solar cell nanotechnology (tiwari/solar) || index

12
505 Ab-initio Nanocomposite Theory, 379 Density Functional Theory, 380 Nonequilibrium Green’s Function method, 384 Absorption, 117, 131, 163, 166, 168, 175, 177, 247, 250, 254–257, 259, 263 Incident light, 168 Light wavelength greater than 900 nm, 168 Photons, 165 Spectrum, 169 Absorption coefficient, 420 Absorption length, 420 Acceptor, 135–146, 147–150, 168 Acceptors, 171 Activation energy open circuit voltage -, 443 Active layer, 364 Agreegation, 175 Alloyed nanocrystals, 98, 107, 108, 111 Antase phase, 164 Antenna effect, 328 Anti reflecting coating (ARC), 254 Antireflection layer, 186, 190, 191–193, 197, 198 Arbitrary absorption, 254 Aspect ratio, 135, 144 Assembly, 176 Atmospheric pressure Chemical Vapor Deposition see Fabrication techniques, Atomic chain electrode, 389 Atomistic Computational Simulations, 385 Nanodevice Simulation, 386–89 Simulation parameters, 388 Au nanoparticles, 285 Axial alignment, 389, 390 Band diagram, 166 Bandgap, 98, 107–110, Energy, 163 Wide bandgap, 162 Benzothiadiazoles, 335 Biocompatible, 164 Bipyridines, 335 Boradipyrrin dyes (BODIPY), 335 Broadband, 245–247, 250, 254, 256 Building integrated photovoltaics, 318 Built-in voltage, 411, 433, 440 Bulk Heterojunction, 117–118, 120, 122–124, 126–127, 129–131, 133, 362 Bulk Hetero-Junction, 3, 5, 6, 9, 11, 12, 14–16, 23, 25–27, 30–33 Bulk heterojunction solar cells, 456, 459 C70 fullerenes, 461 Cadmium Selenade (CdSe), 284–285 Cadmium Sulphide (CdS), 284 Index Atul Tiwari, Rabah Boukherroub, and Maheshwar Sharon (eds.) Solar Cell Nanotechnology, (505516) 2014 © Scrivener Publishing LLC

Upload: maheshwar

Post on 12-Jan-2017

222 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Solar Cell Nanotechnology (Tiwari/Solar) || Index

505

Ab-initio Nanocomposite Theory, 379

Density Functional Theory, 380Nonequilibrium Green’s

Function method, 384Absorption, 117, 131, 163, 166, 168,

175, 177, 247, 250, 254–257, 259, 263

Incident light, 168Light wavelength greater

than 900 nm, 168Photons, 165Spectrum, 169

Absorption coeffi cient, 420Absorption length, 420Acceptor, 135–146, 147–150, 168Acceptors, 171Activation energy

open circuit voltage -, 443Active layer, 364Agreegation, 175Alloyed nanocrystals, 98, 107,

108, 111Antase phase, 164Antenna effect, 328Anti refl ecting coating (ARC), 254Antirefl ection layer, 186, 190,

191–193, 197, 198Arbitrary absorption, 254Aspect ratio, 135, 144Assembly, 176Atmospheric pressure Chemical

Vapor Deposition see Fabrication techniques,

Atomic chain electrode, 389Atomistic Computational

Simulations, 385Nanodevice Simulation,

386–89 Simulation parameters, 388

Au nanoparticles, 285Axial alignment, 389, 390Band diagram, 166Bandgap, 98, 107–110,

Energy, 163Wide bandgap, 162

Benzothiadiazoles, 335Biocompatible, 164Bipyridines, 335Boradipyrrin dyes (BODIPY), 335

Broadband, 245–247, 250, 254, 256Building integrated photovoltaics,

318Built-in voltage, 411, 433, 440Bulk Heterojunction, 117–118,

120, 122–124, 126–127, 129–131, 133, 362

Bulk Hetero-Junction, 3, 5, 6, 9, 11, 12, 14–16, 23, 25–27, 30–33

Bulk heterojunction solar cells, 456, 459

C70 fullerenes, 461Cadmium Selenade (CdSe),

284–285 Cadmium Sulphide (CdS), 284

Index

Atul Tiwari, Rabah Boukherroub, and Maheshwar Sharon (eds.) Solar Cell Nanotechnology, (505–516) 2014 © Scrivener Publishing LLC

