sohtaro kanda - kek

36
2016. 10. 13 at J-PARC dsys workshop 1 Instrumentation for experiments with high-intensity pulsed muon beam MuSEUM experiment Sohtaro Kanda / [email protected]

Upload: others

Post on 18-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

1

Instrumentation for experiments with high-intensity pulsed muon beam MuSEUM experiment

Sohtaro Kanda /[email protected]

Page 2: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Production of Muon 2

■ Proton driver

■ Parity violating pion decay

proton graphite

positive pion

negative pion

pionmuon

4 MeV at pion rest framespin polarized

neutrino

Page 3: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Decay of Muon 3

■ Parity violating muon decay

muon positronneutrinos

µ+ ! e+ + ⌫e + ⌫µ

Positron energy spectrumPositron energy/52 MeV

Cos

ine

of e

mis

sion

an

gle

to m

uon

spin

Positron angular asymmetryPositron energy (MeV)

Page 4: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Muon Spin Dynamics 4

■ Decay positron time spectrum

In the presence of B-field, muon spin rotates with Larmor frequency

!µ = � qgµ2mµ

Bmuon

spin

B-field Spin relaxation occurs due to the B-field distribution

■ Muon spin rotation and relaxation

G. Bennett, et al., PRD 73 (2006)

Muon is a powerful probe for local magnetic field

thanks to its spin dynamics and self-analyzing feature

Page 5: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Pulsed and Continuous Muon Beam 5

■ Pulsed beam : J-PARC, RAL

■ Continuous (DC) beam : PSI, TRIUMF, MuSIC

timerandom timing

■ Higher event rate■ Higher S/N■ Limited timing resolution■ Pulse synchronized trigger■ Ensemble average

■ Less event rate■ Less S/N■ High timing resolution■ Necessity of trigger counter■ Event-by-event analysis

40 ms

time

100 ns

600 ns

...

periodic timing

Page 6: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Muon Precision Physics 6

■ Measured muon properties

Method Beam Precision Stat. Syst. Ref.

Mass Muonium HFS spectroscopy

DC (Chopped) 120 ppb 117 ppb 38 ppb Liu

1999

Mean lifetime

Decay positron counting

DC (Accumulated)

1 ppm 0.96 ppm 0.32 ppm Tishchenko 2013

g-2

Decay positron

tracking in storage ring

Pulse 540 ppb 463 ppb 283 ppb Bennet 2007

Page 7: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Muon Precision Physics 7

■ Muon as a probe for new physics search

Method Beam Limit Exp.

μ+->e+γ 52.8 MeV e+ and γ back to back DC Br<4.2x10-13 PSI MEG

2016

μ-N->e-N 105 MeV e- DC Br<7x10-13 PSI SINDRUM-II

2006μ->eee e- tracking DC Br<1.0x10-12 PSI

SINDRUM-I 1988

g-2 μ+ in storage ring Pulse Δaμ(Exp.-Th.)=289(80)x10-11 BNL E821 2006

EDM μ+ in storage ring Pulse dμ<1.9 x 10-19 e cm BNL E821 2009

Lorentz Violation

μ+e- spectroscopy DC 2x10-23 GeV LAMPF

1999μ+e- - μ-e+ conversion e+ e- annihilation DC P<8.3x10-11 PSI

1999

Page 8: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Towards Higher Precision 8

■ Precision muon physics with continuous muon beam has been limited by statistical uncertainty.

■ When statistical precision is improved severalfold, systematic uncertainty limits the measurement precision

■ To explore the new frontier of precision muon physics with high-intensity pulsed muon beam, both ■ High-rate capable detector ■ Precision control and monitoring of environment ■ are of importance

■ In this talk, as an example of new generation of muon precision measurement, MuSEUM experiment is introduced.

Page 9: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Muonium Energy Levels 9

0 0.5 1 1.5 2 2.5 310−

8−

6−

4−

2−

0

2

4

6

8

10

([0]*0.25+0.5*[1]*x)*[2]([0]*0.25+0.5*[1]*x)*[2]

Magnetic field (T)

Ener

gy L

evel

/HFS

muon electronB-Field

RF

⌫12 � ⌫34 / µµ/µp

■ Direct measurement at zero magnetic field (δν) ■ Indirect measurement under a high magnetic field (ν12 and ν34) ■ Our goal is x10 improvement for both experiments

Muonium HFS δν=4.463 GHz

⌫12 = 1.906 GHz

⌫34 = 2.556 GHz

�⌫ = (16

3↵2R1cgeg

0µ)(1 +me/mµ)

