solvents electronic supplementary information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b...

15
Electronic Supplementary Information Crystal structure evolution of the high energetic compound carbonic dihydrazidinium bis[3-(5-nitroimino-1,2,4-triazolate)] induced by solvents Jianrong Ren1.2. , Dong Chen1 , Guangrui Liu 1.2. , Kangcai Wang 1 , Guijuan Fan 1 , Yanwu Yu 2 , Chaoyang Zhang 1 , Hongzhen Li 1. * 1 Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, Sichuan, China 2 College of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China ‡These authors contributed equally. Corresponding author: Dr. Hongzhen Li, E-mail: [email protected] Table of Contents: 1.1 Materials. 1.2 Single Crystal X-ray Diffraction (SC-XRD). 1.3 Powder X-ray Diffraction (PXRD). 1.4 Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Analysis. 1.5 NMR for CBNT. 1.6 DSC analysis. 1.7 Structural data and dehydration of CBNT·2H 2 O. 1.8 Bond length and bond angle of H 2 BNT·2DMSO, H 2 BNT·2H 2 O and [NH 2 (CH 3 ) 2 + ] 2 [BNT 2- ]·2H 2 O. 1.9 Formation mechanism of [NH 2 (CH 3 ) 2 + ] 2 [BNT 2- ]·2H 2 O. 1.10 Hydrogen Bonding. 1.11Standard molar enthalpy of formation (Δ c H θ m ). References Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 11-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

Electronic Supplementary Information

Crystal structure evolution of the high energetic compound carbonic

dihydrazidinium bis[3-(5-nitroimino-1,2,4-triazolate)] induced by

solventsJianrong Ren‡1.2., Dong Chen‡1, Guangrui Liu1.2., Kangcai Wang1, Guijuan Fan1, Yanwu Yu2, Chaoyang Zhang1, Hongzhen Li1.*

1Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, Sichuan, China2College of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China

‡These authors contributed equally.Corresponding author: Dr. Hongzhen Li, E-mail: [email protected]

Table of Contents:1.1 Materials. 1.2 Single Crystal X-ray Diffraction (SC-XRD). 1.3 Powder X-ray Diffraction (PXRD).1.4 Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Analysis. 1.5 NMR for CBNT.1.6 DSC analysis.1.7 Structural data and dehydration of CBNT·2H2O.1.8 Bond length and bond angle of H2BNT·2DMSO, H2BNT·2H2O and [NH2(CH3)2

+]2[BNT2-]·2H2O.1.9 Formation mechanism of [NH2(CH3)2

+]2[BNT2-]·2H2O.1.10 Hydrogen Bonding.1.11Standard molar enthalpy of formation (ΔcHθ

m).References

Electronic Supplementary Material (ESI) for CrystEngComm.This journal is © The Royal Society of Chemistry 2019

Page 2: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

1.1 Materials.

CBNT was synthesized according to the reported method1. The purity of CBNT was 99.29 %, as determined by high-performance liquid chromatography (HPLC). All solvents used for crystallization were of analytical grade and purchased from commercial suppliers and were used as received.

1.2 Single Crystal X-ray Diffraction (SC-XRD).

Suitable crystals were chosen and placed in a Rigaku supernova Single X-ray Diffractometer area detector using graphite monochromated Mo Kα radiation (λ= 0.71073 Å) at 293(2) K. Its structures were solved by direct methods using OLEX2 and refined by fullmatrix least-squares on F2 (SHELXL-2013). All non-hydrogen atoms were anisotropically refined. Hydrogen atoms attached to oxygen were placed from difference Fourier maps and were refined using riding model. Data collection parameters and refinement statistics were given in Table S1.

1.3 Powder X-ray Diffraction (PXRD).

X-ray diffraction data were recorded on a Bruder D8 Advance X-ray diffractometer equipped with Cu- Kα radiation source (40kV, 40 mA). The samples were scanned in a range of 2θ from 5° to 60°, with a scan rate of 0.02°.

1.4 Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) Analysis.

DSC and TG analysis were conducted on a Mettler Toledo TGA/DSC 2 instrument. The sample was weighed in the aluminum pan (40 μL), covered, and measured in the flow of a nitrogen gas. The investigation was performed in the temperature range from 50 to 400 °C with the heating rate of 10°C/min. The sample weight was about 1-2 mg.