Page 2: Solar Cell Nanotechnology (Tiwari/Solar) || Index

506 Index

Carbazole as auxiliary donor, 75–87 as donor, 43–64 as donor and bridge, 87–91 as linker, 65–75

Carbon Nanostructure, 367Carboxylic acids, 100, 102Carrier diffusion, 250, 259Carrier recombinations, 257Carrier transport, 137, 153Cathode buffer layer, 148, 150CdSe nanocrystals, 99, 111, 112CdSe/ZnS, 285CdTe/CdSe, 285Cell assembly, 181Cell geometry, 248, 250, 254Cell perfomance parameters, 251Cell size, 180Centers, 165Central Electricity Regulatory

Commission, 467Challenges, 166, 168Characterization, 135–137, 149,

154, 173Charge carriers, 165Charge mobility, 460Charge neutrality point, 369Charge separation, 162, 166, 166Charge transport, 4, 6, 9, 11, 14, 20,

22, 34, 166Charge-transfer complex, 352Chemical exfl oiation, 117,

119–120 Chemisorbed, 163CMOS devices, 453CNTs, 468Coating, 177Colloidal quantum dots, 325Conduction band, 171

n-type semiconductor, 163Conjugated Polymers, 365, 449,

450, 459, 460Conjugated polymers-CNT

hybrids, 469

Continuity (semiconductors), 419Conventional, 3, 5, 15–17, 23, 24,

26, 27, 30, 31, 34, 166Conventional cell, 168Conversion effi ciency, 244–245,

247, 255Core/shell semiconductor

quantum dots, 458Core-shell nanocrystals, 108, 109Corrosion, 166Coumarin, 280–281 Coumarins, 335, 339–342, 349Counter, 164, 174Couple, 164Created, 165Crosslinking, 188–190 Crystalline polymer, 462Crystallization, 139Cu(In,Ga)Se2, 109CuGaSe2, 107CuInS2 nanocrystals,

applications, 109–112 crystallographic structure,

106, 107defects, 108, 109shape control, 103–106 synthesis, 99–100, 102–109

CuInSe2 nanocrystals, applications, 109–112 crystallographic structure,

106, 107defects, 108, 109shape control, 103–106 synthesis, 99, 100, 102–109

CurrentCollection, 168

Current density, and quasi-Fermi levels, 419drift and diffusion, 419saturation-, 414, 427, 434,

436, 443Current-voltage curve,

and equivalent circuit, 414ideal onde diode-, 414

Page 3: Solar Cell Nanotechnology (Tiwari/Solar) || Index

Index 507

pin solar cell, 441pn solar cell, 427vertical pn cell, 436

Decoupled control, 475, 480, 489–491

Defectconcentration, 417recombination, 421

Degradation, 138, 140, 153, 171, 181

Deposition, chemical vapor, 117, 120–121 electron beam, 120–123

Depositions techniques, See Fabrication techniques,

Devices (DSSCs), 166dicyanomethylenes, 335Diethoxydiphenylsilane

(DEDPS), 286Diffusion, 136, 140, 145,

charge carriers, 165charge transport, 166holes, 165iodide and triodide, 173limitation, 171

Diffusion length, collection-, 429difusion, 422injection-, 428

Diode element, 173Diode ideality, 414, 415, 429,

441, 443Dipole scattering-far fi eld effect,

251, 258Dirac fermions, 368Dirac points, 371Dispersion, 175Distinctive features, 166Distributed generation, 475Distribution system, 476,