�3(1 + �QED)or

⌫12 + ⌫34 = �⌫

Page 10: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

MuSEUM Experiment 10

Online Beam Monitor 2D cross-configured

fiber hodoscope

Positron Counter Segmented

scintillation counter

Upstream Counter

decay e+

polarized muon beam RF Tuning Bar

RF Cavity

Kr Gas Chamber

Experimental Procedure

1. Muonium formation 2. RF spin flip 3. Positron asymmetry

“Zero” or High B-Field

Muonium

Page 11: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

MuSEUM Instruments 11

■ Positron counter

‣ Fiber hodoscope‣Beam monitoring‣Minimum amount of

material is required

‣Segmented scintillator+SiPM‣Positron counting‣High rate capability

is required

‣ IIF+CCD beam imager‣ 3D muon stopping

distribution‣Beam tuning

‣ Lq. scint.+WFD‣Neutron/Gamma/

Positron discrimination‣Self trigger

■ Online beam profile monitor

■ Offline beam profile monitor ■ Background monitor

Page 12: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

DAQ Overview 12

Beam Sync. Pulse

Online Beam Profile Monitor

Positron Counter

Event Builder

Online Monitor

RF Power

B-Field Gas Pressure

Temperature

Data Writing

25 HzPeak Holding ADC

Multi Hit TDC

Environmental Monitors

Common Start

Hold

Time Stamp

Page 13: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Positron Counter 13

■ Scintillator pixel+SiPM+Kalliope (ASD+multi-hit TDC)

■ Two layers of segmented scintillation counter ■ 10 mm×10 mm× 3 mmt unit cell , 240 mm × 240 mm detection area ■ High rate capability and tolerance to a high magnetic field

240

mm

576 ch/layer x 2 layers Hamamatsu MPPC 1.3 mm x 1.3 mm active area

50 μm pixel pitch

10 mm

3 mmt

S. Kanda, PoS(PhotoDet2015) 039 (2016)

Page 14: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Frontend Electronics 14

M. M. Tanaka, K. M. Kojima, T. Murakami, S. Kanda, C de la Taille and A. Koda,“MPPC frontend module for muon spin resonance spectrometer” (to be published)

Fast

■ Kalliope: KEK Advanced Linear and Logic-board Integrated Optical detectors for Positrons and Electrons

ASIC FPGA

MPPC input

Trigger input

Ethernet

Power supply

HV input is on the other side

■ 32ch inputs for MPPC■ ASIC implemented amplifier, shaper, discriminator■ FPGA programmed multi-hit TDC (common start)■ SiTCP data transfer

Page 15: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

MPPC on PCB 15

■ Eight layered PCB for MPPC mount

Micro strip line impedance was adjusted to 50 Ohm

Circuit Design

PCB with mounted MPPCs

Page 16: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

White Paper Mask 16

■ White paper mask for light diffused and position marker

20 40 60 80 100 1200

5

10

15

20

25

(adc[25]-787.5)/20.0 {adc[30]>850&&adc[28]>850}

h25peEntries 710

Mean 62.48

RMS 23.25

Integral 324

(adc[25]-787.5)/20.0 {adc[30]>850&&adc[28]>850}

20 40 60 80 100 1200

2

4

6

8

10

12

14

16

18

20

22

(adc[23]-782.5)/20.0 {adc[30]>850&&adc[28]>850}

h23peEntries 710

Mean 67.67

RMS 25.29

Integral 332

(adc[23]-782.5)/20.0 {adc[30]>850&&adc[28]>850}

White paper# of photon # of photon

Black paper

20 40 60 80 100 1200

10

20

30

40

50

60

70

(adc[25]-787.5)/20.0 {adc[30]>850&&adc[28]>850}

h25peEntries 1260

Mean 35.78

RMS 21.73

Integral 681

(adc[25]-787.5)/20.0 {adc[30]>850&&adc[28]>850}

20 40 60 80 100 1200

10

20

30

40

50

(adc[23]-782.5)/20.0 {adc[30]>850&&adc[28]>850}

h23peEntries 1260

Mean 52.24

RMS 24.55

Integral 641

(adc[23]-782.5)/20.0 {adc[30]>850&&adc[28]>850}

Photo detection comparison between black and white paper mask

White paper mask on a PCB as position marker and reflector

Page 17: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Reflector Film 17

■ Thin polymer film with folding for light reflection

Laser cut ESR ESR ribbons to be inserted

Folded film bands are inserted between sides of scintillators

N. Inadama et al., IEEE Transactions on Nuclear Science, 51, 1 (2004)

Page 18: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Positron Detector Assembly 18

Page 19: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Assembled Positron Detector 19

Top cover was placed for scintillator protection

240 mm

ESR top coverFully assembled scintillator segments

Page 20: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Installation 20

Kr Gas Chamber (RF Cavity inside)

