some clarifications in the transient

9
ELSEVIER Electrical Power & Energy Systems Vol. 18, No. 1, pp. 65-72, 1996 Copyright © 1996 Elsevier Science Ltd Printed in G rea t Britain. All rights reserved 0142 -0615(9 5)00tt62-3 0142-0615/96 $15.00+ 0.00 Some clarifications in the transient energy function method M A Pai, M Laufenberg and P W Sauer Department of Electrical and Computer Engineering, University of Illinois, 1 406 W Green St, Urbana, IL 61801, USA The purpose of this paper is to clarify the evaluation o fpath dependent integrals in the energy function method for stability analysis in power systems. In the literature these are handled in an approximate m anner through straight line approximation leading to closed orm analytic expressions of the energy functions. This may not always be accurate. Here it is compared "with the trapezoidal method o f integration along the .faulted trajectory as originally proposed by Athay et al. The paper also emphasizes some tutorial aspects for explaining the PEBS and the BCU method. Keywords: transient energy function, power system stability I. Introduction Historically, the energy function method for multi- machine pow er system stability analysis used the classical machine representation with the internal node model and neglecting transfer conductances. Un der these conditions we get a mathematical :model which is conservative and either the Lyapunov based method or the first integral method gives an equivalent energy function. As transfer conductances represent the effect of constant impedance loads, ignoring them gives erroneous results with respect to critical clearing times. Various efforts at approxi- mating the transfer conductance terms analytically have been made, the most popular among them being the straight line approximation of the faulted trajectory 2. A somewhat obscure, but not so obvious approximation, is the assum ption that the post fault s.e.p, is the same as the pre-fault s.e.p, for computing this integral. This point is also clarified in this paper. It is also shown that the method due to Athay et aL l of using the trapezoidal method is the correct one, as the path of integration is known from the faulted trajectory. While it may be true that using the straighl; line approximation does not introduce significant errors while using classical models for large systems, it may, if the energy function method is Received 14 June 1994; revised 11 May 1995; accepted 1 June 1995 used when detailed models are considered or if they are applied to reduced order and hence smaller systems. In structure preserving energy functions (SPEF) (or the sparse transient energy function (TEF) method) path dependent integrals exist due to voltage dependent real loads or contributions from the electrical variables of the machine 3. A variation of the potential energy boundary surface (PEBS) method which obviates the need to com- pute the post-fault stable equilibrium point (s.e.p.) is also proposed. This might reduce the computational burden in a quick screening o f contingencies. II. Mathematical model 4-7 With the usual notation, the mathematical model for an m machine system with constant voltage behind reactance representation and constant impedance load approximation is given in the Centre of Inertia (COI) notation as: Oi ~--'03i (1 ) M i Mg ~i : Pmi - Peg - ~ PCOl 6= .(O ) i= 1,2,...,m (2 ) The right-hand side in equation (2) has different parameter values (i.e. G ij a nd B ij values) in computing Peg a n d Pcol for the faulted period (0 _< t _< tot) and the post-fault period (t > td). The energy function for the post-fault system is constructed as: 1 m m fO :" --~"~ gi~ - ~_~ I fi(O) dOi 2g__~ /= 1 J O : + v?e(o) A : VTO T (3 ) where 0 i and c?1 are the variables from the faulted trajectory. In the absence of transfer conductance terms Gij(i C j), the expression for Vpe(O ) can be expressed analytically in a closed form 4'5. Otherwise the G ij terms

Upload: ayaz-chowdhury

Post on 07-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 1/8

E L S E V I E R

E l e c t r ic a l P ow e r & E ne r gy Sy s t e m s V o l . 1 8 , N o . 1 , p p . 6 5 -7 2 , 1 9 9 6Co p y r i g h t © 1 9 9 6 E l sev ie r S c i ence L t d

Printed in G rea t Britain. All rights reserved0142 -0615(9 5)00tt62 -3 0142-0615/96 $15.00+ 0.00