478, 491, 494 Donation, 164Donor, 135–136, 147–148

Donor-acceptor (DA) heterojunction, 362

Donor-acceptor type low bandgap conjugated polymer, 459

Down-conversion, 232Drift length, 423DSSCs, 173, 174Dye, 167, 168, 164, 167, 171

absorption, 168, 175,177attachment, 169degradation, 171dispersion, 175excited, 168excited state life time, 170extinction coeffi cient, 169immersion, 175n719, 170near infrared , 168oxidized , 172oxidation potential, 171photoactive, 169ruthenium, 169regeneration, 171solar spectrum, 169solution, 175

Dye absorbtion, 168Dye molecules, 163Dye sensitized solar cells

(DSSCs)cell assembly, 181cell size, 180challenges, 166, 168characterization, 173diode element, 173effi ciency, 172energy conversion, 164equivalent circuit, 172fabrication, 168fi ll factor (FF), 173internal resistance, 172, 177lifetime, 168distinctive features, 166longivity, 168nanoparticles, 166

Page 4: Solar Cell Nanotechnology (Tiwari/Solar) || Index

508 Index

operation principle, 164performance, 168, 171sealing, 181structure, 167technology, 162TiO2 fi lm, 168

Dye-sensitized solar cells, 111Dye-sensitized solar cells (DSSC),

components, 42processes, 43

Dye-sensitized TiO2, 169

Effi ciencies of plasmonic PV devices, 260

Effi ciency, 172degradation, 181DSSCs, 173, 174fi lm thickness, 178photo conversion, 167, 178theoretical, 168

Effi ciency (solar cell), 414Electric fi eld, 18,

charge separation, 166seperated, 165

Electric potential, 163Electrical and mechanical

TCO surface, 168Electrical fi eld, 411, 417, 419, 423, 440Electrical properties, 255, 259Electrochemical, 166Electrodes

assembly, 176, coating, 177, counter, 164, 174, electric potential, 163, electrochemical, 166, photoelectrodes, 163, 164, platinum counter electrode, 167,

171, sintered, 175, working, 166, 167, 174, 177,

Electrolyte, 167acceptors, 171corrosion, 166

evaporation, 171, 175, 176gellated, 166, 181higher voltages, 168hole transport, 166injection, 176, 181interface, 172iodide based, 166leakage, 175liquid, 166, 171, 180-181, nano-clay, 168, 181-182permeability, 166quasi-solid, 168, 181-182redox mediator, 170stability, 168, 171, 181standard, 181transport, 171viscosity, 171, 181volatility, 166iodide/triodide, 167

Electromagnetic (EM) fi eld, 245–248

Electronacceptor, 168donation, 164migration, 164photoinduced, 173TiO2, 162

Electron conductor, 168Electron donor, 365Electron transport, 166Electron transport layer, 150Electron-conductive layer, Electronic contact, 166ElectronsEmission, 165

heat, 165photons, 165

Energetic properties, 169Energy, 163Energy conversion, 164Equilibrium Conductance, 376

fano resonance, 376–378, 399strong couplings, 377,

378, 399

Page 5: Solar Cell Nanotechnology (Tiwari/Solar) || Index

Index 509

Equivalent circuit, 172, 170Erbium (III), 285Escape cone, 276Etching mask, 186, 193–195 Europium, 327, 329–331 Europium (III) complex, 285Evaporation, 171, 175, 176Excite, 171Excited, 168Excited state life time, 170Exciton, 365, 460, 136Excitons, 171

created, 165generation, 165recombine, 165

External load, 164Extinction coeffi cient, 169

Fabrication, 117, 120–122, 124, 168Fabrication techniques

atomic layer deposition, 263chemical vapor deposition

processes, 263EM fi eld modeling, 248, 254hot electrons, 263hydrogenated amorphous

silicon, 248kretschmann geometry, 245large scale-fabrication, 260,

263–264 levelized costs, 244light traping, 244, 247–248,

256–258, 260plasma assisted/enhanced

CVD, 263sputtering, 251, 264

Fermi energy, and carrier concentration, 418quasi-Fermi levels, 418

Fermi level, 6, 12, 13, 27, 28Fill factor (FF), 148, 151–153, 173Fill-factor, 413Film, 168Film thickness, 178, 175, 177

