soil_mechanics ders notlari2

Upload: oezkan-aksoy

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Soil_mechanics Ders Notlari2

    1/14

    1

    BEARING CAPACITY OFSOILS

    FOUNDATIONS

    A foundation is theinterface between thebuilding structure and theground. Foundations aredesigned to distributeloads from buildings to a

    suitable soil layer.

    B

    DfFooting

    D: depth of footing

    B: width of footing

    f

    Foundation

    Shallow foundation Deep foundation

    Shallow Foundation (Df B)

    The basic principle for the design of shallowfoundations is to reduce the applied stresses onthe earth by providing a large bearing area directlyunder the load. Shallow foundations are mostlymade of reinforced concrete and are constructed

    in many sizes and shapes to accommodatevarious loading conditions.

    Types of shallow footings

    (1) Individual footing (tekil temel)

    (2) Strip-continuous footing (erit-srekli temel)

    (3) Radial footing (radye temel)

  • 8/3/2019 Soil_mechanics Ders Notlari2

    2/14

    2

    Individual footing (tekil temel)

    Square or rectangular shape inplan view

    1

  • 8/3/2019 Soil_mechanics Ders Notlari2

    3/14

    3

    A geotehnical engineer must ensure that a

    foundation satisfies the following two stabilitycondition

    !...

    1. Share failure do not occur under footing

    2. Settlement of structure must be withintolerable limits

    d e

    b a

    c

    B

    q

    a

    0W

    b

    c

    c, makaslama direnci(kohezyon)

    450

    Df Dfd

    Share failure of foundation

    Definitions Ultimate bearing capacity (Nihai tama

    gc): is the maximum pressure that the soilcan support

    Ultimate net bearing capacity (Nihai nettama gc)(qult): is the maximum pressure

    that the soil can support above its currentoverburden pressure Allowable (or safe) bearing capacity (izin

    verilebirlir tama gc)(qa) : The bearingcapacity which consider factor of safety.

    Factor of safety: is the ratio of the ultimate netbearing capacity to the allowable bearingcapacity

    Standart penetrasyon deneyi (SPT)

    Bu deney; sondaj tijlerine taklm, ortasndan ikiye ayrlabilen (yark) ve iindepirinten yaplm bir i tpn bulunduu bir rnekleyicinin, 63.5 kg arlndabirahmerdann 760 mm ykseklikten tijlerin zerine drlerek zeminesokulmas ilkesini esas alr.

  • 8/3/2019 Soil_mechanics Ders Notlari2

    4/14

    4

    ahmerdan Darbe blou

    SPT uygulamas

    Deney sonunda SPT tp ve ar

    SPT tp ve ar

    SPT rnei

  • 8/3/2019 Soil_mechanics Ders Notlari2

    5/14

    5

    (1) Overburden correction (CN) on SPT-N

    0 0.5 1.0 1.5 2.0CN

    0

    100

    200

    300

    400

    500

    Efektifrtgerilimi,

    (kPa)

    v

    '

    200.77logC

    v

    10N =

    N1=CNxSPT-N

    Allowable bearing

    capacity qa isobtained from graphby using N1 for 25mm maximumsettlement

    Groundwater

    correction mustbe applied ifexist.

    BD

    D0.50.5C

    f

    w

    w ++= qa=qaxCw

    Groundwater correction Example:

  • 8/3/2019 Soil_mechanics Ders Notlari2

    6/14

    6

    Derinlik(m)

    SPT-Nv

    (kPa)CN N1

    0.75 8 * * *1.55 7 26 2.0 14

    2.30 9 39 1.6 14

    3.00 13 51 1.4 18

    3.70 12 65 1.25 15

    4.45 16 70 1.2 19

    5.20 20 + + +

    Ortalama N1: 16

    Derinlik 1.55 m v = h = 17 x 1.55 = 26.3 26 kPa

    Derinlik 4.45 m v =h hww = 17 x 4.45 (4.45 3.5) 10 = 66 kPa

    B=3 m ve N=16 iin B>1 m kouluna ait grafikten, qa = 165 kPa

    89.05.4

    5.35.05.0 =

    +=

    wC qa = 0.89 x 165 = 150 kPa

    Bearing Capacity of Cohesive

    Soil (Terzaghis method)

    qult = c Nc + q Nq+ 0.5 B NBu eitlikte;

    c : Kohezyon

    : Birim hacim arlk

    B : Temel genilii

    q : rt yk (=Df)

