single particle tracking: principles and applicationsusers.df.uba.ar/mad/workshop/levi spt.pdf ·...

23
1 Single particle tracking: principles and applications Valeria Levi Laboratorio de Dinámica Intracelular Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires [email protected] 1) Main 3D-conformation(s) of the molecule in different conditions 2 ) Quantification of the docking/undocking dynamics Why single molecule experiments?: An example Hodak J. et al. PNAS (2005) Studying folding of individual structural elements of RNA FRET donor FRET acceptor

Upload: others

Post on 20-Jan-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

1

Single particle tracking: principles and applications

Valeria LeviLaboratorio de Dinámica IntracelularFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos [email protected]

1) Main 3D-conformation(s) of the molecule in different conditions2 ) Quantification of the docking/undocking dynamics

Why single molecule experiments?: An example

Hodak J. et al. PNAS (2005)

Studying folding of individual structural elements of RNA

FRET donor

FRET acceptor

2

Why single molecule experiments?

What information are we missing in "cuvette" assays?

output

solution 1 M 1015 molecules

Hodak et al. PNAS (2005)

Mg2+

FRET trajectorieslow Mg2+ high Mg2+

donoracceptor

Studying RNA structure and dynamics

FRET donor

FRET acceptor

FRET donor

FRET acceptorno Mg2+

3

molecules are not synchronizedaverage properties

Bulk vs. single molecule measurements

Limitations of bulk measurements

Temporal evolution of each molecule/particleNo need to synchronize processes Detection of different populations

DisadvantagesMore expensive equipmentsStatistics!

Single molecule/particle assays

Dynamics of intracellular processes: Tracking

-0.02

0.00

0.02

G

0.00

0.01

0.02

0.03

G

0.01 0.1 1 10

-0.02

0.00

0.02

G

(s)

pixel

time

A

B + intensity -

1010 25 50 75 1001000.1

1

10

PS

D (

norm

aliz

ed)

frequency (Hz)

pixel

time

A

B + intensity -

1010 25 50 75 1001000.1

1

10

PS

D (

norm

aliz

ed)

frequency (Hz)

0.5 1.0 1.5 2.0 2.50

5

10

15

freq

uenc

y (%

)

B

0.5 1.0 1.5 2.0 2.50

5

10

15

freq

uenc

y (%

)

B

Protein function in the cellular context

4

1. Measuring motion in cells: FRAP

FRAP (fluorescence recovery after photobleaching) (Axelrod, 1976) and related techniques (FLIP, etc)

• Photodamage

• Photobleaching is not always irreversible

timein

tens

ity

IoIf

2. Measuring motion in cells: photoactivation

Patterson and Lippincott-Schwartz, Science 2002

PA-GFP (photoactivatable GFP) photoconverts to a fluorescent specie after irradiation at = 400 nm

before photoconversion after photoconversion

5

FCS (fluorescence correlation spectroscopy)

3. Measuring motion in cells: FCS

• Low laser power

• Low concentration of fluorescent molecules

• Equilibrium

confocal volume10-510-410-310-210-1 100 101

0.0

0.2

0.4

0.6

0.8

1.0

auto

corr

ela

tion

(s)

It is hard to study complex processes by “averaging”de behavior of multiple molecules

Why single particle tracking experiments?

6

Single particle tracking (SPT)

Position of the particle as a function of time

mechanism of motion

• interactions

• populations

• switches (no synchronization) z

y

x

Single particle tracking

1. Acquisition of single particle trajectories

2 .Quantitative analysis of single particle trajectories

3. Applications to intracellular transport

4. 3D particle tracking

7

Image-based tracking techniques

•How can we obtain the trajectory of the particle from the movie? •What is the accuracy on the position determination?

Locating a particle with nanometer precision

point-like object

microscope

diffraction-limited spot

deconvolution

r = resolution = wavelengthNA = numerical aperture of the objective

r~250 nm, visible light

r λ/2NA

x or y position

Inte

nsity

8

An example of a simple SPT method: FIONA (fluorescence imaging with nanometer accuracy)

Imaging single fluorophore

from http://physics.berkeley.edu/research/yildiz/technology.html

the center of this distribution can be found with 1.5 nm

precision!

