smart - inis.iaea.org

106
KAERI/AR-490/98 KR9800593 SMART Review of Nuclear Electricity Generation and Desalination Plants and Evaluation of SMART Application 29-41

Upload: others

Post on 24-Apr-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SMART - inis.iaea.org

KAERI/AR-490/98 KR9800593

SMART

Review of Nuclear Electricity Generation and Desalination

Plants and Evaluation of SMART Application

2 9 - 4 1

Page 2: SMART - inis.iaea.org

SMART

1998. 3.

7] #7]]

Page 3: SMART - inis.iaea.org

S.

^U|- -§-*£ o]

SMARTS71

7l#o]

Cf.

ol-g-

014.

SMARTS

- 1 -

Page 4: SMART - inis.iaea.org

MED

SMARTS ^l^TJl^^i ^ ^ - ^ ^ ^

7]

- 11 -

Page 5: SMART - inis.iaea.org

Summary

KAERI is currently developing a new advanced integral reactor named

SMART (System-integrated Modular Advanced ReacTor) for dual application

purpose of electric power generation and seawater desalination. The conceptual

design is at the completion stage and the basic design will follow. Up to now,

the practical desalination method has not been selected, but one of the

distillation methods will be adopted due to the advantages such methods exhibit

for the size of SMART.

Several desalination methods have been developed and many seawater

desalination plants are currently under operation in the world. Though

MSF(Multi-Stage Flash Distillation) process takes the most part of operating

seawater desalination plants, MEDCMulti-Effect Distillation) and RCKReverse

Osmosis)processes attract more interest nowadays. MED has advantages over

MSF with respect to investment costs and energy efficiency. Practical selection

of desalination method depends on the cost of product water and electricity,

level of technology, and the required size of plant.

The cogeneration plant producing electricity and desalted water has better

energy efficiency than single purpose power plant and allows the reduction of

initial capital cost. In case the steam from steam generator is used in the brine

heater of desalination system, some design changes in the secondary system of

the plant are required. The coupling between electricity generation system and

desalination system can be realized by using one of backpressure cycle,

extraction cycle, or multi-shaft cycle. The cogeneration plant has more control

parameters than the single purpose plant. New design and operating strategy

need to be established in accordance with various environment and load

- in -

Page 6: SMART - inis.iaea.org

conditions.

To evaluate the candidate desalination processes to be coupled with

SMART and the coupling methods, the amount of desalted water and electricity

were calculated and analyzed for several cases. The result shows that

backpressure cycle is preferred for high water/power ratio and extraction cycle

for low ratio. If the energy efficiency is the sole parameter to be considered, RO

will be the best choice. Inclusion of desalination system basically results in

turbine and condenser design change. Also transient events occurring in the

distillation system have effects on electricity generation system and vice versa.

The safe and reliable operation of a cogeneration plant for producing water

and electricity will require additional study for the control strategies, and some

new safety issues to be resolved may arise. If the RO method is adopted, safety

issues and required design changes will be negligible.

- iv -

Page 7: SMART - inis.iaea.org

£. ^ i

Summary iii

*r 31 v

3. *} 31 iix

=L% *H1 ix

*H 1 # ^ ^ 1

^ 2 # -vfliq ^ r*}^ ^ ^ s } - #^flK ^ % 3

^ 1 ^ «11 ^ > ^ ^ 3 - 3

^ 2 ^ ^-vfl ^ ^ - ^ ^ j g - 4

1 3 ^ sfl^^^S}- #eflM ^ % ^ ^ 5

^ 1 4 ^ ^-7ft ^-^5f #efl^ 7fl^-^% 7

4 3 ^ ^-^Sl- ^ ^ 13

*fl 1 ;£ 7fl _a_ 13

4 2 ^ # ^ M ^ 4 ^--8-^r 7 1 ^ 14

*fl 3 ^ 4?fl^ ^$±*k*) Al J- 15

*fl 4 ^ ^«aHl $)& ^ s ± ^ 17

1. ^ ^ S l 7fl . 17

2. ^ ^ ^ 71 ^-^e) 18

3. ^ ^ 4 ^ ° f l "QS-^t ^±o\}^\^\ 19

4. «M i - ^I^r^l- A^n^r 20

5. ^^71 S\ &^ 21

6. 4 # #2H4=1 ^ye

v^(MSF) 23

7. 4 ^ s-g- ^^-^(MED) 26

8. 1r7l °J-# ^^-^(Vapor Compression Distillation) 30

- v

Page 8: SMART - inis.iaea.org

5 ^ n $\$) # ^ 5 } - ^ 31

1. 3 ^ ^ 31

2. #7l^^-»j(Electrodialysis Process) • 33

3. ^ ^ 34

4. W ^ (Hybrid Process) 35

^ - ^ S ) - 4^#$M. 46

1 & 7fl.fi. 46

2 ^ ' S W ^ -B-<S 46

3 ^ ^ - ^ ^ #5fl^af oi^s-^o^ S^^OJI tf l^ < i^*H ulJE 48

^^ul(Water/Power Ratio) 49

50

54

6 3

1 ^ IAEAS] ^V^^-^r^- 7l#7fl^- 63

64

65

4 ^ SMART1- *1-g- r ^ - # ^ 5 } - ^ - ^ # ^ ^ ^<+^= ^7)- 68

1. SMARTS ^-^J 67

2. Ei«J ^^<H1^ #71 # 69

3. tifl<a-E]til^ o]-§- 70

4. Ei«l f ^ ^ T H - H ^ 7 l ^ # 71

5. RO<1 ^ ^ ^^r^l- 72

5 ^ SMART* <>]•%•$: t ^ - t r S f ^ f t € ^ 1 tf^ ^^^ ^ £ 72

1. « 7H 74

2. <£#^ 75

3. tyS. - ^ 76

4. ^ a f l ^ 77

- vi -

Page 9: SMART - inis.iaea.org

•88

• 91

- vii -

Page 10: SMART - inis.iaea.org

S. 2.1

a 2.2 ^iL^7>^ ^ S ^ I - g ^ ^ ^-^sl-^^S Unit ^(1991 Hi 7]&) 11

3. 3.1 ^ ^ ^ ^--g-^ 7l§ 37

a 3.2 t^ r5 l -^^€ ^Hl-g- (1993>d 7l§) 38

5 3.3 #^5}-#3m ^ ^ 1 ^ - ^ «lJa 39

a 4.1 ^AH^oflAi cflu]*l ol^- Tflxv o|| 56

5. 4.2 ^ A]^Efl^ ^ t M K - n - ^ ) 57

S5.1 1 1 zi-^s] ^ i ^ ^ ^ f S 7fl - 3§- 78

a 5.2 <y^4 Kazakhstan^ ^ 4 ^ # ^ 3 - ^ * 81

JL 5.3 SMART ^^f^ll-^ ^ ^ . ^ ^ 82

6 5.4 SMART ol^Hlf-^ ^&.#^r 82

a 5.5 #^ri}- ^ - ^ ^ 1 ^ ^-^Slfe &7]$] 2 :^ 83

- vm -

Page 11: SMART - inis.iaea.org

2.1 4n t ^ s H a ^ -g-# 12

2.2 M)-A] #^3j- <£*} -g-t ^ l ^ M ^ r - g - ^ ?1§) 12

3.1 #^S]- ? ^ 1 Al g- -B-a)^- 40

3.2 ^ ^ 7J^<>1 £ - ^ 40

3.3 #^3- tlEoiiA] ^ ^ oflujx] 41

3.4 ^3J -g-^oiH ^ ^ 41

3.5 MSF 1-efl.E 7 l ] ^£ 42

3.6 4^#2fl=rl ^ ^ T ^ l S l * # £ • 42

3.7 MED -W- 7fl^£ 43

3.8 HTME ^ ^ 7fl\i£ 43

3.9 VTE j 7fl^S. 44

3.10 ^7l<a-^ f ' ^ r ^ l f i l 7fl^S. 44

3.11 RO #e] l^ 7fl^£ :.V.'. 45

4.1 ^-^-^-^r f^" * € M ^ | yfl*l£ 58

4.2 Hfl^>ol#(Back Pressure Cycle)^ <>l-8- ^ ^ - ^ ^ r ^ ^ 58

4.3 ^7lA>ol^(Extraction Cycle)# <>l-§- : ^v^i-^-^r ^%v # ^ ^ 59

4.4 4 ^ 4°l€(Multi-shaft Cycle)^: ol-g-*V ^ ^ - ^ - ^ ^ # ^ | E . 59

4.5 #12 -^S] #^f le ^ o l ^ - i H ^ # € ^ 7H^-£ 60

4.6 ^ ^ ^ - ^ ^ #eflMSf o]^s.^o^ S^E .O ]H T-S d£ 60

4.7 ^ ^ ^ - ^ ^ # ^ f l ^ 4 ol^s-^o^ t-efleoiiAi ofl^-n|-ofl^S3il Ai£ 60

4.8 # ^ 300 MWe, -§-3= 100 mgdtl ° 1 ^ - ^ - ^ ^ #^5^. * f£ (BWR) 61

4.9 Flexible turbine s y s t e m ^ Ei«l wfl7l £ £ 6 | | tfl^ ^^«1<4 # ^ 61

4.10 ^ ^ ^ - ^ E i w j ^ AV-g-fl; o i ^s -30 ] ^ ^ - ^ - ^ tg^- ^ ^ ^ 62

4.11 IAEA ^]^EJ5] £^5. 62

- ix -

Page 12: SMART - inis.iaea.org

5.1

5.2

5.3

5.4

5.5

5.6

5.7 RO1-

o|-g-*V

84

84

85

85

86

86

87

- x -

Page 13: SMART - inis.iaea.org

1 S- M

A

tfl7]

S5flj=o]

A}-g-ol]

2000

- 1 -

Page 14: SMART - inis.iaea.org

- 2 -

Page 15: SMART - inis.iaea.org

*» 2 g- as-

^ .S . ©1-8- fresh water resources^

1/3

km3

3,600 km3A

9,000 km37>

^ *J= 14,000

(90,000 km3) ^-S] ^^~

million

IV!