Films, Fluorene, 46, 80Fluorescent collector, 213Fluorophore, 301Free carrier,

characteristic lengths, 423

concentration, 418lifetime, 421mobility, 419

Free energy, 144FRET (Förster Resonance Energy

Transfer), 332Fullerene, 280Fullerene electron affi nity, 462Fullerenes, 456

Gapless semiconductor, 369Gellated, 166, 181Generation, 165Geometrical optical

concentrators, 319Graphene, 367Graphene Nanoribbons, 372

armchair-graphene nanoribbon, 373, 374, 388, 393

hybrid graphene nanoribbon, 374, 388, 395

zigzag graphene nanoribbon, 373

Graphene synthesis, 369Graphene–polyaniline

nanocomposite, 374–376, 386 Growth, 137–140, 142, 144–148

Harvesting, 169Heat, 165Heating-up synthesis, 99Heteronanocrystals, 325Higher voltages, 168Hole blocking layer, 150Hole transport, 166Holes, 165

Page 6: Solar Cell Nanotechnology (Tiwari/Solar) || Index

510 Index

HOMO, 450Honeycomb crystal, 368Hot-injection-technique, 99Hybrid nanostructure, 105Hybrid of thermodynamic

and ray-tracing, 278–279

Hybrid solar cell (HSC), 147–150 Hybrid solar cells, 104, 110–112 Hydrosilylation, 189, 190Hydrothermal, 137–142, 144, 146

Illuminance, 216Immersion, 175Improvised thin-fi lm

technologies, 448Incident, 168–169 Incident intensity, 204Incident light, 168Indoline, 43, 47, 49, 56,

60, 80, Indoor lighting sources, 204Injection, 176, 181Intelligent clothing, 457Interface, 172,

n and p-type, 165Resistace, 180

Intermolecular interactions, 460Internal resistance, 172, 177Inverted, 3, 5, 6, 14–17,

23, 24, 26, 31–34 Iodide, 172Iodide and triodide, 173Iodide based, 166Iodide/triiodide

couple, 164electrolyte, 167lifetime, 171

Iodide/triodide, 167Iodine, Ion irradiation, 367IPCE, 26Irradiation, 163Isoviolanthrone, 335

Junction, pin type, 411, 439pn type, 411, 425

Lambert Beer law, 420Lanthanides chelates, 325, 327, 329,

331, 333, 349, 350Layered semiconductors, 117,

119–125, 129–133 Leakage, 175Lewis acids, 102Lewis bases, 102Lifetime, 168, 171Ligands,

exchange, 101inorganic, 100–102, 110organic, 100–102, 109, 110role of, 100–103, 106, 107

Lightabsorption, 163,166harvesting , 169incident, 168-169irradiation, 163transmission, 168white, 170

Light wavelength greater than 900 nm, 168

Light-emitting diodes, 456Light-trapping, 192–194, 196, 197Limitation, 171Liquid, 166, 171, 180–181, Liquid interface, 164Lithography nanofabrication

techniques, deep-ion beam lithpgraphy, 261electron-beam lithography, 260focused ion-beam, 260metal nanoparticles, 247, 265metal-insulator-metal (MIM),

242metallic nanostructures, see also

nanostructures, 247, 252–253, 255, 258

metamaterials, 244, 246, 256

Page 7: Solar Cell Nanotechnology (Tiwari/Solar) || Index

Index 511

mode Coupling, 252–253, 258nanoimprint/soft-imprint

lithography, 252–253, 260–262 nanostructures, 244, 246–250,

252–253, 255–256, 258–261, 264

nanowires, 247, 262, 264near-fi eld effect, 258ohmic loses, 247, 254optical cell geometry, 247optical nano-antenna, 263photocurrent density, 255photocurrent enhancement,