1.5 NMR for CBNT.

1H and 13C spectra were recorded on a 400 MHz (Bruker AVANCE 400) or 600 MHz (Bruker AVANCE 600) nuclear magnetic resonance spectrometer.

Page 3: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

Figure S1. The 13C NMR spectrum of carbonic dihydrazidinium bis[3-(5-nitroimino-1,2,4-triazolate)] (CBNT).

Figure S2. The 1H NMR spectrum of carbonic dihydrazidinium bis[3-(5-nitroimino-1,2,4-triazolate)] (CBNT).

1.6 DSC analysis.

Page 4: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

The DSC curves of MTP, EAP and BLP have two exothermic peaks and one endothermic peak respectively. DMFP and DEFP both have only one exothermic peak, which were different from that of CBNT.

DSC spectra of raw material CBNT and CBNT·2H2O (H2OC) are basically the same, they all have three decomposition peaks (Figure S4), and the temperature of the main decomposition peak is not much different. except for the endothermic peak at about 160 °C in CBNT·2H2O. The reason for the peak temperature of CBNT·2H2O is higher maybe that the molecule contains crystal water, and water loss after heating have an influence on the molecular structure of CBNT·2H2O.

Combined with DSC curve of BL/H2OC (H2BNT·2H2O), NMPP, DMSOP, DMSOC

(H2BNT·2DMSO) and DMF/H2OC ([NH2(CH3)2+]2[BNT2-]·2H2O) with CBNT, it can

be found that they are almost different from the decomposition trend and the decomposition temperature of the main decomposition peak of CBNT, indicating that CBNT have changed and new solid substances have produced in these solvents.

Page 5: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

Figure S3. DSC curves of CBNT and the results by experiment.

Table S1 Basic crystallographic Data of H2BNT·2DMSO, [NH2(CH3)2+]2[BNT2-]·2H2O, H2BNT·2H2O and

CBNT·2H2O.

H2BNT·2DMSO [NH2(CH3)2+]2[BNT2-]·2H2O H2BNT·2H2O CBNT·2H2O

chemical formula C8H16N10O6S2 C8H12N12O6 C4H8N10O6 C5H14N14O7

molecular weight 412.43 382.38 292.20 382.30

Crystal system monoclinic triclinic monoclinic triclinic

Space group P 21/n P -1 P 21/n P -1

Page 6: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

T(K) 296 296 296 293

a(Å) 12.9910(7) 6.0311(2) 5.2460(2) 6.5011(8)

b(Å) 4.6699(2) 6.9489(2) 17.8848(7) 10.2497(12)

c(Å) 14.4974(7) 11.1061(4) 6.3117(2) 11.0964(13)

α(deg) 90 77.437(10) 90 97.740(10)

β(deg) 95.171(2) 89.786(10) 112.398(2) 99.840(11)

γ(deg) 90 75.146(10) 90 90.131(10)

V(Å3) 875.93(7) 438.46(3) 547.51(4) 721.65(15)

Z 2 1 2 2

Dcalcd(g cm-3) 1.564 1.448 1.772 1.759

F (000) 428 202 300 396

µ(mm-1) 0.356 0.122 0.161 0.157

θ range (deg) 4.413-54.926 6.511-54.764 7.345-54.915 3.7390-28.7250

Reflections

collected

14378 6244 4050 5565

-16<h<16 -7<h<7 -6<h<6 -8<h<8

-5<k<5 -8<k<8 -22<k<22 -13<k<13Index ranges

-17<l<17 -13<l<13 -7<l<6 -14<l<12

Data/restraints 1709 / 0 1703 / 0 1058 / 0 3249 / 0

parameters 124 163 107 273

Final R index [I

>2σ(I)]

R1=0.0431,

WR2=0.1215

R1=0.0353,

WR2=0.0905

R1=0.0342,

WR2=0.0877

R1=0.0595,

WR2=0.1391

Final R index [all

data]

R1=0.0482,

WR2=0.1267

R1=0.0396,

WR2=0.0947

R1=0.0370,

WR2=0.0904

R1=0.1026,

WR2=0.1655

GooF 1.047 1.027 1.058 1.055

1.7 Structural data and dehydration of CBNT·2H2O.

Table S2 Bond lengths /Å and angles /° of CBNT·2H2O.