    Nc, Nq, N : Boyutsuz tama gc faktrleri

    qult = 1.3 c Nc + q Nq+ 0.4 B NSquare footing:

    Strip-continuous footing:

    Circular footing: qult = 1.3 c Nc + q Nq+ 0.3 B N

    F

    qq ulta = F: Factor of safety

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    11 10

    100 1000

    N, N , N (Tama gc faktrleri) c q

    Meyerhof

    Hansen

    N

    N

    Nq

    Nq

    Nc

    Nq = exp ( tan) tan2 (45 + /2)

    Nc = (Nq 1) cot N = 1.8 (Nq 1) tan (Hansens)

    N= (Nq 1) tan (1.4 ) (Meyerhofs)

    For pure cohesive soil (=0)

    qult=cNc

    10

    9

    8

    7

    6

    5

    4

    Ta

    magc

    faktr,N

    c

    Kare ve dairesel temel, B/L=1

    Mtemadi (erit), B/L=0

    0 1 2 3 4 5D / Bf

    Fqq ulta =

    F: Factor of safety

  • 8/3/2019 Soil_mechanics Ders Notlari2

    7/14

    7

    Stress and Displacement

    Point Load

    BOUSSINESQ EQUATION

    2/5

    22zz)

    )z/r(1

    1(

    z2

    P3

    +

    =

    r

    z

    Example

    10 m

    PA=10000 kNPB=50000 kN

    C

    2 m

    8 m

    2/5

    22zz)

    )z/r(1

    1(

    z2

    P3

    +

    =

    22/5

    22zzm/kN1.7095.0x6.74)

    )8/10(1

    1(

    82

    10000x3==

    +

    =

    2

    22/5

    22zz

    m/kN8.3277.3201.7

    m/kN7.320859.0x2.373))8/2(1

    1(

    82

    50000x3

    =+

    ==

    +

    =

  • 8/3/2019 Soil_mechanics Ders Notlari2

    8/14

    8

    Circular area carrying uniform pressure

    2/3

    2z)

    )z/r(1

    11(P

    +

    =

    P

    D=diameter of circular areaD=2r

    cz PxI=

    Rectangular area carrying uniform pressure

    rz PxI=

    Fadum (1948)

    xNxP005.0z =

    scale

    CONSOLIDATON

  • 8/3/2019 Soil_mechanics Ders Notlari2

    9/14

    9

    Process by which an in causes a deformation of a soilmass by reducing its e (water seeps out of the voids).

    How can increase?

    1. Water level decreases

    2. A load is induced (we will consider fills)

    Consolidation

  • 8/3/2019 Soil_mechanics Ders Notlari2

    10/14

    10

  • 8/3/2019 Soil_mechanics Ders Notlari2

    11/14

    11

  • 8/3/2019 Soil_mechanics Ders Notlari2

    12/14

    12

    Field vs. Lab

    From Coduto 1998 (text)

    Consolidation Curve - LAB

    e

    (log scale)p

    eo yield

    Preconsolidation pressure

    e

    (log scale)p

    eo

  • 8/3/2019 Soil_mechanics Ders Notlari2

    13/14

    13

    (1) ESTIMATION OF SETTLEMENT

    Coefficient of volume compressibility (mv)

    For any stress increment:

    )ee

    (

    e1

    1m 10

    0

    v

    01

    +

    =

    =v

    mS

  • 8/3/2019 Soil_mechanics Ders Notlari2

    14/14

    14

    Design Pressure of Footing Have to be selected by considering both,

    Allowable bearing capacity,

    Amount of settlement