248, 256photogenerated carriers, 250physical parameters, 248–249,

254substrate conformal imprint

lithography, 262Localized surface Plasmon

Resonance, 19Longivity, 168Loss mechanisms, 321–323 Low bandgap material, 449Low cost, 164Low-temperature stable

form, 169Luminescence Solar Concentrators,

294Luminescent solar collectors, 319Luminescent solar concentrator

(LSC), 271–289 Luminophore, 321–323, 333–335,

342, 346, 349LUMO, 450Lumogen® F Rot 305, 346, 350

Majority and minority carriers, Majority carriers

Devices (DSSCs), 166pn-junction, 166TiO2 electrons, 162

Makrolex fl uorescentRed G dye, 280–281

Maximum power point, 413, tracking, 475, 477, 483–484,

493, 501tracking algorithm, 477, 479,

484, 488Mesabenzanthrones, 335Mesaporus, 167Mesaporus structure, 165Mesoscopic

semiconductor, 168metal oxide, 163

Metal oxide, 163Metal-based polymers, 460Metal-free polymers, 460Methylmethacrylate

(MMA), 280Micro energy harvesting, 204Microcontact printing, 187Migration, 164Mismatch factor, 216Molybdenum disulfi de, 117,

119–132 Monochromatic, 209Monomers, 100, 103, 104Monte carlo simulations, 279Morphology, 135–136, 138–142,

144, 146, 148Multi block copolymers, 463n and p-type, 165

N719, 170Nano-clay, 168, 181–182 Nanocrystal sensitized solar cells,

111, 112Nanocrystalline, 165,

164, 169Nanoimprint lithography (NIL),

185–199 Nanoparticles, 166, 176

dye-sensitized TiO2 , 169electronic contact, 166pn-junction, 169sintering, 178size optimization, 162

Page 8: Solar Cell Nanotechnology (Tiwari/Solar) || Index

512 Index

Nanophotonics, 213Nanorod (NR), 135–142, 144–154 Nanostructure, 136–137, 139, 147,

150, 154Naphtalimide, 280–281 Near infrared, 168Negative differential resistance,

393, 399Neodymium (III), 285Nitrosopyrazolone, 331Non-toxic, 164n-type, 164n-type semiconductor, 163Nucleation, 140, 142

Ohmic contact, 11–15, 25, 27, 28, 33

Open-circuit voltage, and band gap, 432and built-in voltage, 433and one diode model, 415in vertical multijunctions, 437temperature dependence, 442

Open-circuit voltage (Voc), 150, 152–153

Operation principle, 164OPV, 461OPV effi ciency, 461OPV technology, 455Organic dyes, 280–283 Organic Fluorescent Dyes,

301–303Organic photovoltaic (OPV), 360Organic Photovoltaic

Technology, 359Organic Photovoltaics, Organic semiconductors, 450,

451, 464Organic Solar Cell, 363Organic solar cell (OSC), 136,

147, 153Organically modifi ed silicates

(Ormosils), 286Oxidation potential, 171

Oxidized, 172dye, 167, 168transparent conducting, 162dye molecules, 163state, 164

P&O algorithm, 484, 493Parasitic absorption, 6, 17PbS nanocrystals, 110–112 PbSe nanocrystals, 111PCE, 5, 9, 10, 15, 21–28, 30PEDOT, 457PEDOT:PSS, 195Percolation, 375, 390, 388, 397Perfl uoropolyether (PFPE), 190Performance, 168, 171Permeability, 166Perylene, 280–283 perylene bisimidazoles, 335perylene imides, 324, 335,

343–349 Phenothiazine, 43, 47, 56, 64, 72, 79,

81, 85Phenyl-C61-butyric acid methyl

ester (PCBM), 196Photo conversion, 167, 178Photoactive, 169Photo-crosslinking, 459Photocurrent,

and quantum effi ciency, 431in pn solar cells, 429voltage-dependence, 441

Photocurrent generation, 463photodegradation, 326, 342Photoelectrochemical solar cell, 470Photoelectrodes, 163, 164Photoinduced, 173Photoinjected electrons, 173Photometric, 216Photon fl ux, 420Photons, 165

emission, 165excite, 171band diagram, 166

Page 9: Solar Cell Nanotechnology (Tiwari/Solar) || Index

Index 513

Chlorinated polyaniline, 367, 390–393

emeraldine base (EB), 366leucoemeraldine base (LEB), 366pernigraniline base (PNB), 366