Bond lengths Bond angles

O1-N2 1.263(3) O2-N2-O1 120.4(3) N19-N20-H20 122.5

O2-N2 1.247(3) O2-N2-N3 122.8(3) C23-N21-N22 115.7(3)

N2-N3 1.309(3) O1-N2-N3 116.8(3) C23-N21-H21 122.1

N3-C4 1.374(4) N2-N3-C4 117.2(2) N22-N21-H21 122.1

C4-N8 1.340(4) N8-C4-N5 109.5(3) N21-N22-H22A 112.2(19)

C4-N5 1.341(4) N8-C4-N3 118.9(3) N21-N22-H22B 112(2)

N5-N6 1.358(3) N5-C4-N3 131.6(3) H22A-N22-H22B 117(3)

N5-H5 0.88(4) C4-N5-N6 109.9(2) N21-N22-H22C 113(2)

N6-C7 1.318(4) C4-N5-H5 130(3) H22A-N22-H22C 99(3)

C7-N8 1.352(4) N6-N5-H5 120(3) H22B-N22-H22C 101(3)

C7-C9 1.453(4) C7-N6-N5 102.8(2) O18-C23-N20 pka2.2(3)

C9-N10 1.320(4) N6-C7-N8 114.8(3) O18-C23-N21 122.7(3)

C9-N13 1.362(4) N6-C7-C9 121.7(3) N20-C23-N21 115.1(3)

N10-N11 1.361(3) N8-C7-C9 123.4(3) H1A-OW1-H1B 109.5

Page 7: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

N11-C12 1.344(4) C4-N8-C7 102.9(2) H2A-OW2-H2B 109.5

N11-H11 0.86(3) N10-C9-N13 115.0(3)

C12 N13 1.338(4) N10-C9-C7 121.4(3)

C12 N14 1.376(4) N13-C9-C7 123.6(3)

N14 N15 1.320(3) C9-N10-N11 102.2(2)

N15 O17 1.247(3) C12-N11-N10 110.6(2)

N15 O16 1.252(3) C12-N11-H11 130(2)

O18 C23 1.215(4) N10-N11-H11 120(2)

N19 N20 1.412(4) N13-C12-N11 109.1(3)

N19 H19A 1.07(3) N13-C12-N14 119.0(3)

N19 H19B 1.01(5) N11-C12-N14 131.9(3)

N19 H19C 0.96(5) C12-N13-C9 103.0(2)

N20 C23 1.351(4) N15-N14-C12 116.8(3)

N20 H20 0.8600 O17-N15-O16 121.2(3)

N21 C23 1.358(4) O17-N15-N14 122.8(3)

N21 N22 1.414(4) O16-N15-N14 116.0(3)

N21 H21 0.8600 N20-N19-H19A 105(2)

N22 H22A 0.98(4) N20-N19-H19B 109(3)

N22 H22B 1.05(4) H19A-N19-H19B 111(3)

N22 H22C 0.86(4) N20-N19-H19C 110(2)

OW1 H1A 0.8504 H19A-N19-H19C 107(3)

OW1 H1B 0.8495 H19B-N19-H19C 114(4)

OW2 H2A 0.8501 C23-N20-N19 115.0(3)

OW2 H2B 0.8500 C23-N20-H20 122.5

Table S3. Torsion angles/° for CBNT·2H2O.

O2-N2-N3-C4 -1.8(4)

O1-N2-N3-C4 179.1(3)

N2-N3-C4-N8 178.5(2)

N2-N3-C4-N5 -0.6(5)

N8-C4-N5-N6 0.9(3)

N3-C4-N5-N6 -179.9(3)

C4-N5-N6-C7 -0.7(3)

N5-N6-C7-N8 0.2(3)

N5-N6-C7-C9 -178.4(3)

N5-C4-N8-C7 -0.8(3)

N3-C4-N8-C7 180.0(2)

N6-C7-N8-C4 0.4(3)

C9-C7-N8-C4 178.9(3)

N6-C7-C9-N10 174.8(3)

N8-C7-C9-N10 -3.7(4)

N8-C7-C9-N13 176.8(3)

N13-C9-N10-N11 0.3(3)

C7-C9-N10-N11 -179.2(2)

C9-N10-N11-C12 0.1(3)

Page 8: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

N10-N11-C12-N13 -0.4(3)

N10-N11-C12-N14 -179.7(3)