2000V! °fl£- 10 million mVday, 2 0 2 5 ^ ^ 1 ^ 50 million mVday

20501000

- 3 -

Page 16: SMART - inis.iaea.org

27}

52.815. <3^-(21.51), = ^ - i

^ ^ l 7]

^ 1994^

^ 32.2 km3A£A^ ^-g-^ ^^.(29.9 km3)!: ^ 4 ^ ^ ^

ife- 2006\l

0.5 km3^ #

^ 2 3

ol

Page 17: SMART - inis.iaea.org

71 ?> ^ < L > ^

7^1

«l«fl

, (3)

(i)

(4)

, (2)

-o] slt|..[2]

(1) 7]

°.3,t 1000 km

(2)

- 5 -

Page 18: SMART - inis.iaea.org

(3)

(4)

^^r(Brackish water)!- ^^S)-^^ 4-§-^fe ^-4 ^^^?1 ^r^€ ^"il tfl 3] o|

jAS.Ai 71

4^: 3) 98%!- *W

^ 714 xi^oJMs. ^x} ^A^«^l ^-cfls]^ 7fji $14. ZL^ 2.H 4 4 $1

^l#s]Jl $14.

15.6 million mVdayS.'H ^l^r #7f§>^ 1993^^ofl^. ig.7 million

$1413]

1993k! ^4Tfl^^.S. Afls. A^^S] rt-^^- #5flM^ A j ^ ^ a . ot 1 4 million

- 6 -

Page 19: SMART - inis.iaea.org

Hr 62%, <£^r#^3!Hr 25%, * l £ ^ r r 6%,

4] 3=tb 870,000 V

712,000 m3/day7|- f ^ s ] -

35 million mVday °fl °]1- ^ ^ S . ^#£lJL ^ 4 . ( ^ - ^ 2.2

2015^ ^>ol°]lfe "11^ 1.9 million mVday^j r-S-7]- ^ 7 >

7}

] 1991^

^ ^ 100 mVday ^AJ-O^

2.24 ^ 4

"5* o

- 7 -

Page 20: SMART - inis.iaea.org

EU

Brackish Water* *f-8-«rfe #<r3- M ^ ^ ^ ° 1 ^ ^ 91^ ^ RO

^(Electrodialysis) "cK1 - 4-§-W. * ] ^ 3 ^ S ^ Florida ^°1H ^

570,000 mVday ^ 1 ^ " ^

r Membrane Process 7^°\] $\o) ^5-*\°l ^ ^ ^ *fl 5.J1 Sl^.

t i i s l ^>^S1- «-^ol ^-^si ^^lslJL &CJ-. «y^ ifl

RO ^ ^rf^J

1000 mVday

RO #

Page 21: SMART - inis.iaea.org

- 6

Ibfel* fc-k

to-

002

ssaoojd

te-§-!?-

R» fefe92 4Q lb"3R.-y-

'l -k

OS

Page 22: SMART - inis.iaea.org

A ^ 1970\itfl

10 -

Page 23: SMART - inis.iaea.org

2.1 -f-f # 7 }

l ^ £ 1Q44

a q si. et oq qm

* * *

2001

33,640

34,290

2006

34,991

34,541

450

2011

36,652

34,655

1997

£. 2.2 IS. Unit ^r(1991\l

Saudi Arabia

USA

United Arab Emirates

Kuwait

Japan

Libya

Qutar

Spain

Iraq

Bahrain

Iran

•8- =, mVday (^1^ , %)

3,800,092 (24.4)

2,372,297 (15.5)

1,655,157 (10.2)

1,413,610 ( 9.1)

631,997 (4.1)

629,030 (4.0)

398,189 (2.6)

380,483 (2.0)

232,864 (2.1)

297,841 (1.9)

260,609 (1.7)

Unit ^r (yl^r, %)

1,474 (16.6)

1,901 (21.4)

304 (3.4)

155 (1.7)

859 (9.7)

397 (4.5)

63 (0.7)

312 (3.5)

209 (2.4)

136 (1.5)

218 (2.5)

- 11 -

Page 24: SMART - inis.iaea.org

lt.000.000

15.000.000

14.000.000

) 3.0O0.000

I2.noo.ooo11.000,000

10.000.000

H.D00.000

8.000.00D

7.00O.O00

6.000.000

5,000.000

4.000,000

3.000.000

2.000.000

1.000.000

CONTRACTED

M B 5-=

CAPACITY

1FAKCN TROM- WANGMfOS, KLAUS/

• * • • * • • » -^ * *

*

/

s

)f

/

NQ. 1i

-—

/

/

1959 1961 1963 1965 1967 1969 1971 1973 1975 1977 1979 19B1 1983 1985 193? I9 f l9 199!CONTRACT rZAR

2.1

Far East

MkLEast

& South Asa

AfricaEx-USSR

Western Europe

Latin America

Norm America

2005 2010 2015

2.2

- 12 -

Page 25: SMART - inis.iaea.org

3 S-

7]]

o]

^ H ^ ^ S 1593\i R. Hawkins7l-

^^-^(Multiple Effect Distillation, MED)4 2~

^*£(Multi-Stage Flash Distillation, MSF)°1

1960^ ^ ^ 4 ^^oiEcj l ^ ^ ^ ^OOOm'/day

° l ^ ^ J i , 1980H4tfl°flfe #afl ^^S)- M J M 3/4#

7 ^

- 13 -

Page 26: SMART - inis.iaea.org

7\

r 1953^ S^s]cf tfl^fil C. E. Reid

1957\i ^ W # ^ ° l l tfltb 2jsi3LA^7l- n]^- £ ^(Office of Saline Water)°fl

l l l ^ -§-§- ^ ^ l A i 1965H1 19mJ

/day - S - ^ ^ #^fl^7f n ] ^

^-^1^61 ofl U] ^1 ^ - i - t f ^ O . ^ 711 ^ ^ » 1 ^ 7 ^ ^ 1 ofl

4.

2-25 ppm TDS(Total Disolved

p H ^ ^

. WH02]

3.14 ^V^-^^--g-^fe- 200-300 ppm TDS# 7> 1 JL ^

Si4. ^^fl^H^ ^-^-^4 RO t s f l E f ^

- 14 -

Page 27: SMART - inis.iaea.org

3.H

^ MSF71- 60% °lAoh MED7V 40%, R07J- 4%Si ^ ^ , 1991^*11^ R07]-

50%, MSF7}- 33%, MED7> 6%S. RO3 ^l^-^-n-ir°l

ROfe BWRO(Brackish Water RO) ^l

^ 1 « : ^ # 7^1oL $14. %V3L^ 1993H13

^^> 5.5 %

Sr ^ 5 f ^ 4-f^o]-2l-«l6K ° 1 ^ , UAE, *]^ ^°}^: 3 3 ^7>^A^ 200,000

500,000 mVday -g-^3 €• ^ ^ o ] ^ ^ . § > ^ ^ e ^ A l ^ ^ 2-1"

3 M ^ Hov# ^ S l " , ^Bi 7fl3 ^"^ units

EL7\\

-fe ^ ^ ( D i s t i l l a t i o n Process:MSF, MED),

- 15 -

Page 28: SMART - inis.iaea.org

(RO:Reverse Osmosis), 1 4 ^7Hu)x]t- 4-8-sl-fe W 3 (Hybrid Process) ^^_

5- 4¥<H^4. c ' l^^S ^7l^^H|-^(ED:Electrodialysis Process), *gzHi

(Freezing Process), t f l^i f^^ ^ # £ 7l«<>l ^0 .4 ^ S b 7l#l:£- 0}

71 # ^ ZL^ 3.24

Brine ^ 4 Once-through

45}-

V# ^ f l ^ ^ 10,000-15,000 mVday, MED ^^E.^

20,000-30,000 mVday, MSF S^lMfe 50,000 mVday ^ £ ^ ^cflfil: -§- = - 5J-JI

RO # t o s ] -g-^^r ^ S ^ ^ s ] 3 .7H ojsfl ^|^£]i^ MED # ? l ^ f e

sL ^ ^ -fr l °1

-Ajol 5^4. ^ - ^ ( H -oj- IAEAS] 7 £ ^ 4 7 l^^ 0.^4 7

44

4.[3]

fe MSF,

*>ai, ^7)oflui^7f ^ S 4-8-sic- RO, MED/VCS]

l ^ ^ 4 . RO, MED/VC, MED, MSF^ ^7,>^^e

S.lrS.4 ^-S- -^^-^ l -o l a 3.3i

g.^- , R 0 4 MED/VC ^-^s} -#^^fe T1-S.SH- ^ l

5-7 kW(e)h/m34 7 -9 kW(e)h/m3^

- 16 -

Page 29: SMART - inis.iaea.org

fe- MED4 MSF^r 4 4 2~2.5kW(e)h/m33f 4~6kW(e)h/m34

i , ^ I ^ y 1 4 3-f 70~120°C4 ^ t ^ ^ H H MEDfe 30-120

U , MSF^r 55-120 kW(th)h/m3<>l 4 .