Three layers of magnetic shield

Positron Counter w/Al AbsorberFiber Beam Profile Monitor

Muon Beam

200 mm

Page 21: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Hit Map on the Detector Plane 21

horizontal position (cm)vertical position (cm)

Page 22: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Time Spectrum 22

Time spectrum of coincidence hitInstantenious event rate was 10 MHz at maximum

30 coincidence hit per pulse

Page 23: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

High-Rate Capability 23

time (ns)

Cou

nt -

Fit /

Fit

0 2000 4000 6000 8000 100001−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100001−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100001−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100001−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100001−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 100000.2−

0.15−

0.1−

0.05−

0

0.05

0.1

0.15

0.2

5% of pileup loss at the highest event rateSystematic uncertainty due to the pileup loss is negligible

Page 24: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

24Fiber Beam Profile Monitor

100

mm

MPPC inside

fiber array

■ Cross-configured fiber hodoscope with SiPM readout ■ To be placed in front of the target chamber ■ Online monitoring of beam profile and intensity ■ Minimum amount of material is required

S. Kanda, RIKEN Accelerator Progress Report Vo. 48 (2015)

Page 25: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Scintillation Fiber Array 25

100 m

m

100 um

Resin 25 μFiber 100 μPolyimide 25 μ

40 fibers are bundled for a ch. and connected

to MPPCFiber array layer structure

Page 26: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Fiber Thickness Uniformity 26

layer thickness (um)

3% of Uniformity Total thickness including fibers, resin, and substrate

Page 27: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Assembled Fiber Monitor 27

Page 28: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Installation 28

Kr Gas Chamber (RF Cavity inside)

Three layers of magnetic shield

Positron Counter w/Al AbsorberFiber Beam Profile Monitor

Muon Beam

200 mm

Page 29: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Measured Beam Profile 29

■ Muon beam profile was measured by fiber beam profile monitor

■ Correction for light attenuation is to be applied

Horizontal projection Vertical projection

Horizontal position (mm)40− 20− 0 20 40

Sum

mat

ion

of A

DC

cou

nts

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000 / ndf 2χ 345 / 11

Prob 0

Height 42.21± 4339

Mean 0.1463±0.7426 −

Sigma 0.3196± 19.17

Floor 43.15± 1544

/ ndf 2χ 345 / 11

Prob 0

Height 42.21± 4339

Mean 0.1463±0.7426 −

Sigma 0.3196± 19.17

Floor 43.15± 1544

Vertical position (mm)40− 20− 0 20 40

Sum

mat

ion

of A

DC

cou

nts

1500

2000

2500

3000

3500

4000

4500

/ ndf 2χ 154.1 / 12

Prob 27− 8.469e

Height 132.2± 3537

Mean 0.186± 0.1341

Sigma 1.005± 27.37

Floor 143.1± 915.7

/ ndf 2χ 154.1 / 12

Prob 27− 8.469e

Height 132.2± 3537

Mean 0.186± 0.1341

Sigma 1.005± 27.37

Floor 143.1± 915.7

σx=19.17 mm σy=27.37 mm

Page 30: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Beam Intensity Stability 30

Trigger (25 Hz)

ADC

sum

.

Detailed analysis is in progress

Page 31: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Summary 31

■ Precision muon physics with continuous muon beam has been limited by statistical uncertainty.

■ Experiment with high-intensity pulsed beam has great potential to improve precision muon physics.

■ To explore a new frontier of precision physics with high-intensity pulsed muon beam, ■ High-rate capable detector and ■ Precision control and monitoring of environment ■ are essential.

■ MuSEUM has got underway as a new generation of precision measurement with the highest intensity pulsed muon beam.

Page 32: Sohtaro Kanda - KEK

Supplements

32

Page 33: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Environment Monitors 33

Object Instrument

Static B-Field Fluxgate probe

RF Power Thermal power sensor

Gas Pressure Capatitance gauge

Gas Purity Q-Mass

Temperature Thermocouple

Page 34: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Hydrogen Atom Spectroscopy 34

■ 1913: Bohr model

■ 1916: Fine structure (FS)

■ 1928: Dirac eq.

■ 1935: Hyperfine structure (HFS)

■ 1947: Lamb shift (QED)

Lamb Shift

1S-HFS

FS2S1/2

F=1

F=0

F=1

F=0

2P3/2

2P1/2

1S1/2

F=1F=1

F=0

F=2

2S-HFS

■ The progress of hydrogen atom spectroscopy had brought evolution of quantum mechanics

Page 35: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

Positron Detector 35

Page 36: Sohtaro Kanda - KEK

2016. 10. 13 at J-PARC dsys workshop

MPPC on PCB 36