N11-C12-N13-C9 0.6(3)

N14-C12-N13-C9 180.0(2)

N10-C9-N13-C12 -0.6(3)

C7-C9-N13-C12 178.9(2)

N13-C12-N14-N15 -178.5(2)

N11-C12-N14-N15 0.7(5)

C12-N14-N15-O17 -0.4(4)

C12-N14-N15-O16 178.9(2)

N19-N20-C23-O18 14.7(5)

N19-N20-C23-N21 -167.0(3)

N22-N21-C23-O18 -9.8(5)

N22-N21-C23-N20 172.0(3)

Figure S4. The DSC curves for (a) CBNT, (b) CBNT·2H2O after dehydration, (c) CBNT·2H2O.

Page 9: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

Figure S5. Powder diffraction patterns of (a) CBNT, (b) dehydrated CBNT·2H2O and (c) CBNT·2H2O.

From figure S4, we can find that there are three exothermic peaks in these DSC curves, and the positions are almost the same, except that there is no endothermic peak in curve a. Besides, the decomposition process of CBNT also has three stages, it is clearly shown that curve b and c are almost the same as that of curve a. The positions of the main decomposition peaks of the curves b and c are different with curve a, which may be caused by water molecules in the structure. The results were also confirmed by X-ray powder diffraction analysis (Figure S5). it can be seen that in the spectra of CBNT·2H2O after dehydration, many peaks are missing compared with CBNT, and a large number of peak strengths are significantly reduced, and we conclude that dehydration treatment of CBNT·2H2O had an impact on the entire crystal structure.

1.8 Bond length and bond angle of H2BNT·2DMSO, H2BNT·2H2O and [NH2(CH3)2

+]2[BNT2-]·2H2O.

Table S4 Bond lengths /Å and angles /° ofH2BNT·2DMSO.

Bond lengths Bond angles

S1-O3 1.518(2) O3-S1-C4 105.25(15) S1-C3-H3B 109.5

S1-C4 1.759(3) O3-S1-C3 104.39(14) H3A-C3-H3B 109.5

S1-C3 1.769(3) C4-S1-C3 99.35(16) SI-C3-H3C 109.5

Page 10: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

O1-N5 1.233(3) C1-N1-C2 106.34(18) H3A-CA-H3C 109.5

O2-N5 1.243(3) C1-N1-H1 132(2) H3B-C3-H3C 109.5

N1-C1 1.351(3) C2-N1-H1 122(2) S1-C4-H4A 109.5

N1-C2 1.355(2) C2-N2-N3 112.09(15) S1-C4-H4B 109.5

N1-H1 0.82(3) C2-N2-H2 124.0 H4A-C4-H4B 109.5

N2-C2 1.324(3) N3-N2-H2 124.0 S1-C4-H4C 109.5

N2-N3 1.373(2) C1-N3-N2 103.03(17) H4A-C4-H4C 109.5

N2-H2 0.8600 N5-N4-C2 115.33(19) H4B-C4-H4C 109.5

N3-C1 1.305(3) O1-N5-O2 121.27(19)

N4-N5 1.331(2) O1-N5-N4 116.0(2)

N4-C2 1.346(3) O2-N5-N4 122.72(19)

C1-C1#1 1.450(4) N3-C1-N1 112.67(17)

C3-H3A 0.9600 N3-C1-C1#1 123.6(2)

C3-H3B 0.9600 N1-C1-C1#1 123.7(2)

C3-H3C 0.9600 N2-C2-N4 135.69(17)

C4-H4A 0.9600 N2-C2-N1 105.87(18)

C4-H4B 0.9600 N4-C2-N1 118.43(19)

C4-H4C 0.9600 S1-C3-H3A 109.5

Table S5. Torsion angles/° forH2BNT·2DMSO.

C2-N2-N3-C1 0.5(2)

C2-N4-N5-O1 -177.4(2)

C2-N4-N5-O2 3.3(3)

N2-N3-C1-N1 0.0(2)

N2-N3-C1-C1 -179.9(3)

C2-N1-C1-N3 -0.4(3)

C2-N1-C1-C1 179.4(3)

N3-N2-C2-N4 177.8(2)

N3-N2-C2-N1 -0.7(2)

N5-N4-C2-N2 -0.5(4)

N5-N4-C2-N1 177.9(2)

C1-N1-C2-N2 0.7(2)

C1-N1-C2-N4 -178.15(19)

Table S6 Bond lengths /Å and angles /° of H2BNT·2H2O.

