = −

     Example:   [ ]

    ( )f

    f

    qdc

    0.05 c 0.001 0.1 0.002 c ,c 0 0dt

    E

    = − + − =

     Taking Laplace Transforms (around steady state):

    ( ) ( ) ( )

    ( ) ( ) ( )

    sX s AX s BU s

    Y s CX s DU s

    = +

    = +

     Hence:   ( )   ( )   ( )1

    Y s C sI A B D U s− = − +

     P(s) –transferfunction matrixrelating all inputsto outputs

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-12

    Laplace Transforms

     A strictly proper system has n > m (physical system).A proper system has n = m (e.g. PI controller) Roots of numerator are zeros and roots of denominatorare poles:

     Analysis of transfer functions:   ( )   ( )1

    P s C sI A B D−

    = − +

     The transfer function matrix is composed of elements:

    ( )m m 1

    m m 1 1 0i,j n n 1

    n n 1 1 0

    b s b s b s bp s

    a s a s a s a

    −−

    −−

    + + + +=

    + + + +…

     zi are zeros

    ( )  ( ) ( )   ( )

    ( )( ) ( )1 2 m

    i,j1 2 n

    s z s z s zp s

    s p s p s p

    − − −=

    − − −

     pi are poles

    For stability ALL poles must have a negative real part. Complex poles give oscillatory response. Zeros shape the response (see later)

  • 8/18/2019 Single Input Single Output System

    7/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion7

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-13

    Response to step

    in OP: --OP —PVClassification

    Transfer

    Function

    Stable self-

    regulatings

    p

    p e1s

    K θ−+τ

     

    Non self-regulating 

    sp es

    K θ−  

    Unstable  sp

    p e1s

    K θ−+τ−

     

    Linear System Response

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-14

    Identification by Step Test First order response of process, y, to a step change in input, u:

     Dynamics are approximated by the FOPTD model:p s

    Kp(s) e

    s 1−θ=

    τ +

    pwith K y u, and θ and estimated from the trajectory= ∆ ∆ τ

     u(t)

     y(t)

     ∆u

     0.623∆ y  ∆ y

  • 8/18/2019 Single Input Single Output System

    8/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion8

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-15

    Higher Order Responses (1)

    p

    2 2

    Kp(s)

    s 2 s 1=

    τ + τξ +

     Response of 2nd order transfer function to a unit step:

    ( )   ( )( )= =

    − −τ + τξ +p p 1 2

    2 21 2

    K K p p y(s)

    s s p s ps s 2 s 1ξ −ξ

    = − ±τ τ

    2

    1,2

    1p

     Need to differentiate between three cases:

     static gain

     damping coefficient

    ξ >ξ =ξ <

    A) 1B) 1C) 1

     natural period

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-16

    Higher Order Responses (2)ξ > 1 2A) For 1, p and p are real negative roots:

    ( )− −= − −1 2p t p tp 1 2 y(t) K 1 A e A e

    ξ = = = − τ1 2B) For 1, p p 1/ :

    ( )( )− τ

    = − + τt

    p y(t) K 1 1 t e

  • 8/18/2019 Single Input Single Output System

    9/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion9

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-17

    Higher Order Responses (3)ξ < ξ −2 1 2C) For 1, 1 is imaginary, and p and p

    are complex roots:

    ( )tp 21

     y(t) K 1 e sin t1

    −ξ τ

    = − ω − φ − ξ

    = − ξ τ ± − ξ τ21,2p i 1

    − ξω =

    τ

    21

    ( )−

    φ = − ξ ξ

    1 2

    tan 1

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-18

    Higher Order Responses (4) Example 1: A processing system with its controller

    ( ) ( )( ) ( )

    p

    1 2

    KCp s s

    F s 1 s 1= =

    τ + τ +

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )( )s

    C s P s B s e s

    P s B s C s C s

    =

    = −

    ( )  ( ) ( )