4,000-5,000 MW(e)°Jtil, °lfe

tb

4H.7D

400 *d 4°14 . 1593M ^ R. Hawkins7>

oj-g-,2. ^ ^ - ^

- 17 -

Page 30: SMART - inis.iaea.org

cflif i~2 mVday

i M *I|^#^3J- # 3 U M -§-#*- $t 4OOo m3/day5S4.

20,000 mVday

3.3^

2.

7} ^-Alcll ^ ^ <$*o\}*\ <Hlui ]Sf l - ^ o ] ^ ^ ^ o j l 45]- z]-z]- ^ - ^ ^ 4 . o]

^ flashing<>ll

^ &0.14 150 °C ol^-o.S. 7]-^5)^ § f l ^ ^ ^ <gAj«.ol

90-125 °C

^ s . 125 "C

- 18 -

Page 31: SMART - inis.iaea.org

3.

(2.1)

= RToln(POv/Pv) (2.2)

-8-nflS)

(2.3)

ToSo

7H}- ^-5 . Serb

- 19 -

Page 32: SMART - inis.iaea.org

Sol: f 6 j 5 .

1 5 - 3 0 ^

-S ^^al(Performance Ratio)S ^Bj-ifl^, n ^efl^ 4 ^ -

R = — (2.4)

o|

4, I^t

^7171- -g-#^ «fl ^

(Fouling Factor)!- S.«g*fl ^ * ^ $14.

1) n& 1 ^ ^ ^l^rfe ^ ^ F ^ ^ - ^ ^ - ^ ^ JlB^ V 5J^.5. ^ ^ ^ o.S H

2)

3)

4) *L2}-<?]

- 20 -

Page 33: SMART - inis.iaea.org

±3.7} EL?\}S\E.

^ H ^ o ] 0.0005, ^ ? f l ^ ^ ° 1 s l ^ ^ ^ f l ^ l ^ ^ 0.001^

1000 Btu^ ^ 7 1 1 - Al-g-s)-^ AJA^ ^ o ] l b s

5.

^fl^rCsea water, "9£ 30,000-36,000 ppm)4 ^^(sa l ine water, «S3E., 5,000

30,000 ppm) ^ aV^^r(brackish water, <§£ 1,000-5,000

1) ^Hr^ul-i-i! ^^V7l (Submerged Tube Boiling Type Evaporator)

- 21 -

Page 34: SMART - inis.iaea.org

^^-7] (Film Boiling Type Evaporator)

3) ^ 3 ] ^ t i ) ^ ^ (Vertical Tube Boiling Type Evaporator)

(wetting condition)0! -n-^ l€4

4) ^r^^j-til^-^ (Horizontal Tube Boiling Type Evaporator)

q- -oll brined

^ 01 cf.

5) # e f l 4 ^ ^^V7l (Flash Type Evaporator)

6) 1r7] <y-^ ^ ^ 7 ] (Vapor Compression Evaporator)

- 22 -

Page 35: SMART - inis.iaea.org

^Hfl^. # # « j £ | ^(percolating type evaporator design),

^ ^ -e 31 (forced circulation evaporator design), ^ S . ^ ^ ^TlKthin film

evaporator design)^0!

7) ^ 1 1 - ^ ^ T ^ : ^ * M (Combination Plant Cycle Evaporator)

8) ^ i i ^ - S - ^^-7] (Power Plant Makeup Evaporator)

6.

MSF a J"^^ 1960^

fe MSF

:, MSF

^ i ^ ^ 3.5-5 kW(e)h/m3°14.

- 23 -

Page 36: SMART - inis.iaea.org

MSF - ^ ^ tfl^^oi 7fl^6i ZL^ 3.5011 u^flt)-.

MSF UJ-^^ 37fl ti.Hi-01 ^fl^^. tij-Ai^ once-through y <H^

7.) 7^& CH^-^-^ MSF 1-^Sfe a.5f<y *fl££

once-through

^ ^ ^ i ^ 4-8- ^ ^ - ^ ^ ^ ^ 4 . once-through

MSF

. MSF ^ o l M 4 ^ ^ «.3ftl^1 flashing^ «-4?l

AI^A^ ^^Al^ltj.. flashing^

^°J"^ steam ejector!- 4-8-«V

MSF-fe- 3-7\] 'it^^r^fCheat recovery section)4

rejection section)S. T ^ S I H M.a(-cy^:&(brine recirculation)-8: ^ ^

- 24 -

Page 37: SMART - inis.iaea.org

fe CaSO4

fe 1.66 o l^H 1 } . MSF fl-H 7j-<i^-£fe 105 °C

125

r1^^ MSF t-eflMfe ^ ^ ^ ^ 4 <$ 7-12^^1

MSF #^^^1^1 ^ ^ 4 ^ 1 " -n-oJ

MSF # ^ ^ ^ |

1) -H-^r^e} ^ ^7]^-(Feed treatment and degassing section)

2) ^"ir7|-<i-^-(Feed heater section)

3) ^fl-^-T-CHeat recovery section)

4) <S«fl#:T-(Heat rejection section)

5) | S , «!!#-¥-

30~40%l- ^ H W . ^.elJL ^^-^ro] 30%, ^ ^ f e ^ 15%^S.^

§1-71

1 (Long tube)4 ^ ? t ^ (Cross tube)^^ 4 ¥ ^ ^ 1 4 . cl

- 25 -

Page 38: SMART - inis.iaea.org

-8-^4.

3-4TEH

2 ppm

\+CO2 ^ " ^ ^ 5~10 ppm^-

71

MSF 1-^e.ollfe- 47H

o)i- ^ til

-of B.±r ^3^r

NPSH7f

MSF ^gjcf. 420,000 m3/day

MSF y o^^r 11

7.

MED

MSF #31^.011 21*1]

S.-8- ^

LT-HTME(Low Temperature Horizontal Tube

- 26 -

Page 39: SMART - inis.iaea.org

Multiple Effect)^ - f r 1 ^ # $ ^ . 6 1 4 . M Aov<S 3-^-5. °]-§-£|3L & ^ MED

$] ^ ^ - ^ a.7fl ^S] Hfl*1 el] 4 ^ T 1 * ! ^ ^ Sl-§-^(HTME:Horizontal Tube

Multiple Effect)4 T * ] ^ f^^CVTE: Vertical Tube Evaporation)<=] 5U^) , °)

JL-8-71 (effect)-=fl ^ ° d ^ «gofl u|>c] ofl

Z]-

3.71

7} *K*] >,

IAEAfe

4 5a4. °1 3£°JH ^ ^ - ¥ ^ ^ 4 MED yov^#

MSF HJ-^^ ^^.S^i s^sl^^c-il o]

E3.5L - 9 - ^ ^ ^ ? H ^

- 27 -

Page 40: SMART - inis.iaea.org

1) HTME-Horizontal Tube Multiple Effect Desalination

HTME y<Kloti 3)

f. HTME1- #

2] Sidem, Aiton Ltd, IDE Technologies Ltd, Sasakura

Engineering Co. Mitsubishi Co. Aqua Chem. Inc.f- & £ x\)^*}7} HTME*

3.8^ HTME1-

demisterl-

MSF^l

HTMEfe

effecH

MSF^l «1-afl ^yfl J § £ O | ^ 4 ^ ^ HTME #

fe MSF ^^7lo]) tilefl aj-tf. HTME^ ^ ^

^ 3X6.*], o}^} 4e} ^^]s] 31-8-71

71 2£A^ s-

- 28 -

Page 41: SMART - inis.iaea.org

2) VTE-Vertical Tube Evaporation

VTE sfl^r'iHrSj- 1 - t e ^ r

effect* 3 l t * M ^~§-*M i l ^ ^ S 1-247117}- A>^-^CV. ZL$ 3.9^

7V

t f # effects.

: ^ demisteH

^r^ ^ ^^1 71 # £ 1S«;7l -tLSl «fl^^«fl7Hl 3711

Til 4 !3*K ^ ^ ^

^^^H VTE#

^ ^UUTT ^ - g - ^ s ] ^ ^ ^ . t f l a^ t ] ^ ^ ^ - ^ 1 ^ ^ Freeportsl 12 effect

Fountain Valley^ 4 ^ ^ ^ ^ 7 1 , Gibraltar^! 13

fe yv^ VTE

2)

- 29 -

Page 42: SMART - inis.iaea.org

3)

4.

4) MSF

5) MSF

6) VTE1-

10# ^71 ^sfl I37flfi] SL-g-?-!- I I S

4.

8. ^7l <y-# ^ ^ (Vapor Compression Distillation)

4.

Si4.