Bond lengths Bond angles

O1-N5 1.2408(17) C1-N1-C2 106.60(12) N2-C2-N1 112.26(12)

O2-N5 1.2516(17) C1-N1-H1 125.0(14) N2-C2-C2 123.88(17)

N1-C2 1.350(2) C2-N1-H1 128.4(14) N1-C2-C2 123.85(16)

N1-C1 1.357(2) C2-N2-N3 103.73(12) H3A-O3-H3B 97(5)

N1-H1 0.88(2) C1-N3-N2 111.82(12)

N2-C1 1.304(2) C1-N3-H3 128.3(13)

N2-N3 1.3646(18) N2-N3-H3 119.8(13)

N3-C2 1.338(2) N5-N4-C1 115.48(12)

N3-H3 0.85(2) O1-N5-O2 121.89(13)

Page 11: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

N4-N5 1.3325(19) O1-N5-N4 123.70(12)

N4-C2 1.348(2) O2-N5-N4 114.41(12)

C1-C1#1 1.452(3) N3-C1-N4 134.93(13)

O3-H3A 0.82(3) N3-C1-N1 105.59(12)

O3-H3B 1.03(5) N4-C1-N1 119.48(13)

Table S7. Torsion angles/° for H2BNT·2H2O.

C2-N2-N3-C1 0.00(16)

C1-N4-N5-O1 1.9(2)

C1-N4-N5-O2 -177.75(13)

N2-N3-C1-N4 179.96(15)

N2-N3-C1-N1 0.34(16)

N5-N4-C1-N3 -2.0(2)

N5-N4-C1-N1 177.57(13)

C2-N1-C1-N3 -0.53(16)

C2-N1-C1-N4 179.78(12)

N3-N2-C2-N1 -0.35(16)

N3-N2-C2-C2 178.52(17)

C1-N1-C2-N2 0.57(17)

C1-N1-C2-C2 -178.30(17)

Table S8 Bond lengths /Å and angles /° of [NH2(CH3)2+]2[BNT2-]·2H2O.

Bond lengths Bond angles

O1-N5 1.2387(15) C2-N1-C1 103.12(10) N6-C3-H3B 106.1(18)

O2-N5 1.2560(14) C1-N2-N3 102.02(10) H3A-C3-H3B 111(2)

N1-C2 1.3310(16) C2-N3-N2 110.55(10) N6-C3-H3C 107.0(15)

N1-C1 1.3549(16) C2-N3-H3 129.3(12) H3A-C3-H3C 107(2)

N2-C1 1.3141(16) N2-N3-H3 120.2(12) H3B-C3-H3C 116(2)

N2-N3 1.3593(15) N5-N4-C2 117.23(11) N6-C4-H4A 107.3(13)

N3-C2 1.3410(17) O1-N5-O2 119.94(11) N6-C4-H4B 109.3(14)

N3-H3 0.810(18) O1-N5-N4 122.61(11) H4A-C4-H4B 107.4(18)

N4-N5 1.3041(15) O2-N5-N4 117.42(11) N6-C4-H4C 111.1(14)

N4-C2 1.3803(16) N2-C1-N1 115.21(11) H4A-C4-H4C 111.8(19)

C1-C1#1 1.461(2) N2-C1-C1#1 122.05(14) H4B-C4-H4C 110(2)

O3-H3D 0.88(2) N1-C1-C1#1 122.74(14)

O3-H3E 0.88(2) N1-C2-N3 109.10(11)

N6-C3 1.463(2) N1-C2-N4 119.23(11)

N6-C4 1.463(2) N3-C2-N4 131.63(11)

N6-H6A 0.91(2) H3D-O3-H3E 107(2)

N6-H6B 0.86(2) C4-N6-C3 113.96(16)

C3-H3A 0.96(3) C4-N6-H6A 110.8(12)

C3-H3B 0.94(3) C3-N6-H6A 105.3(12)

C3-H3C 0.97(3) C4-N6-H6B 106.4(13)

C4-H4A 0.95(2) C3-N6-H6B 110.2(12)

C4-H4B 0.91(2) H6A-N6-H6B 110.2(17)

Page 12: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

C4-H4C 0.94(2) N6-C3-H3A 109.7(14)

Table S9. Torsion angles/° for [NH2(CH3)2+]2[BNT2-]·2H2O.

C1-N2-N3-C2 -0.13(15)

C2-N4-N5-O1 -3.21(19)

C2-N4-N5-O2 179.15(11)

N3-N2-C1-N1 -0.02(15)

N3-N2-C1-C1 179.85(15)

C2-N1-C1-N2 0.16(15)

C2-N1-C1-C1 -179.72(15)

C1-N1-C2-N3 -0.23(14)

C1-N1-C2-N4 177.81(11)

N2-N3-C2-N1 0.23(15)

N2-N3-C2-N4 -177.48(13)

N5-N4-C2-N1 174.70(11)

N5-N4-C2-N3 -7.8(2)

1.9 Formation mechanism of [NH2(CH3)2+]2[BNT2-]·2H2O.

To analyze the reason for the formation of the cation NH2(CH3)2+ (namely, N, N-

dimethylmethylamine+) in the [NH2(CH3)2+]2[BNT2-]·2H2O, we speculated that it

may be due to the following reaction between CBNT and DMF (Figure S6). In DMF solution, because of its slight alkaline pH value, carbohydrazide cation in CBNT is easy to lose protons and reduce to carbohydrazide molecules, this causes the aldehyde group on the DMF molecule to condense with the amino group on the carbohydrazide and form a six-membered ring transition state with positive and negative charge separation. Because of its unstable structure, it tends to be a low energy state with a higher conjugate, so the negatively charged N forces the dimethylamino group to leave in the form of σ-, while the protons on the positively charged N are transferred. Therefore, there is a phenomenon that the solvent molecule in the [NH2(CH3)2

+]2[BNT2-]·2H2O structure is not DMF but NH2(CH3)2+.

Figure S6. Probable reaction process for formation of [NH2(CH3)2+]2[BNT2-]·2H2O.

1.10 Hydrogen Bonding.

Table S10 Hydrogen bond lengths /Å and angles /° of CBNT·2H2O, H2BNT·2DMSO, H2BNT·2H2O and

[NH2(CH3)2+]2[BNT2-]·2H2O.

d/Åcompound bond

D…A H…A

< D-H…A/°

CBNT·2H2O N19-H19B…O1 2.993 2.155 139.5

Page 13: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

OW1-H1A…O1 2.837 1.996 170.0

N11-H11…O2 2.937 2.087 165.9

OW2-H2A…N3 2.786 1.954 165.9

N5-H5…O17 2.919 2.066 165.4

OW1-H1B…N6 2.812 1.976 167.3

N22-H22A…N8 2.812 1.838 170.2

N21-H21…N13 2.889 2.067 159.8

N19-H19C…N14 2.886 1.987 155.7

N19-H19B…O16 2.892 2.331 114.1

N19-H19A…OW2 2.675 1.623 167.1

N20-H20…OW1 2.776 1.976 154.4

N22-H22B…OW1 2.800 1.781 163.4

N22-H22C…OW2 3.076 2.409 133.8

N1-H1…O3 2.588 1.770 177.2H2BNT·2DMSO

N2-H2…O2 2.882 2.081 154.7

OW3-H3B…O1 3.121 2.287 137.2

N3-H3…O2 2.767 1.939 163.1

OW3-H3A…O2 2.781 2.047 148.5

N1-H1…O3 2.682 1.826 162.8

H2BNT·2H2O

OW3-H3B…N2 2.931 2.235 123.5

N6-H6A…OW3 2.895 2.034 158.1

OW3-H3D…N4 2.870 1.991 172.2

N6-H6B…N1 2.863 2.008 170.8[NH2(CH3)2

+]2[BNT2-]·2H2O

C4-H4A…O2 3.415 2.500 161.7

1.11 Standard molar enthalpy of formation (ΔcHθm).

In order to verify the energetic properties of these obtained four compounds as well as the raw material CBNT, their standard molar enthalpy of formation (ΔcHθ

m) was measured through an experimental procedure, the detonation parameters including detonation velocity (D) and detonation pressure (P) can be calculated using EXPLO52. To obtain the standard molar enthalpy of formation (ΔcHθ

m), the constant-volume combustion energies of six compounds was investigated by a precise oxygen bomb calorimeter (PARR 1281)3. Approximately 200 mg of the samples were pressed with a well-define amount of benzoic acid (Calcd. 800 mg) to form a tablet to ensure better combustion. The recorded data are the average of five single measurements. The calorimeter was calibrated by the combustion of certified benzoic acid (Standard Reference Material, GBW(E)130035) in an oxygen atmosphere at a pressure of 30.5 bar. The experimental constant volume combustion energies (ΔcU) of compounds can be converted to the standard molar combustion enthalpy (ΔcHθ

m) based on equation (1). Their combustion reaction equation is listed as equation (2-6):