Polydimethylsiloxane (PDMS), 186, 188–190

Polyfl uorene (Red F), 286Polymer PV, 457Polymer solar cell (PSC), 457,

135–136, 147, 153–154 Polymethylmethacrylate (PMMA),

193, 195Polysiloxane rubber, 287polyvinyl-butyral (PVB), 331POPV, 469Porous, 168Porphyrines and phthalocyanines,

335Post deposition processing, 464Power beam applications, 210Power conversion effi ciency (PCE),

136, 148, 150–153 Precursors, 99, 100, 102, 103Prepararion, 135–137, 154Push-pull' structure, 461PV Generator modeling, 480–482

Quantum dots, 284–285, 303–305Quantum Singularities, 378, 379

Density of states, 379Quasi-solid, 168, 181–182

R2R (roll to roll), 5, 25, 34Range, 163, 171Rare Earth, 285–286 Rare earth elements, 327–330

rare-earth materials, 305Ray tracing modeling, 277–278 Reabsorption loss, 274–275 Reactive power control, 475,

478–480, 483–487, 491–501 Reactive-ion etching (RIE),

194, 197

charge separation, 166system, 164

Photovoltaic, 451Photovoltaic systems, 294Photovoltaic technology, 465Photovoltaic-based

electricity, 471Photovoltaics generations, 360Plasma-enhanced chemical

vapor deposition (PECVD), 454

Plasmonics, localized surface plasmons

(LSPs), 245polarization-independent.,

245, 247, 250, 254quantum effi ciency, 254radius of curvature technique,

250semiconductor, 243–244,

247–250, 252–254, 256–259, 263–264, 266

sheet resistence, 254shockley-Queisser limit, 266silicon-nanowires see

nanowires, simulation studies, 248, 250, 252,

254–256, 263surface plasmon resonance, 246surface plasmons, 245,

257, 259surface plasmons polaritons,

245, 257, 259Platinum counter electrode,

167, 171PMMA, 322, 331, 347, 349–350 pn-junction, 166, 169, Poly(laurylmethacrylate) (PLMA), 279Poly(methyl methacrylate)

(PMMA), 279Poly-3-hexylthiophane (P3HT),

195, 196Polyaniline (PAn), 366, 387,

Page 10: Solar Cell Nanotechnology (Tiwari/Solar) || Index

514 Index

Shunt resistance, 212Silicon solar cells, 449Silicon-based, 166Silver, 193, 196, 197Sintered, 175Sintering, 178Size optimization, 162Slow drying, 152–153 Socket parity, 468Solar cell

conventional, 166conventional cell, 168crystalline silicon, 191, 192,

194, 197energy band diagram, 411equivalent circuit, 170, 414GaAs, 191–193 heterojunction, 433nanorod, 438organic, 194–196 pin junction, 439pn junction, 425silicon-based, 166thin-fi lm silicon, 193, 194,

196, 197vertical junction, 434

Solar cell technologies, 454Solar cells, 306

c-Si solar cells, 256photovoltaic, 243–266 quantum dot solar cells, 263, 266single junction cell, 249solar energy, 245spectroscopic ellipsometry,