55-67TC 4 V ^ ^ 1 ^ ^ Sil^.^

fe ^ - i nfl4- fe^ x ^ ^ r 5,v^1^4. i l : lr<3 u l ^ ^ Rosewell

3750 mVday^ &7] °J-# 1-^^ofl^ ^ ^ s > °flv-i^l^ o o ^ ^

16.6 k w h / m 3 ^ ° } 1 ^ <g51^: ^^-§r 7 ^ * ^ ^ ^ ±& <H1M 1 11.1 kwh/m3

# e f l ^ ^ Rosewell #eflJL

- 30 -

Page 43: SMART - inis.iaea.org

4.5-90 mVday

n

1970^

(Pretreatment), Jl'S"^ .(High-pressure pump), -SrS]^^ (Membrane assembly),

^ul(Post-treatment)3. ^ ^ £ ] ^ 7]^-^«l ^ ^ ^ ^ o ] z i ^ 3.11^-

fouling

- 31 -

Page 44: SMART - inis.iaea.org

fouling 4 ^

1^ W 3 ^ fHf-fe Hollow Fibers Spiral

Wounds ^3]7r $1^1 Hollow Fiber # ^ £ ] 3 ^ H-'SH- Ji^£(45,000 ppm

TDS °R V HH -gr^°l 7>^§H, Spiral Wound ^ ^ 34,500 ppm TDS

.§1-4. Brackish Water* 4-§-^fe ^^^^ ^ T 17-27

bar(250~400psi) ^3E^) ^ ^ ^ l € - 3 - ^ , *fl^r(Sea Water)

^ 54-80(800

1/4,

4.

2) tf€3j-# ^^>SV^1 ^3L f: 515171

3)

- 32 -

Page 45: SMART - inis.iaea.org

4)

5) ^ S ^ ^ : 0 ! 40%5.

6)

2)

SI31

2. ^7]:f-^^-^(Electrodialysis Process)

Water)^ ^ ^ s j - ^ 1960^*11 ° 1 ^

SJ-5J71 A]4§fc^ 1962id Arizona ^°1] 2460 V

> -itlTU 66 °C

- 33 -

Page 46: SMART - inis.iaea.org

3.

$14.

°1?1 ol-frS. 1960\l

n-C4H104 ^ ^ 1 ^ 114# 2*1-

$} 1/70]sj-o]4.

2) tfl-^-g-o} ^ ^ ^ ^^S^lA-1

3)

- 34 -

Page 47: SMART - inis.iaea.org

1/1000

4) 2*}

1) sfl^^l wj^o] uj-71 nfl^fl

2)

3)

4 ^r^fl °J-^7l7> 7 ^ 4 . ^ ^ ^nflS ^-^-1- *}&*}^ 2*}

4. ^ - ^ j - ^ ^ (Hybrid Process)

0)71 ^tV Cf^

^ # 71- 1

- 35 -

Page 48: SMART - inis.iaea.org

R0/MED7} $X^^\ ° l l : ^ 7|

^ ^ - ^ ^ 4 <a^m ^iiL«:7l(oill- # ^ , Brine Heater)

5. J i t f l ] ^ ^ fl^11 t l ^ l l ^ ^ ^

1- #7)

- 36 -

Page 49: SMART - inis.iaea.org

3.1 -§--§- r 7]

Parameter

Chlorides(Cl)

Sulfates(SO4)

Calcium(Ca)

Magnesium(Mg)

Sodium(Na)

Potassium(K)

Aluminum(Al)

Nitrate(NO3)

Nitrite(NO2)

ArrunoniumCNHU)

Iron(Fe)

Mang anese (Mn)

Copper(Cu)

Fluorine(F)

Chromium (Cr)

Lead(Pb)

PCT/PCB/Pesticides

Polycyclic Hydrocarbons

Chlorinated/hollogenated

Hydrocarbons

Conductivity

pH

Total Hardness

Alkalinity

Recommended

25 ppm

25 ppm

100 ppm

30 ppm

20 ppm

10 ppm

0.05 ppm

25 ppm- -

0.05 ppm

0.05 ppm

0.02 ppm

0.1 ppm

- -

- -

400 yScm"1

6.5-8.5

> 60 ppm as Ca

> 30 ppm as HCO3

Highest permissible

concentration

200 ppm (recommended)

250 ppm

50 ppm

150 ppm

12 ppm

0.2 ppm

50 ppm

0.1 ppm

0.5 ppm

0.2 ppm

0.05 ppm

3 ppm (under special

condition)

0.7 ppm

0.05 ppm

0.05 ppm

0.005 ppm (total)

0.002 ppm (total)

0.01 ppm (total)

2000 uScrrf1

9.5 ppm

- 37 -

Page 50: SMART - inis.iaea.org

S. 4.2 i i «]-§-*£( 1993 \ !

Process

MSF

RO

ED

MED

VC

Membrane Softening

Others

-§-^, m3/d

9,633,347

6,100,224

1,070,005

765,143

686,418

341,299

104,811

51.5

32.7

5.7

4.1

3.7

1.8

0.6

Page 51: SMART - inis.iaea.org

a 3.3 te -a 31^

Energy Consumption

el./mech. (kW(e).h/m3)

thermal (kW(th).h/m3)

Electric equivalent for

thermal energy

(kW(e).h/m3)

Total equivalent

energy consumption

(kW(e).h/m3)

Possible unit size(mVd)

Limiting factors

Total capital costs

Maintenance

requirements

Spare parts of

replacement parts

requirements

Heat transfer area

Ratio between product

and total seawater

flow

Experience available

RO

5-7

none

none

5-7

24,000

pumps, vacuum

units

lowest

high

high

(delicate, large

pumps, expensive

membrane,

replacement every

3-5 years

not applicable

0.3-0.5

medium

MSF

4-6

55-120

8-18

12-24

60,000

pumps,

valves

highest

(at same

GOR)

medium

medium

(large

special

pump)

high

0.08-0.15

highest

MED

2-2.5

30-120

2.5-10

4.5-12.5

60,000

erection and

construction

aspects : plant

reliability

low

low

low

(only small

pumps required)

low

0.1-0.25

high

MED/VC

7-9

none

none

7-9

24.000

compressors

medium

medium

high

(vapor

compressor

required)

low

0.4-0.6

medium

- 39 -

Page 52: SMART - inis.iaea.org

PROPORTION CO

90

BO

70

60

SO

40

30

20

13

1961 1963 1965 1967 1969 1971 1973 1973 1977 1979 I9BI 1983 198S 1937 1989 1991CONTRACT

m OTHER

M MC MOLTI ErrccT • vc VAPOUR

• RD REVERSE DSKOSIS f MS HEHBRANE SOTTCNING

H HSr MULll STAGE FLASH EVAPORATION •

» VMO4ECK. KIMS

•cnsr Ml itrua.uxs i t VMCWCX COHULIINS

3.1

• Membrana modJto* ara • Combination ol MSF wtth VTEol tubular tytx. plat* »Irarrw typ*. scfaal-^raynd • Combination ol MutU-«Hact • VFVC(Vacuum FfMIfrMtyp« and hoNow-riow tystama wttn Vapoi comofatalon Vapor Ctypa. tyatam

• VTE(Vaftlcar TubeEvaporation)- FatEno Urnavaooralors- Rfeino lintavtpofaton- Evaporator* wtthforced artd naturalsolution drctHation

* HTME(Horl!on!a! Tub*Multiple Effect)

- Vertical «r>d Hmdootgr tub*wapoialrion comblnta* »4thVapor comprasslon

-ME/VCUwrmal

• Combination ol RO wrttt 'Dfetfltatfon Procewes- RO/USF- RO/HTME

3.2 7}^$]

- 40 -

Page 53: SMART - inis.iaea.org

3

|

«

Energy consumed in the plmt

3.3

Fouling

Cbndensat efifm

' . . * " ' - • - ' • .•p**.v'.«*. '--"v'; : * . ' . " - •

Vapour flowTv

3.4

- 41 -

Page 54: SMART - inis.iaea.org

3.5 MSF piffle.

Aimosphericdegassing

tank

Itairrstnr andheat. rejection

section. • • f~4 stages)

1 Heat recweryj ' sectioji! {—'45 slaves)

To atmospherei Air ejeclnr1-C3P-*- Steam

rfcafinputsection

To atmosphereflOT I Air ejector Veni

Steam supply

Sulphuricsupply

Chlorine supply — J Raw seawator

i—•- _ Produd wtier25. 5f .

Product water pomp

3.6

- 42 -

Page 55: SMART - inis.iaea.org

3rdEFFECT

2ndEFFECT

1stEFFECT

3.7 MED ^ 3 7fl\|:E

HEATING STEAM

FEEDWATER PUMP

SEA WATER

s-r I si£ 3..r T-r^1" i

PRIMARY EFFECT

SECONDARY EFFECT

TERTIARY EFFECT

HEAT DISSIPATION UNIT

I TO FRESHWATER TANK )

BRINE EXH. FRESHWATERPUMP

EJECTOR

3.8 HTME

- 43 -

Page 56: SMART - inis.iaea.org

-BRINE NOZZLE

BRINE OF 120,5"CFROM PREVIOUSEFFECT

STEAM FROMPREVIOUS EFFECT

UPPER STAGE BRINE CHAMBER

-BRINE WATERLEVEL

GENERATEDFRESHWATER '

HEATING STEAMCHAMBER

STEAM TONEXT EFFECT

BRINE TO EFFECT

3.9 VTE

e-superheater Compressor

Brine hcater

heator

Saline waler

Brine htow down

3.10

- 44 -

Page 57: SMART - inis.iaea.org

PRETREATMENT PRESSURE ROMAMBRANESPUMP

3.11 RO f-te

- 45 -

Page 58: SMART - inis.iaea.org

7fl

Sim-.

50-60%

23~35%°11

7\

l i

- 46 -

Page 59: SMART - inis.iaea.org

^7171- ^

water/power

MSF 1-iaS.

^-fe ^7} A}O)^(Extraction

71 fe-

n ^ 4.4^ tifl0^}0]^^ 71

Cycle)# 4 4 ^ J L Si4.

4.

- 47

Page 60: SMART - inis.iaea.org

^ ^ 5L7]o]t|-. Rankine cycle

cc| ^_7}$\ ^ ^ 1 - -i-A|ofl A3Aj.§]. o ) ^ s . ^ o ) sefl_E=. Rankine cycled

Rankine cycled

4.5011 ^ ^ ^ - ^ j - y ^ ^ * > ^71 A><>m£

4.64 ^

lier Diagram)

l & x=l-&

Mfe ACFDA5.

4.H

- 48 -

Page 61: SMART - inis.iaea.org

oj nfl

2)

3)

4 *! ^ - ^ / ^ l ^ ^ ^ « 1 (Water/Power Ratio)

7 H

co=W'/N (4.1)

Millions of U.S. Gallons per DayWuL N 8r

7J-1 ^ 7 ]

1000(kgm ) • 7(4.2)

W"(med) = WW/hr)24hr/dayW Cmgd; 3.785xl03m3/Mgal (4.3)

= 6.34xlO~3W'(m3/day)

Power Outputs 4 ^ 4 ^°1

e ) = 860xl03Kcal/MWh iNAUX i N p

— ^ 7 1 -n--^^, H— 51^: ,

- 49 -

Page 62: SMART - inis.iaea.org

. Water/Power «lfe Al

5mgd

l Sfl^l- by-pass

by-pass Al?l 4 .

^ ^ water/power «l7}- ^ -^ ^Jo] ^ . ^ ^ nfl

«3=ofl a(-e} ^7]^7l ^(Extraction Pressure)^:

#^0]*): ^ . 4 . oli). 7EV ^ o l ^ l l - #^B|<S E HJ

t ^ ^ - j i S ^71-g-^E^ HI (Extraction Condensing

Turbine)^ afl7lE^wl2f ^ - * E ^ « 1 ^ %^O] ^ 4 . o]

2)

- 50 -

Page 63: SMART - inis.iaea.org

^ 7 l # by-pass «Hr

3) 4 # ^ 3 *]H(Level Control) ^ «.e)-*l 7><

4) ^

5) K.

^ ^71

70-105%

Water/Power tf]^- E-Jois] «

^-^•i : ^S | -A1^A5.^ Water/Power U1S

L^ 300MWe $.^3\• lOOmgdsl -

I: 1970^^1 ^ 1 ^ 5 3 4 o] BWR^ ^ ?

°1 # ^ 3 E-]H] «fl<a- : 1.85 atm,

- 51 -

Page 64: SMART - inis.iaea.org

jH^oj £5.1= l i rC , ^7)2) ^ ^ « 1 ^ 8*14. =L?)3- ^

olfi] ^ 5 . ^ 2<>14.

^(Blade)4 i^j-^jr ^ d TJ ufl 7) (Exhaust Annulus)#

Tfl^^^r *>5a4. °lBitb E alofl rfl j- ^2;S]A>OJ ^

u]7l- ^uV^1?] Eiaifi4 et^- ^cj-xlu)- Bfloj-i- 1-5 atm^H

^Efl-i- FTCFlexible Turbine) A| Efl

1.85 atmas^liyC)^^ 0.8 atm(ts=93°C)5.

$t}<q 4 A ] 2.8 atm(ts=130°C)

^ ^ 4.9°fl

345MWe°114 * ) ^ 272 MWeS

85°1)4 ^tfl 107

ufl

ols1'?i- *| —18-i" LPCT-P(low pressure condensing turbine - parallel )A1 —'

r-E-4.

- 52 -

Page 65: SMART - inis.iaea.org

#

3} IS.

^ 22 (a)*r

nfl(Peak power)

LPCT-PS(low pressure condensing

turbine-parallel series)*1 ^ ^ 1 4 ^ t t4 . ^°llA1 ^ # t t 37}*]

* 5 4.2°fl

by-pass | a ^^r ^••g-^S.l- 4-§-^^ ^.s].^. s ^ § r ^ ycv^°l Si4. °1 uov

2.5-10 ^ ^

- 53 -

Page 66: SMART - inis.iaea.org

^ 7 ) 4 by-paSS

S14.

1 6 *l

1985>d

1) M M 2 ] 3.7]

^ ^ i2:7l7l(MSFon^i :b 0.3-0.35 MWe/mgd-water)6!]

4.

2)

10% 3j^>fe #^y]-g-g: 3.711

- 54 -

Page 67: SMART - inis.iaea.org

3) = . 3 . ^ ^ Q

MSF 1-^S^-H wfl^^yl^ <£?)£ 2 atm7>

£ S . 120°C ^ «.e

fe- MSF 1-^S^^l

4)

b 250 mVday : 1 MWe ^ £ S . ^^l§>fe ^ o) 2j^§>c}. nVot ^ ^ A ^ A V ^ O ] 600

r 150,000 m3/day7l-

E S . 2 5 0 1 ^ w

- 55 -

Page 68: SMART - inis.iaea.org

S. 4.1 &;

(1) High pressure steam to

turbine (ata/"C)

(2) Specific enthalpy IA, kcal/kg

(3) Low pressure steam to brine

heater, ata(x)

(4) Specific enthalpy in, kcal/kg

(5) Low pressure steam to

condenser, ata(x)

(6) Specific enthalpy ic, kcal/kg

(7) Specific enthalpy of

condensate, kcal/kg

Energy

(8) required for steam generation,

kcal/kg

(9) available as mechanical

energy, kcal/kg

(10) available as process heat,

kcal/kg

(11) utilized=(9)+(10), kcal/kg

(12) Energy utilization of cycle =

(ll)/(8), %

Single purpose

desalination

plant-

-

2ata(x=l)

646

-

iE=120

iR-iE=526

iR-iE=526

526

100

Single purpose

power plant

40/410

771

-

O.OSata

(x=0.875)

549

iF=33

iA-iF=738

iA-ic=222

222

30.1

Dual purpose

plant

40/410

771

2ata(x=l)

646

-

-

iE=120

iA-iE=651

iA-iB=125

iR-iE=526

651

100

Remarks

kg/cm2abs

Hlurb=80%

Neglecting

bearing losses

Excluding boiler

and auxiliary

losses

56 -

Page 69: SMART - inis.iaea.org

a 4.2 A AI

System

FT

FT

LPCT-P

LPCT-PS

For investigated plant

Variation of net

power

Max,Min(MWe)

345

270

382

435

Variation of water production

Min, Max(mgd)

Change of

water/power

ratio of plant

85 0.33-0.25

(100/300)-(85/345)

108 0.33-0.40

(100/300)-(108/270)

66 0.33-0.17

(100/300)-(66/382)

44 0.33-0.140

(100/300)-(44/435)

For boiling-and pressurized

water reactor dual purpose

plants

Variation of

net power

as % of net

base power

+(5-5-15)

-(5-MO)

+(15-^30)

+(30^45)

Approx change

of water

production per

MWe net change

of power, mgd/

MWe

0.3

0.3

0.4

0.4

* Adapted from Gluckstem et al.(1970)

* Base plant investigated: 300 MWe net, 100 mgd, plant factor n=85%

- 57 -

Page 70: SMART - inis.iaea.org

WAREHOUSE AND$1ELPO&-EREP'LA§T_ MAINTENANCE FACILITIES

FRESH WATERSTORACE TASKS

^; DESALTING PLANT_ SUBSTATION

S§* WATER INTAKEPUMPISC PLANT

4.1 ils]

KPturbine

LPtuibine

heater

Fbwr generating system

flash evaporator stageNuclear steam

supplying system ProcfuctM . S . F - d i s t i l l a t i o n system v < a L e r

4.2 Pressure Cycle)# <*!-§- bS.?flE

- 58 -

Page 71: SMART - inis.iaea.org

Generator

Nuci ear steamsupply system

^ F r e s hwater

Blowdownand heatre j ec t i on

Salt water

4.3 ^7]A>O]^(Extraction Cycle)

supply systan

ueneraior

Generator

.Freshwater

Blowdown andheat rejection

Salt water

4.4

- 59 -

Page 72: SMART - inis.iaea.org

I.. P.STKAMOKNKKATOU SI. :'. STK-M

H. i>. STEAM GENERATOR\ BACK PRESS'.RF.

\<; \ P.i.iv TIRB1NT

\!-...i»

HKINKHKATKK

KKKI i TANK SKA '.VATKK

I. SINQ.E PTRPOSEUF.SALiNATION PLANT

CoNDKNSKK _ ^

FKKU

•GM-©

BRINKHKATKR

IM.

SKA WATERF.VAPORATOR

|| . SIXCLE Pl.-RPOSE B W , A L P U H P O S EPOIVKR PLANT POWF.R S: DESALINATION PLANT

4.5

a.•ul

a.g 200

100

/

/

¥/

410t

- I Ayv1201C

. . *

/it

t

It

K \ •'

V\ \C

t

t

tf

\

7 ? -

4.6

0.5 1.0 1.5 2.0 KCIAK

ENTROPY

EEofl T - S

I00OKrai

800* * -410t

-0.873

O O.S 1.0 1.5ENTROPY

4.7

2.0 KoOAit

- 60 -

Page 73: SMART - inis.iaea.org

STEAVJEJECTORS

'.PUMP

M.iasc HOT

4.8 300 MWe,

g IK

i - toe

•z. 80

t

-

-

-

V

• •

f I

!

v

1

i

ki

5

- %w

•1

ATER*~

-

-

OWEft"

1

- <

a

8 2a:otx.

7 ga.

90 100 JIO 120 130 140TURBrNE EXHAUST TEMPERATL'RE

4.9 Flexible turbine system(F.T.)^l^

- 61 -

Page 74: SMART - inis.iaea.org

t l .Kl.EXl)1. N>'CLEAR r.F.ACTOK

I 2 . RACK I'R£.» . 1 ! :3E Tt'kBIXK

I J. LP. (;oxu£.:.'-.si; TCRRINK

*.. O'lSUKXSLr.

: . .-:-:KI; WATr.'.-pi'Mi-

•-'. v'v. FKKU •:--y.H IIEATKI'.1-. HfclNK Hi.-':.?.1!. r l .ASH K'.'1.? .'.KATOK

Ci'.\"i)KXSATF

4.10 q*\

W SERIES FLO'A FOR NOXBASE-LOAO OPEHATIOX >-

LECESD

I. BR1ME HEATE?. 5. DISTILLATE P I M P1 HEAT RECOV2KY STAKES 7- SEA WATER P I M P3. HEAT REJECT STACKS .1 REJECT SEA tt'ATFR4. BRINE RECVCLZ =>l •.:? n. BOOSTER P I M P5. BRLNE BLD'.V If >'.VX ? ! M ?

— STEA-MCOXPESSATEBRIXE

_ S E A WATKR•, DISTILLATE

4.11 IAEA ^

- 62 -

Page 75: SMART - inis.iaea.org

4 1 % IAEA l

IAEA

<L^, 1990\i

1992H!

1990V1 S l ^ ^ - 1 - ^ A^^LS. 4°1-Sel?l- ^ 1 ^ 57B S]^^-(Algeria, Egypt, Libyan

Arab Jamahiriya, Morocco, Tunis ia)^^ # 3 * ] ^ - § - cfl^^-S.

^ ^ 71 ^

- 63 -

Page 76: SMART - inis.iaea.org

h 1 9 9 4 ^ 3

Saudi Arabial- E R V ^ - S . * U H

IAEA^ ^^l-^ol-g- 'g-^S)- #BflE.fi! Demonstration Facility

^ ^ ^ ^ s f # 4 ^ 7 1 ^ 3 ] 'Q^l option

411!: Option Identification Program^ ^ r^^ ] -^ Q^)£. Demonstration

4] Option Identification Program ^*3

ofl^^l ^ ^ ^ ^ > 5 . 4 ^ ^ 1 ^ 10,000

mVday -g-^fil RO # ^ ^ 7fl^, ^^ i^^J ^ ^ S . ^ ^Tfl^ RO ^&*L 7fl^t 4 ; ^

^Itb MED W^ 7fl^o] ^ 6 . ^ , ^ ^ IAEA

Demonstration Facility^

% •

- 64 -

Page 77: SMART - inis.iaea.org

- S9

^ftf-R- ^

gIn Ua^te&l*

Trkto^to io?Ra^k ^^fe^- ft^ ute-8-

# b IOR'^HO ^ ^ f r ^ i - ^ k ^ t ££ : fe{^ft ^ ^ -bvaN/aoao ^ vavi

Ifclk tote-S"Ar ibTb-B" fttalo ^ ^ --b^ TTtsU^ ^py"S-^ to££[§

tstvIc. lo^av loPr"^^ &&&&{*& -ta-tn | b ^ iff¥ if^^ TL^ ftlo

Page 78: SMART - inis.iaea.org

5U4.

, Grid* f s ^ i j 3]^ RO

5}. #^^o)l ^ ^ # ^ ^ - ^ ^ o |^ ^n> o>u|^ Process Heatt- ^l-g-^F^

x j^a iA^ ^ ^ Grid

1^^4 <a^-°14.[3] 4 4 * ^ 1 3 : ^ Aktau Complex^

BN-350-1: ^l-g-§H ? l e ^ ^ ^ 1

^^-sfl SLJL ^ o . ^ ^-^5]- #ef lS^ MED4 MSFt:

160,000 m3/day°fl 0)5.37

^ 71 ^ ^ ) 4 ^ ^ -8-^1" ^ ^ 4 f e ^ l A}-g-§|-Jl &4. 7\X}3L

fe- Ashdod<Hl ^ 4 ^ - M E D # ^ 1 ^ . ^

fe Demonstration-g- 4^" #te(17,400 mVday -g-^^S^-i 50 MWeS] SJ-

^ 4 Low Temperature Horizontal Tube Multi-Effect(LT-HTME)# «?! 1

] 01 o.o| ol #eflE.fe 1983^

ol o.

- 66 -

Page 79: SMART - inis.iaea.org

CANDID ^ 3 * 1 3^-§: 4^ -A^ CANDU

RO ^ ^ s } - f - ^ o ] o f l i ^ ^ s . °l-g-*l-fe- Desalination/Cogeneration

CANDESTA S £ ^ - & - ^JSJ-ai §14. 3-#^ ^ £ ^ 4 CANDU6, CANDU3

el 31 CANDU80

1989\i 5MWt -§-3=3 Heating Reactor?! HR-57f 7>-^£)^3L ^^fl 200MWt -g-

. HR-200^ ^1^4- ^^1^«14. ol^f ^*|5f^ HR-5# <=>)-g- 3,500

m3/day3 ^-^rSl- t ^ S f 2003^4^1 ^V-^^S^ Chandao^l

^ l ^ 150,000 V

Sfe MED

RO3 Hybrid Type 1ehr^ S.S.>*fl^3- 7]-«a-^^S.(PHRW)-

3 H 6,300 mVday

3.3,3.

2}- #efl^ 7fl

*> 4 ^ 1 ^ £2}"^ (Pre-Project Study)^: IAEA

- 67 -

Page 80: SMART - inis.iaea.org

HR-51- 71-g-±3. •& lOMWt - § - ^ Heating Reactor^M

MSF7f

1974\!

^r RF Desalination

KLT-40 € 4 S . l - ^ - 8 - * ii-g-^ - ^ ^ l - ^ ^ ^ r ^ - ^ r ^ l ^ ^ 7

^ # ^ 160 MWts] KLT-40^r MED l - ^ l ^ ^ ^TflsH 20,000 mVday^

^ ^ ) R 0 #^flEsf <

7fl 4 ^ SMART!:

1. SMARTS #^J

^ Loop <8 7>°0-;§TiSo11 «l«fl

System-integrated Modular Advanced ReacTor)!- 2 0 0 0 ^ ^ ^ ^-g-S|-# ^ - I S 7fl

SMARTS 7 l ^ ^ 7>«y-^^S. 7 ] # # ScflS ^ ^ ^ j ^ ^ l s ] ^ #

^ 10-5 <>! rV1

TQr#± 7}

90% «>1 «>1 3\! «1^51 ^Hv^i ^711- 7HJL &4. SMARTS ° ^ ^ 1 ^ ^

safeguard vessel^ A>-g-slc}. --g-Aj. ^ 9 - i : Af-g-^-^^^) 3. MTC1-

- 68 -

Page 81: SMART - inis.iaea.org

. SMARTS

5.34

SMARTS

q-ol-71-

t ^ water/power

°1 ^° f l^^ SMARTS

2.

. 3 MPa, 285

Jd.E|.ol 7 | - o | 7 l

- 69 -

Page 82: SMART - inis.iaea.org

feedwater* ^ ^ M fl*Hfe water/power *

SMART ^l^Mlf- -iTfl^a}- IAEA TECDOC-666S]

31-1- 3 . ^ 5.14 ^ 5.2 1 M-E}^^4. } wi H Z L ^ £ MSF

¥ *S*llTr MED* 4-g-^ nflo|4. ^ Z L ^ ^ MED ^ ^

. 40,000 mVdayS] ^ - ^ * ^-tV^: nfl, MED»

20MW(e) ^ £ S ]

GOR(gain output ratio)4

3.