We have to be sure that there is a single molecule/particle !!

The trajectory of the particle is then recovered after locating the particle in every frame of the movie

Pattern-recognition tracking method

j)w(i,B)j)(i,Ij)(i,(Iδji,

2patternimage

B = background differencew(i,j) = weight factor= 2)),(( borderpattern IjiI

Levi et al. Biophys J (2006)

9

Tracking performance

0.0 0.3 0.6 0.9 1.20

25

50

75

100

disp

lace

men

t (n

m)

time (s)0 10 20 30 40 50

0

10

20

30

40

50

reco

vere

d st

ep (

nm)

piezo step (nm)Levi et al. Biophys J (2006)

500 nm fluorescent bead

piezo stageair

nm steps

Improving SPT: Error in the particle position

Thompson et al. Biophys J (2002)

22

24222 812

Na

BsN/a

Ns

)x(

x = error in the particle positions = standard deviation of the PSFN= number of photons detecteda = pixel sizeB = background noise

photon noise background noise

B increasespixelization noise

a increases

10

Application: molecular motors

microtubules

actin filaments

How the motor moves along the filament?

A simple answer from SPT experiments

Adapted from Rief et al., PNAS (2000)

36 nm steps !!

explicar con flechitas

11

We can observe steps of motors in living cells!

Levi et al, Biophys J (2006b)Bruno et al, submitted

1 m

100 nm

Transport of melanosomes by myosin V

Myosin-V in living cells

37.1 ± 0.6 37step size (nm)

200 ± 4070dwell time (ms)

in cellsin vitro

0 36 72 108 1440

20

40

60

80

100

120

140

Nda

ta

step size (nm)

A

0 36 72 108 1440

20

40

60

80

100

120

140

Nda

ta

step size (nm)

A

0.5 1.0 1.50

20

40

60

80

100

Nda

ta

dwell time(s)

B

0.5 1.0 1.50

20

40

60

80

100

Nda

ta

dwell time(s)

B

Levi et al, Biophys J (2006b)Bruno et al, submitted

12

Understanding the stepping mechanism

Yildiz et al. Science, 2003www.studiodaily.com

low signal/noiselast forever20-50nanoparticles

low brightness,bleaching (<10s)

size0.5-10single dye molecules

low brightness,high concentration, bleaching

endogenously expressed

10-20fluorescent proteins

blinkingbrigthness, spectra

10-20quantum dots

sizebrigthness5-1000fluorescent beads

DisadvantageAdvantage Size (nm)Probe

Probes for SPT experiments

In SPT experiments, probes may:1) delay the motion of the particle2) change the properties of the tracked molecule

13

Single particle tracking

Motor stepping dynamics is just a very specific case..

How can we obtain information of complex intracellular processes?

Obtaining quantitative information from trajectories

-25

025

50

-25

025

50

yx

III

II

I

the distance traveled by the particle after a given time period is different for the different motion regimes !

14

x

y

1

2

4

3

6

5

MSD

/tsampling

1 2 3 4

Calculation of the mean square displacement (MSD)

22 )t(y-)t(y)t(x-)t(x)(MSD

What information can we obtain from MSD analysis?

lag time lag time

MSD

MSD

D6

random diffusion

2)v( 1D transport

D6anomalous subdiffusion

( < 1)constrained diffusion

15

“Single things” analysis means that we have to be extremely careful with the statistics

-2 -1 0 1 2-2

-1

0

1

2y

x

-4 -2 0 2 4-4

-2

0

2

4

y

x

random diffusion??

transport ??

0 50 1000.0

0.5

1.0

1.5

MS

D

time

0 50 1000.0

0.5

1.0

MS

D

time

Hirokawa, Science 1998

in cellsin vitro

Applications: MSD analysis helps us to understand the mechanisms involved in organelle transport

Electron micrograph of mouse axon

The conditions in which transport develops in cells are completely different from those of in vitro assays

vs.

16

MSHdispersion

melatonin aggregation

Gelfand´s lab - Wallin, bioscience-explained.org

Melanophores: a beautiful system to study transport

kinesindynein

myosin

microtubulesactin filaments

How do these transport systems work together to target organelles to their final destination?