Page 14: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c

(1)∆𝑐𝐻𝜃𝑚= ∆𝑐𝑈+ ∆𝑛𝑅𝑇

where Δn = ng(products)-ng(reactants), (ng is the total molar amount of gases in the products or reactants, R = 8.314 J·mol-1 K-1, T = 298.15 K).Thus the ΔcHθ

m value of compounds CBNT, CBNT·2H2O (1), H2BNT·2DMSO (2), H2BNT·2H2O (3) and·[NH2(CH3)2

+]2[BNT2-]·2H2O (4) is (-3400.67 ± 3.45), (-3996.65 ± 2.14), (-5546.16 ± 2.84), (-2455.57 ± 5.63) and (-4768.72 ± 6.28) kJ·mol-1, respectively.

Compound CBNTC5H10N14O5+5O2(g)=5CO2(g)+5H2O(l)+7N2(g) (2)Compound CBNT·2H2O (1)C5H14N14O7+5O2(g)=5CO2(g)+7H2O(l)+7N2(g) (3)Compound H2BNT·2DMSO (2)C8H16N10O6S2+11O2(g)=8CO2(g)+8H2O(l)+5N2(g)+2SO2 (4)Compound H2BNT·2H2O (3)C4H8N10O6+3O2(g)=4CO2(g)+4H2O(l)+5N2(g) (5)Compound [NH2(CH3)2

+]2[BNT2-]·2H2O (4)C8H12N12O6+8O2(g)=8CO2(g)+6H2O(l)+6N2(g) (6)

(7)Δ𝑓𝐻𝜃𝑚(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑) =∑Δ𝑓𝐻

𝜃𝑚(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) ‒ Δ𝑐𝐻

𝜃𝑚(𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑)

Based on the calculated enthalpies of combustion and known enthalpies of formation of the combustion products4 determined experimentally, CO2(g), ΔfHθ

m(CO2, g)=(-393.5) kJ·mol-1, H2O(l), ΔfHθm(H2O, l)=(-285.8) kJ·mol-1, SO2(g),

ΔfHθm(SO2, g)=(-296.8) kJ·mol-1. ΔfHθ

m was back calculated from the thermochemical equations (7) of Hess’s law, the standard enthalpy of formation (ΔfHθ

m) of compounds CBNT, CBNT·2H2O (1), H2BNT·2DMSO (2), H2BNT·2H2O (3) and·[NH2(CH3)2

+]2[BNT2-]·2H2O (4) is calculated as 4.17, 28.55, 111.76, -261.63 and -94.08 kJ·mol-1, respectively. Thus, the detonation parameters including detonation velocity (D) and detonation pressure (P) can be calculated through EXPLO5.

References(1) Wang, R. H.; Xu, H. Y.; Guo, Y.; Sa, R. J.; Shreeve, J. M. American Chemical Society 2010, 132, 11904-11905.(2) Sućeska, M. EXPLO5 V6.02, Brodarski Institute: Zagreb, Croatia, 2014.(3) Liu, X. Y.; Yang, Q.; Su, Z. Y.; Chen, S. P.; Xie, G.; Wei, Q.; Gao, S. L. RSC

Adv. 2014, 4, 16087-16093.(4) Cox, J. D.; Wagman, D. D.; Medvedev, V. A. CODATA Key Values for

Thermodynamics; Hemisphere Publishing Corp: New York, 1989.

Page 15: solvents Electronic Supplementary Information · n22 h22a 0.98(4) n20-n19-h19b 109(3) n22 h22b 1.05(4) h19a-n19-h19b 111(3) n22 h22c 0.86(4) n20-n19-h19c 110(2) ow1 h1a 0.8504 h19a-n19-h19c