    ( ) ( )

    c p

    c p

    1 2 1 2

    c p c p

    s 2

    K K

    K K 1

    K K 1 K K 1

    P s B sCs

    C P s B s 1s s 1

    +

    τ τ τ + τ

    + +

    = =+  

    + +

  • 8/18/2019 Single Input Single Output System

    10/15

  • 8/18/2019 Single Input Single Output System

    11/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion11

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-21

    Root Locus for Control Design

    1. The open-loop transfer function is expressed in the form: The Rules:

    2. The root loci start (at K = 0) at the poles of pc(s) and end(K = ∞) at the zeros of pc(s) or at ± ∞

    3. On the real axis of the complex plane, the RL isconstructed from right to left, according to the total polesand zeros (Σpz) met along the way:

    If K > 0, draw the RL if Σpz is odd

    If K < 0, draw the RL if Σpz is even

    4. The number of loci = order of the system = number ofpoles of pc(s). The complex loci always appear as complexconjugates (mirror image either side of the real axis).

    ( )  ( ) ( )   ( )

    ( ) ( ) ( )1 2 m

    1 2 n

    s z s z s zpc s K

    s p s p s p

    − − −=

    − − −

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-22

    Root Locus for Control Design

    5. The angle of the asymptotes of the loci (as K →∞) is:

     The Rules (Cont’d):

    ( )

    ( )

    180 2k 1  k 0,1, ,n m 1 (K 0)

    n m180 2k

      k 0,1, ,n m 1 (K 0)n m

    −= − − >

    = − − <−

     where n and m are the number of poles and zeros of pc(s).

    6. The asymptotes are centered atwhere pi and zi are the locations of poles and zeros of

    pc(s), respectively.

    ( )   ( )i ip z n mσ = − −∑ ∑

  • 8/18/2019 Single Input Single Output System

    12/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion12

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-23

    Root Locus for Control Design( )

    ( ) ( )  ( ) c

    1 p s ,c s K

    s 1 s 3= =

    + +Example 3

     1  2-1-2-3-4

     -1

     -2

     1

     2

     Re(s)

     Im(s)3

     -3

     -5 ××××××××

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-24

    Root Locus for Control Design

    ( )( )( )

    ( )   ( )c i21

     p s ,c s K 1 1 Tss 1 s 3

    = = ++ +

     Example 4

     1  2-1-2-3-4

     -1

     -2

     1

     2

     Re(s)

     Im(s)3

     -3

     -5 ××××××××

     2 ××××

  • 8/18/2019 Single Input Single Output System

    13/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Daniel R. Lewin, Technion13

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-25

    Root Locus for Control Design( )

    ( )  ( )   ( )s c i

    1 p s e ,c s K 1 1 Ts

    s 1−= = +

    +

     1  2-1-2-3-4

     -1

     -2

     1

     2

     Re(s)

     Im(s)3

     -3

     -5

     Example 5

     ××××××××  ××××

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-26

    Design Specifications for RL The desired closed loop response is:

    2 2s

     y 1(s)

     y s 2 s 1=

    τ + τξ +

    ( )t

    2

    1

     y(t) 1 e sin t1

    −ξ τ

    = − ω − φ− ξ

     The response to a unit step in ys is:

     The analytical response is used to estimate desired overshootand settling time.

     Overshoot: 2OS exp 1 = −πξ − ξ

     Thus:  ( )

    ( )

    2

    e2 2

    e

    log OS

    log OSξ ≥

    + π

  • 8/18/2019 Single Input Single Output System

    14/15

  • 8/18/2019 Single Input Single Output System

    15/15

    054461 PROCESS CONTROL LABLECTURE ONE

    Course IntroductionPROCESS CONTROL LAB - (c) Daniel R. Lewin1-29

    Summary

    Linearization

    Laplace transforms

    Linear system response

    Root locus design of FB controllers Use of approximate specifications in design

    ( ) ( )= =x f x,u , y g x,u

    Modeling process transient behavior Generating models in standard form: