single photon counting detector for thz radioastronomy. d.morozov 1,2, m.tarkhov 1, p.mauskopf 2,...

26
Single photon counting detector for THz radioastronomy. D.Morozov 1,2 , M.Tarkhov 1 , P.Mauskopf 2 , N.Kaurova 1 , O.Minaeva 1 , V.Seleznev 1 , B.Voronov 1 and Gregory Gol’tsman 1 1 Department of Physics, Moscow State Pedagogical University, Moscow 119992, Russia 2 Cardiff University, Cardiff, CF24 3YB, Wales, UK Outline Introduction and motivation Operation mechanisms of superconducting single-photon detectors (SSPD) Performance and experimental results for NbN SSPD Prospective Superconducting material for terahertz single-photon detector

Upload: bethanie-reeves

Post on 18-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Single photon counting detector for THz radioastronomy.

D.Morozov1,2, M.Tarkhov1, P.Mauskopf2, N.Kaurova1, O.Minaeva1, V.Seleznev1, B.Voronov1 and Gregory Gol’tsman1

1Department of Physics, Moscow State Pedagogical University,Moscow 119992, Russia

2Cardiff University, Cardiff, CF24 3YB, Wales, UK

Outline

Introduction and motivation

Operation mechanisms of superconducting single-photon detectors (SSPD)

Performance and experimental results for NbN SSPD

Prospective Superconducting material for terahertz single-photon detector

Page 2: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Infrared single-photon detector comparison table

Page 3: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Terahertz Receivers

input signal

Signal

Signal

Signal

N photons

t

p

N

n

N* N*+N

n=N minn) = 1 min (N) = 1/

n

t

Amplifier+integratingdetector

Amplifier+countingdetector

HotElectronBolometer

SinglePhotonCounter

Satellite dish

Page 4: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Energy Relaxation Process

e-e interactionPhoton h

Debyephonons

Cooperpairs

e-e interaction

Quasi particles2

kbT

10-3

10-1

100

eV

Schematic description of relaxation process in an optically excited superconducting thin film.

Page 5: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Mechanism of SSPD Photon Detection

G. Gol'tsman et al, Applied Physics Letters 79 (2001): 705-707A. Semenov et al, Physica C, 352 (2001) pp. 349-356

Page 6: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

IV-curves of the 4-nm thick film devices at 4.2 K

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50

5

10

15

20

25C

urr

ent

, A

Voltage, mV

50 load line

B

A

Superconducting state

Metastable region

Resistive state

Page 7: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Mechanism of elliptic spot formation

j=0 => gap equals Δ>ε => qps diffusion is blocked by Andreev reflection

Consider an average quasi-particles (qps) energy ε: T<ε<Δ(T). In the absence of j they would be trapped due to Andreev reflection. Existence of j flowing around the spot makes the gap spatially nonuniform.

j~jc => minimal gap equals Δ-pFvs<ε => qps diffuse in that regions

Schematic gap profile across the spot

vw vw

vL

|vw|>|vL|

Page 8: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Scanning electron microscope image of one of the current SSPDs

Fabrication:• DC reactive magnetron

sputtering of 4-nm-thick NbN film

• Patterning of meander-shaped structure by direct e-beam lithography.

• Formation of Au contacts with optical lithography.

Korneev A. et al, Appl. Phys. Lett. 84 (2004) 5338

Page 9: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Image of new SSPD design(in electron resist before etching process)

52 nm

120 nm

Stripe width 68 nm, spacing 120 nm

Page 10: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Image of new SSPD design(in electron resist before etching process)

Stripe width: 54 nmSpacing: 41 nm

41 nm

Narrower stripeNarrower spacing

We expect:- better light coupling-higher QEWider wavelength range

Page 11: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Resistance vs Temperature Curves for Sputtered NbN Film 4 nm Thick and for SSPD Device

Direct electron beam lithography and reactive ion etching process

Page 12: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Experimental quantum efficiency and dark counts rate vs. normalized bias current at 2 K

0.4 0.5 0.6 0.7 0.8 0.9 1.010-3

10-2

10-1

100

101

102

10-10

10-8

10-6

10-4

10-2

100

102

104

106

1.26 m

0.94 m

1.55 m

0.56 m

QE

, %

Ib/I

c

Dar

k co

unts

, cps

Page 13: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Experimental data for QE (open symbols) and the dark count rate (closed symbols) vs. the bias current measured for 1.55-μm photons

and different temperatures

10 12 14 16 18 20 2210-5

10-4

10-3

10-2

10-1

100

101

102

10-2

10-1

100

101

102

103

104

105

106

107

Dar

k co

unts

, s-1

QE

, %

Ib, A

, T=4.2 K, Ic=16.9A

, T=3.2 K, Ic=19.5A

, T=2.2 K, Ic=21.5A

Page 14: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

INFRAREDSPECTROMETER

LiquidHelium

to Pump

Vacuum

RoomTemperature

FilterColdFilter

SuperconductingSingle Photon

Detector (SSPD)

Oscilloscope

BroadbandAmplifier

DC BiasSource

CRYOSTAT

PulseCounter

Bias T

Filament

DiffractionGrating

Filter

EntranceSlit

SphericalMirror

Page 15: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

NbN SSPD spectral sensitivity at 3 K temperature

1 2 3 4 5 610-6

10-5

10-4

10-3

10-2

10-1

100

101

I

b/I

c=0.94

Ib/I

c=0.88

Ib/I

c=0.82

Ib/I

c=0.78

T=3K

QE

,%

,μm

Ic =29.7A at 3 K

Page 16: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Spectral dependences of QE for normalized bias currents Ib/Ic>0.9 measured at 4.9 K and 2.9 K

110-5

10-4

10-3

10-2

10-1

100

101

765432

Ib/I

c=0.99

Ib/I

c=0.97

Ib/I

c=0.94

Ib/I

c=0.91

QE

, %

Wavelength, m

10-5

10-4

10-3

10-2

10-1

100

101

102

10.6 0.8 432

QE

, %

Wavelength, m

T=2.9 K, Ib/I

c=0.91

T=4.9 K, Ib/I

c=0.94

T=4.9K

Page 17: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

0.5 0.75 1 2.5

101

102

103

= 3

I=16.7 uA

I=19.1 uA

I=19.5 uA

I=19.3 uA

I=19.7 uA

I=17.7 uA

cou

nt

per

sec

on

d

T,K

Experimental data for count per second vs. the temperature measured for 3-μm photons and constant normalized bias

current.

Page 18: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

1.7 K insert for liquid helium storage dewar

He pumpvacuum pump

He filter

Device holder

He 1.6 - 4.2 K

He 4.2 K

vacuum volume

capillary with SSPD and LED 3u and 5u

fiber

DC bias connectorfiber connector

RF output connector

Page 19: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

22 24 26 28 30 32 34 36

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

= 5

T=4.9K T=4.2K T=3K T=1.7K

QE

%

Ib, A

Experimental data for QE vs. the bias current measured for 5-μm photons and different temperatures

Page 20: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

0.8 0.9 2 3 4 5

1E-5

1E-4

1E-3

0.01

0.1

1 = 5

QE

%

T, K

0.95 0.93 0.89 0.86

Experimental data for QE vs. the temperature measured for 5-μm photons and different normalized current.

Page 21: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

NbN SSPD noise equivalent power (NEP) at different radiation wavelengths at 1.7K temperature

0.88 0.90 0.92 0.94 0.96 0.98 1.00

10-21

10-20

10-19

10-18

10-17

NE

P, W

/Hz

1/2

Normalized bias current

= 5 = 3 = 1.55 = 1.26

Page 22: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

SSPD integrated with optical cavities

SiO2 Au contactAu contact

Sapphire substrate

NbNmeander NbN layer

Metallicmirror layer

Incidentradiation

The design of advanced SSPD structure consists of a quarter-wave dielectric layer, combined with a metallic mirror.

Page 23: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Spectral sensitivity of SSPD integrated with optical cavities

1.0 1.2 1.4 1.6 1.8 2.0 2.210-1

100

101

QE2()

QE1()

QE

, %

, m

SSPD with /4 cavity SSPD without /4 cavity

1.0 1.2 1.4 1.6 1.8 2.0 2.20.0

0.5

1.0

1.5

2.0

2.5

3.0QE

1()/QE

2()

No

rmal

ized

QE

,m

experiment calculated

T~3-3.5K

Tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum was of the factor up to 2-3 higher than that for a nonresonant SSPD.

Page 24: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Width=200 nm

Length=10 m

2cmA6104.8(4.2K)cj

1.72D (cm2/s)

(1-5)*106 jc (А/cm2)

170 – 125Ic (µА)

21-2823-3524-38µΩ*cm

52-6977-117120-190Rs (Ω/)

1.38-1.491,2R300/R20

~0.1 ~0.1 ~0.1 Tc (К)

5.17-7.224.4-6.534.2 – 5.2Тс (К)

4 nm3 nm2 nmThickness of the film

Prospective materials for superconducting single-photon detector: MoRe on sapphire substrate

Page 25: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Conclusions

• Our best NbN SSPD exhibit at 1.7 K temperature:• - QE~30% at near infrared (1.3-1.55 m)• - QE~0.25% at 5 m • - extremely low dark counts rate provides NEP about

5x10-21 W/Hz1/2 at near infrared and ~10-19 W/Hz1/2 at 5 m.• MoRe Prospective material for THz SSPD are:

– 200-nm-wide and 10- m-long bridge made from 4-nm-thick MoRe film exhibited single-photon counting capability

Page 26: Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and

Experimental Setup300mK