3 families of motors

2 different tracks

Organelle transport in living cells

17

-40 -20 0 20 40-20

0

20

40

60

y (n

m)

x (nm)

-2 -1 0 1 2-2

-1

0

1

2y

(m

)

x (m)

v =500 nm/s v=80 nm/s

Properties of myosin-V dependent transport

microtubule-dependenttransport

actin-dependenttransport

Why trajectories along actin filaments are not curvilinear?

microtubules actin filaments

Properties of transport driven by myosin-V

0 1 2 3 4 5 6 7 80.00

0.04

0.08

0.12

MSD

(m

2 )

(s)

dispersion

aggregation

α1o τAMSDMSD

1.33 ± 0.024100 ± 1000600 ± 30dispersion1.37 ± 0.031500 ± 50560 ± 30aggregation

A1 [nm2]MSD0 [nm2]Condition

18

Numerical simulations

MSD

(m

2 )

(s)

fitting:A1 and

Model

How are these parameters related to the transport mechanism?

The transport-diffusion model

4100 ± 1000dispersion1500 ± 50aggregationA1 [nm2]Condition

4000 ± 600301700 ± 30090

A1 [nm2]diffusion time (s)

Experimental Model

Brunstein et al. Biophys J 2009; Bruno et al. Phys Rev E 2009

Intersection: switching and detaching probabilities (Ali et al, PNAS 2007)Lower number myosin motor/melanosome in aggregation (Gross et al. JCB, 2004)

transport intersection? diffusion transport

1 432

19

Diffusion increases the probability of switching to the microtubule network during aggregation

aggregation

actin

microtubule

actin

microtubule

longer diffusion period in aggregation

During aggregation, organelles need to be transferred from the actin to the microtubule networks

3D Particle tracking

1 z-plane ~ 0.1-1 s

Problems: low temporal resolution photobleaching

Making use of the z-sectioning capability of confocal and two-photon microscopes

Alternative: spinning disk confocal microscopy

Lange et al, Traffic, 2008

Eg: tracking ribonucleoprotein(RNP)time resolution: 0.3 s

20

Image-based 3D methods

Z = 0m Z = 1m Z = 2m Z = 3mZ = 0m Z = 1m Z = 2m Z = 3m

Problems: limited z rangeerror in (x,y) increases when the particle moves far from the focal plane

1 2 3 4 5 6

6

8

10

12

14

radi

us (m

)

z-position (m)

the radius of the diffraction ring is related

to the z-position

(Tilli and Massaccesi)

Image-based 3D methods: Bifocal imaging

Toprak et al, Nano lett 2007in-focus

(x,y position)out-of-focus(z-position)

2-5 nm accuracy

21

Particle tracking in a 2-photon microscope

Motivations: particles could move far from the field of viewwidefield microscopy involves photobleachingRaster imaging is slow

2-photon

0

1

2

3

Inte

nsit

y

angle

0

1

2

3

Inte

nsit

y

angle

particle

0

1

2

3

Inte

nsit

y

angle

0

3

laser orbit

Particle tracking in a 2-photon microscope

the laser follows the particle in real time

Levi et al Biophys J 2005a, 2005b

22

8 12 16 200

4

8

12

16

20

24

N d

ata

step size (nm)

data from Diana Wetzler

50 nm

8 nm steps !

time resolution = 4.1 msaccuracy = 2 nm

Mitochondria transport in NIH3T3 cells

3D-Particle tracking in a 2-photon microscope

x

z

y

x

z

y

z

x

y

x

z

y

(0,10,20)

(0,10,0)

(10,0,0)

(0,2,0)

0

10

20

30

Inte

nsity

angle

0

10

20

30

Inte

nsity

angle

0

10

20

30

Inte

nsity

angle

0

10

20

30

Inte

nsity

angle

Levi et al Biophys J 2005a

more on 3D tracking at the Weber Conference

23

More SPT talks in the Gregorio Weber Conference

Thursday, December 15

S2-3) ANDRE GOMES (Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil)

12:40-13:00

S2-2) ENRICO GRATTON (LFD, University of California Irvine, USA)

12:20-12:40

S2-1) LUCIANA BRUNO (Universidad de Buenos Aires, Argentina)

12:00-12:20