249–250 tandem multi-junction cells, 266thermodynamic limit, 266thin-fi lm PV devices, 257wide-angle resonant

absorption, 246Solar energy conversion, 361Solar Energy Industries

Association, 466

Real power control, 475, 483, 488–501

Recombination, 8, 9, 14, 16, 19, 25, 32, 33, 117–119, 129–131, 133, 211

linearization, 421tunneling-enhanced, 423centers, 165excitons, 171

Recombine, 165Redox, Redox mediator, 170Reduction

triiodide, 164, 167Reel-to-reel (R2R), 457Refl ectance, 208Refractive index, 276Regeneration, 171,

dye, 164, 167, 171iodide, 172

Resistace, 180Rhodamines, 335–339, 342Roll-to-roll, 186, 188, 194,

197, 198Roll-to-roll process, 458Ruthenium, 169Rylene dyes, 343

Schottky, 117–119, 121–124, 127–133 Sealing, 181Seed layer, 137–144, 147Semiconducting Polymer, 286Semiconductor, 168,

device band diagram, 411fundamental equations, 417liquid interface, 164mesaporus structure, 165nanocrystalline, 165n-type, 164

Seperated, 165Series resistance, 212Short-circuit current density (Jsc),

150, 152–153

Page 11: Solar Cell Nanotechnology (Tiwari/Solar) || Index

Index 515

TiO2 fi lm, 168TiOx, 17, 28, 32, 33Titanium dioxide, 118, 120, 122,

124–127, 129–131 Titanium dioxide (TiO2),

aggregation, 175available, 164antase phase, 164biocompatible, 164conduction band, 171dye absorbtion, 168electron transport, 166electron conductor, 168energetic properties, 169fi lm, 168fi lm thickness, 175, 177low cost, 164low-temperature stable form, 169mesaporus, 167nanocrystalline, 164, 169nanoparticles, 176non-toxic, 164photoinjected electrons, 173porous, 168stability, 169

Titanium oxide, 192, 196Total internal refl ection, 319,

322–323 Transmission, 168Transmittance, 206Transparent conducting, 162Transparent conductive oxide

(TCO), 193Transport, 117–118, 124,

129–133, 171Triiodide, 164, 167Tungsten disulfi de, 117, 119–129,

131–132

Ullmann, 45, 60Unsaturated polyester (UP), 280Up-conversion, 228UV-NIL, 191, 194, 197

Solar spectrum, 169Sol-gel, 188, 192, 196, 197Solidifi cation dynamics, 463Solution, 175Solution-processable, 459Solution-processed, 151Solvent assisted NIL (SANIL), 187,

188, 193, 195, 196Spectrum, 169, 163, 169Stability, 135, 147, 150–153, 168,

171, 181, 169Stamp

material, 188–190 preparation, 188, 189

Standard, 181State, 164Step-and-fl ash imprint lithography

(S-FIL), 188Stokes shift, 324, 330, 335, 340, 342,

346–350 Stoke's shift, 274–275 Structural fl exibility, 369Structure, 167Surface area, 144, 154Surface states, 118–119, 130–131 System, 164

TCO surface, 168Technology, 162Terbium, 327, 329–331 Terrylene diimides (TDIs) and

quaterrylene diimides (QDIs), 347

Tetraethoxysilane (TEOS), 286Theoretical, 168Thermodynamic modeling,

276–277 Thin-fi lm solar cells, 98, 107, 109,

110Thiols, 100, 102, 107Third Generation Photovoltaic, 318TiO2, 162TiO2 electrons, 162

Page 12: Solar Cell Nanotechnology (Tiwari/Solar) || Index

516 Index

Xanthene, 280–281

X-ray diffraction, 143

ytterbium, 331–332 Ytterbium (III), 285

Zero effective mass, 370Zinc oxide, 193, 194Zinc oxide (ZnO), 135–154 Zincblende, 106Zinc-phthalocyanine(ZnPc), 280–281 ZnO, 6, 13–15, 18, 20, 24,

27, 28, 31, 32ZnS, 98, 107–109 ZnSe, 108, 111β-diketonates, 329–330

Vertical phase separation, 6, 14Vibrational quenching, 332–333,

341, 348Viscosity, 171, 181Visibility function, 206Visible

spectrum, 163, 169range, 163, 171

Volatility, 166Voltage regulation, 475, 478–480,

483–487, 491–501 Voltage source converter, 480, 483,

485, 487–501

Waveguide Slab, 300White, 170Wide bandgap, 162Wurtzite, 103, 106, 107