Kr ^ 7 l ^ 70~135°C

. IAEA i l a L ^ ^ 71$- -§-^ E^al^ ^ ^ cf^. ^ 7fl *fl 7] 5 ^ yfl

water/power «l7> ^ ^ ^-^S. 3L%& -#^*\ - ^ ^ s ] ^ Ei«l bypass^]

- 70 -

Page 83: SMART - inis.iaea.org

5.34MSFt- Af-g-§n^ irfloijL =. » j ^ ^ MED

. MSF

# IAEA

4.

water/power

water/power «

4.=L% 5.54 n ^ 5.6^ EiwJ f^°IM ^7l ^

^ - ^ ^ ^ ^ ^ ^ : ^ - ^ § 4 . ^ #*» ^ ^ ^ MSF

MED1- A>-§-^ nflol^. g_X\Q ^ £ - ^7.)} *mo\)X

.5fe ^ 7 l # 100%

- 71 -

Page 84: SMART - inis.iaea.org

7) 6\ 3} -fjEL

7} § « 3H4. =L$£r S£# 40,000 V

MED

5.

^ 7 ] Grid A j ^

5.7^ SMARTS>H ^ ^ > € ^ 7 1 * ol.§.«() R O Tfl-f-A

40,000 mVdayS]

4 . RO yJ-^

5 ^ SMART

SMART1-

*

72 -

Page 85: SMART - inis.iaea.org

5aSMARTS <

3-8-*Hr Hybrid

(LT-HTME) ^EflS.-H Brine Heater^ ^tfl ^oJlM^ ^ i ^ ?fls.fil

fe Brine HeateH^ 135°C

"Stand-Alone" ^ ^ ^ ^ ^ ( S A - R O ) ^ - "Contiguous"

^ 1 4 . SA-ROfe «>iJM

SI3. C-ROfe

(Hybrid

1-eflM£l- SMARTS

-f ^7] Grid System^ *i*l*H

^^lfe §14. yJ:^ f11^^^ ^ SMARTS ^-^5}- #eflM7|- ^Til^ nfl,7} iflfi] -?-^-^ol <g^<

Intermediate Loop#

73 -

Page 86: SMART - inis.iaea.org

SMARTS

. o| <§^oll o]sfl ^ - ^ ^XV

SMART* °l-g-*l|

. SMART

SMART* o]-8-«H

MSF Sfe MED4

- 74 -

Page 87: SMART - inis.iaea.org

30%)

j ^ R 0

4 . ^ l^^ r ^7l^AVol] ^ ^ V £ S . ^ ^ ^ - 5 ] ^ S

^7171-

2.

SMART

7}

^ 4 . IAEA^ Safety Series 110:25°fl

] o,2i(Principle 26)^8:

SMART

4

- 75 -

Page 88: SMART - inis.iaea.org

MSF S ^

3.

oj-g-

SI7] . MSF,

4. 7J

- 76 -

Page 89: SMART - inis.iaea.org

4.

- 77 -

Page 90: SMART - inis.iaea.org

s. 5.1

Reactor Country Type

Size

heat/out

put

Fuel

(enrich

ment)

Max.

steam

temp.

CO

Primary

temp.

CO

Primary

pressure

(MPa)

Status

A. Reactors producing heat

AST-500

GEYSER

HH-200

LT-4

SES-10

RKM

RUTA

THERMOS

TRIGA

Power

System

CIS

Switzerl

and

China

CIS

Canada

CIS

CIS

France

USA

PWR

integrated

vessel

PWR pool

PWR

integrated

vessel

PWR

vessel

PWR

integrated

pool

LWGRmicro

modulePWR

integrated

poolPWR

integrated

pool

PWR

vessel

500

MW(th)

23

MW(th)

200MW(th)

80MW(th)

10

MW(th)

150

MW(th)

20

MW(th)

100 or

150

MW(th)

64

MW(th)

UO2

(2%)

UZrH

(19.7%)

UO2(<3%)

UO2(<10%)

UO2

(2.5%)

UO2

(2%)

UO2

(3.5%)

UO2

(3.5%)

UZrH

(19.7%)

160

148

140

300

95

190

80

137

115

141/205

155/166

135/200

278/372

73/95

138/265

65/95

131/144

182/215

2.0

0.72

2.2

12.8

0.35

7.85

0.24

1-1.1

3.0

- based on pilot plants and VVER

experience

-design completed

-design reviewed by IAEA- based on established TRIGA

research reactor

- thermal hydraulic full size test

carried out

- basic design completed-based on 5MW(th) prototype

plant being operated since 1989

-basic design completed

-safety review underway-based on established unclear

powered icebreakers(KLT-40)

special design for

barge-mounting available

-detail design completed and

approved by regulatory bodies-evolved from 20kW(th) research

reactor

-based on lMW(th) prototype

plant being operated since 1987;

safety review underway-based on experience with light

water graphite moderated reactors-detail design completed

-based on experience with research

reactors

-based on established French PWR

-basic design completed

-based on established TRIGA

research reactor plants

-design processing

- 78 -

Page 91: SMART - inis.iaea.org

Reactor Country Type

Size

heat/out

put

Fuel

(enrichm

ent)

Max.

steam

temp.

CO

Primary

temp.

(t)

Primary

pressure

(MPa)

Status

B. Reactor for cogeneration

ATS-150

HTR

CIS

Germany

PWR

integrated

vessel

HTR

modular

vessel

535

MW(th)

(max.

180

MW(e))

200

MW(th)

(max.

80

MW(e))

UO2

(3%)

UO2

(7.8%)

290

530

265/340

250/700

16

6.0

-based on pilot test plants

-detail design completed

-based on constructed and

operation experiences with AVR

plant

-detail design to be completed

-safety assessment by German

licensing authorities performed

-special design for

barge-mounting available

C. Reactor generating electricity

AP-600

ATU-2

BWR-90

Candu-3

CAREM

E-49

USA

CIS

Sweden

Canada

Argentina

CIS

PWR

vessel

LWGR

channel

BWR

vessel

HWR

pressure

tubes

PWR

modular

integrated

vessel

PWR

vessel

1933

MW(th)

(600

MW(e))125

MW(th)

(40

MW(e))2350

MW(th)

(720

MW(e))1439

MW(th)

(450

MW(e))100

MW(th)

(25

MW(e))356

MW(th)

(70

MW(e))

UO2

(3.6%)

UO2

(3-3.6%)

UO2

(S3.5%)

nat UO2

UO2

(3.9%)

UO2

(21%)

271

170

286

260

286

300

280/316

260/283

286

260/310

278/326

273/323

15.5

6.7

7.0

9.9

12.25

16.0

-based on the established

W-PWR design

-design processing to meet safety

certification by end of 1994

-based on prototype EGP-6

-regulatory review is agreed with

GOSATOMNADZOR

-based on the establishedBWR-75

-design completed

-based on established CANDU

-detail design to be completed

-concept approval by 1993

-basic design completed

-detail design underway

-draft project of floating plant

- 79 -

Page 92: SMART - inis.iaea.org

Reactor

MHTGR

NP-300

PHWR-2

20

PHWR-5

00

PIUS

SIR

4 S

VVER-4

40/213

Country

USA

France

India

India

Sweden

UK

Japan

Poland/

CIS

Type

HTR

modular

(4units)

vessel

PWR

vessel

HWR

(2unit)

pressure

tubesHWR

(2unit)

pressure

tubes

PWR

integrat

ed pool

PWR

integrat

ed pool

LMR

fast

reactor

pool

PWR

integrat

ed pool

Size

heat/output

1800

MW(th)

(692

MW(e))

950 MW(th)

(300

MW(e))1580

MW(th)

(440

MW(e))3460

MW(th)

(1000

MW(e))2000

MW(th)

(640

MW(e))1000

MW(th)

(320

MW(e))

125 MW(th)

(48 MW(e))

1375

MW(th)

(424

MW(e))

Fuel

(enrich

ment)

UO2

(<19.9

%)

UO2

(4%)

nat.

UO2

nat.

UO2

UO2

(<3.5

%)

UO2

(<4%)

U, Pu

met

455

(20%)

UO2

(<3.6

%)

Max.

steam

temp.

CO

540

293

251

251

270

298

455

259

Primary

temp.

CO

260/704

278/312

249/293

260/304

260/290

294/318

355/510

267/295

Primary

pressure

(MPa)

7.1

15.5

8.7

10.1

9.0

15.5

0.1

12.26

Status

-based on construction and

operation experiences with Fort

St. Vrain Plant

-basic design completed

-preliminary safety assessment

by US-NRC performed

-based on prototype plant CAP

-general design completed

-based on commercial operation

of power plants

-standardized for commercial use

-review by regulatory bodies

-based on PHWR-220

-500 MW(e) unit to be

constructed

-based on experimental facilities

-basic design completed

-preliminary safety assessment

underway

-design concept

-design concept

-based on commercial VVER

operational experience

-upgraded plant design

processing

- 80 -

Page 93: SMART - inis.iaea.org

Kazakhstan

4 Kazakhstan^ 31 *}-3 &

Reactor

Name

BN-350

Ikata-1,11

Ikata-III

Oh i-UI

ow-iniv

Genkai-III

Takahama

Kawahiwazak

-I

Location

Aktau

Ehime

Ehime

Fukui

Fukui

Fukuoka

Fukui

Niigata

Type

LWR

PWR

PWR

PWR

PWR

PWR

PWR

BWR

Capacity

(MWe)

90

566

890

1,175

1,180

1,180

826

1,100

Grid

Connection

1973

1977/

1981

1994

1977/

1978

1991/

1992

1993

1974

1985

Desalination

Process

MED/

MSF

MSF

RO

MSF/

MSF

RO

MED/

RO

MED

MSF

Capacity

(m3/d)

650,000

2,000

2,000

1,300/

26,000

26,000

1,000/

1,000

1,000

1,000

Date

1973/

1975

1992

1973

1973/

1976

1989

1992/

1998

1983

1985

- 81 -

Page 94: SMART - inis.iaea.org

5.3 SMART

Nominal Thermal Power of Reactor, MWt

Pressure of ther Primary Circuit, MPa

Nominal Pressure

Design Pressure

Coolant Temperature at Nominal Power, °C

Core Outlet

Core Inlet

Coolant Flowrate through ther Core, kg/s

Number of MCPs

Characteristics of MCPs

Capacity, m /h

Head, m(MPa)

Working medium temperature, °C

Working medium pressure, MPa

Rotational speed, rpm

Power consumption, kW

330

15.0

17.0

310.0

270.0

1556.0

4

1982

13.5(0.095)

310

15

3600

128~170

S. 5.4 SMART

Parameter of the Secondary Circuit

Nominal Steam Pressure, MPa

Design Pressure, MPa

Design Temperature, °C

Parameter of Steam

Output, kg/s

Pressure, MPa

Temperature, °C

Degree of Superheating, °C

Parameter of Feedwater

Pressure, MPa

Temperature, °C

3.0

17.0

350.0

120.13

3.0

285

40

5.0

180

- 82 -

Page 95: SMART - inis.iaea.org

S. 5.5

^ ^ ^ ^

MSF

LT-MED

RO

Ei«l a)loa-(kPa)

200-370

35-40

5-8

-8-^ ^£(°C)

120-140

69-76

30-42

- 83 -

Page 96: SMART - inis.iaea.org

Net Electric Power (MWe)

uaSienrn

-$>

srfi.

Distilated Water (m3/day)

Net Electric Power (MWe)

U

en

SSL

r-P-

CO

Distilated Water (m3/day)

Page 97: SMART - inis.iaea.org

I

Lil

Considering Distillation Process Effciency

4 0 -

3 0 -9.0x10

80 90 100 110 120 130

T/B Exit Temperature (oC)

140

5.3

0)

oD_O

ictri

iuill

a>z

8 0 -

7 0 -

6 0 -

5 0 -

4 0 -

30-

20-

n

°\ / ^

^3

2.0x10 j j

CO

E,

1.5x105 DT3O

,-21.0x10 <0

5.0x1060 70 80 90 100 110 120 130 140

T/B Exit Temperature (oC)

- 85 -

Page 98: SMART - inis.iaea.org

Net Electric Power (MWe)

uen

rini|o

wa

OJD

COCD

3mX3o

o pb

o

roo

o "

0)o "

00o

10 AO O

\ \\

\ \\

%\*

0) cD O

o o o

i

/

/ of a

aric :

\ J/ u

/ <"/ "•

/ -/ S.f ZT

V iA l/ \ 1

1 \ 1% q

/

sm0m3

o3CACm

pti

0

VJ

inoif

IOC D 0

O

oX

oX

rox 0)X

bX

Distilated Water (m3/day)

Net Electric Power (MWe)

uenen

rfiCO* -+ •

(0!U3

.2, mo^

o'3

o pb

c

roo '

o

0) .o

oo .o

_ i

j 0)3 O

\

\

A 01O O

0) ^J

o o

\

\

\

A/

/

//

/

00o

(D OO O

/

/ %/ a;ri

/ °/ w

/ ^\ f ^

\ / - w

A i/ \ ./ \ g

N X\ 3

o

)

CO"nm3e

rg

><o0D(I)C

3

ion

? oX

bX

MX

Distilated Water (m3/day)

Page 99: SMART - inis.iaea.org

"5?

Pow

ei

ot5

Ele

•u01W

30

25

20

15

10

5

n

^ ^ ^ ^ Energy Consumption = 5-7 kw(e)h/m 3 f * '

0 0 2.0x10" 4.0x10" 6.0x10* 8.0x10'

Water Production (m3/day)

105

100 §

95 a

o90 °-

o85 I

LU

8 0 a>

75

1.0x10°

5.7 RO#

- 87 -

Page 100: SMART - inis.iaea.org

6 a a

fe- ol sit!:

SMARTS

Si4. ^-^H^r <»H

^

71

2)

- 88 -

Page 101: SMART - inis.iaea.org

3)

Til

4) ^^B

, Hybrid $ f-ol

Si4.

5) SMARTS

^- ^ 4 f^*.5.>M MED

6)

- 89 -

Page 102: SMART - inis.iaea.org

- 90 -

Page 103: SMART - inis.iaea.org

[1] Desalination of Water Using Conventional and Nuclear Energy, IAEA

Technical Reports Series No. 24, 1964

[2] Use of Nuclear Reactors for Seawater Desalination, IAEA-TECD0O574,

1990

[3] Technical and economic evaluation of potable water production through

desalination of seawater by using nuclear energy and other means,

IAEA-TECDOC-666, 1992

[4] Summary Report on Demonstration of Nuclear Desalination Processes in

the Framework of the Agency's Options Identification Program(Draft),

AGM, July 24-28, 1995

[5] J.K. Seo, etc, "Advanced Integral Reactor(SMART) for Nuclear Desalination,"

IAEA-SM-347/40, Proceedings of a symposium on nuclear desalination

of seawater, Taejon, Korea, May 26-30, 1997

[6] A Study on the Economic Survey and Analysis for Seawater Desalination

Plant using Advanced Integral Reactor, KAERI/CM-157/96, 1997

[7] Comprehensive Water Plan, Announcement by the Government of the

Republic of Korea, 12 August 1996

[8] sfl*r&*r&, tt&<£7]<£<&=?-#, 1985

[9] The Desalting ABC's, Saline Water Conversion Corporation Research

Department, Riyadh, Saudi Arabia, 1990

[10] Desalination of Seawater by Reverse Osmosis, Noyes Data Corporation,

- 91 -

Page 104: SMART - inis.iaea.org

1981

[11] State-Of-Art in Offshore Plant And Desalination Plant Engineering, Korea

Institute of Construction Technology, 1985

[12] CANDU, Type Reactors for Dual-Purpose Power and Desalination Plants,

AECL-2213, 1965

[13] D. H. Furukawa, "Effects of Pre-Heated Feedwater on Seawater Reverse

Osmosis Desalination," IAEA Workshop, Nov. 1-3, 1995

[14] T. Kannari, "Seawater Reverse Osmosis Desalination Plant Feasibility Study

- Cost Comparison and Environment Evaluation With and Without

Pre-Heated Feedwater," IAEA Workshop, Nov. 1-3, 1995

[15] I. S. Al-Mutaz, "Seawater RO Operating Experience - Difficulties

Encountered Operating and Maintenance Membrane Lifetime Environmental

Impact," IAEA Workshop, Nov. 1-3, 1995

[16] CANDESAL, A Canadian Desalination System, CANDESAL Inc.. 1995

[17] CANDESAL, An Advanced Water and Energy Production System, Egypt

Application Study, CANDESAL Inc., 1994

- 92 -

Page 105: SMART - inis.iaea.org

INIS

KAERI/AR-490/98

M^l tfl^- SMART

(TR,7\

1998

92 p. v ), 7] 26 Cm.

v

fe SMARTS

SMARTS]

ASAi MED

fe RO7>

SMART, MSF, MED, RO

Page 106: SMART - inis.iaea.org

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.Report No.

Sponsoring Org.

Report No.Standard Report No. INIS Subject Code

KAERI/AR-490/98

Title/Subtitle

Review of Nuclear Electricity Generation and Desalination Plants andEvaluation of SMART Application

Project Manager

and Department

(or Main Author)

Han Ok Kang(Advanced Reactor System Technology Development Team)

Researcher and

Department

Hyung Suk Kang, Bong Hyun Cho, Ju Hyeon Yoon,Hwan Yeol Kim, Young Jin Lee, Joo Pyung Kim,Doo Jeong Lee, Moon Hee Chang(Advanced Reactor System Technology Development Team)

Publication

PlaceTaejon Publisher KAERI

Publication

Date1998.3.

Page 92 p. 111. & Tab. Yes(V), No ( ) Size 26 Cm.

Note Advanced Reactor Development

Classified Open( V

Class

), Restricted(

DocumentReport Type State-of-the-Art Report

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

KAERI are developing a new advanced integral reactor named SMART for dualapplication purpose of the electric power generation and seawater desalination. This reportare describing the general desalting methods with its technology development and thecoupling schemes between electricity generation system and desalting system. ThoughMSF takes the most part of currently operating seawater desalination plants, MED andRO has been preferred in the past decade. MED has a advantage over MSF with theview to investment costs and energy efficiency. The coupling between electricitygeneration system and desalination system can be realized by using one of backpressurecycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has tobe established for various environment and load conditions.

To evaluate the candidate desalination systems of SMART and the coupling method ofit with other secondary systems, the desalted water and electricity were calculatedthrough the several options. The result shows that backpressure cycle is preferred at thehigh water/power ratio and extraction cycle at the low value. If energy efficiency areonly considered, RO will be best choice.

Subject Keywords(About 10 words)

Seawater desalination, SMART, MSF, MED, RO, Couplingscheme, Nuclear power generating and desalting cogenerationplant