Some c lar i f icat ions in the t ransienten ergy func tion m ethod

M A P a i, M L a u f e n b e r g a n d P W S a u e r

Dep ar tm en t o f E l ect ri ca l and Com pu te r E ng i nee r i ng ,

Un ivers i ty o f I l li no is , 1 406 W Green St , Urbana,I L 6 1 8 0 1 , U S A

The purpose o f t h i s pape r i s to c lar i f y t he eva lua tion o f p a t hdependen t i n t egra l s in t he energy func t ion me thod fo rs tab i l i t y ana ly s i s i n pow er sy s t em s . In t he l i t e ra ture t heseare hand led in an app rox im ate m anner through s t ra igh t l ineapprox imat ion l ead ing to c losed orm ana ly t i c express ionso f t h e e n e r g y f u n c t i o n s . T h i s m a y n o t a l w a y s b e a c c u r a te .Here i t is compa red "wi th t he t rapezo ida l me th od o fin t egra t ion a long the . f au l t ed t ra j ec tory a s or ig ina l l y

p r o p o s e d b y A t h a y e t a l. T h e p a p e r a l so e m p h a s i z e s s o m et u t o r ia l a sp e c ts f o r e x p l a in i n g t h e P E B S a n d t h e B C Um e t h o d .

K e y w o r d s : t r a n s ie n t e n e r g y f u n c t i o n , p o w e r s y s t e mstab i l i t y

I . I n t r o d u c t i o n

H i s t o r i ca l l y , t h e en e r g y f u n c t i o n m e t h o d f o r m u l t i -m ach i n e p o w er s y s t em s t ab i li t y an a l y si s u s ed t h e c l a ss i ca lm ach i n e r ep r e s en t a t i o n w i t h t h e i n t e rn a l n o d e m o d e l an dn eg l ect i n g t ran s f e r co n d u c t an ces . U n d e r t h e s e co n d i ti o n swe get a mathemat ica l :model which i s conservat ive ande i t h e r t h e L y ap u n o v b as ed m e t h o d o r t h e f i r s t i n t eg r a lm e t h o d g i v es an eq u i v a l en t en e r g y f u n c t io n . A s t r an s fe rco n d u c t an ces r ep r e s en t t h e e f fec t o f co n s t an t i m p ed an celoads , ignor ing them g ives er roneous r esu l t s w i th r espectto cr i t i ca l c lear ing t imes . Var ious ef fo r t s a t approx i -m a t i n g t h e t r an s f e r co n d u c t an ce t e r m s an a l y t ica l l y h av eb e e n m a d e , t h e m o s t p o p u l a r a m o n g t h e m b e i n g t h es t r a ig h t l in e ap p r o x i m a t i o n o f t h e f au l t ed t r a j ec t o r y 2 . As o m ew h a t o b s cu r e , b u t n o t s o o b v i o u s ap p r o x i m a t i o n , i st h e a s s u m p t i o n t h a t t h e p o s t f au l t s .e . p, i s t h e s am e a s t h epre- f au l t s .e .p , fo r comput ing th i s in tegra l . Th is po in t i sa l so c lar i f ied in th i s paper . I t i s a l so shown tha t the

m e t h o d d u e t o A t h a y e t aL l o f u s in g t h e t r ap ezo i d a lm e t h o d i s t h e co r r ec t o n e , a s t h e p a t h o f i n t eg r a t io n i sk n o w n f r o m t h e f au l ted t r a j ec t o r y . Wh i l e it m ay b e t r u etha t us ing the s t r a igh l ; l ine approx imat ion does no tin t roduce s ign i f ican t e r ro r s whi le us ing c lass ica l modelsf o r l a rg e s y s t em s , i t m ay , i f th e en e r g y f u n c t i o n m e t h o d i s

Rece ived 14 June 1994; rev ised 11 May 1995; accepted 1 June1 9 9 5

u s ed w h en d e t a i led m o d e l s a r e co n s i d e r ed o r i f t h ey a r eap p l i ed t o r ed u ced o r d e r an d h en ce s m a l l e r s y s t em s . I ns t ruc tu re p reserv ing energy funct ions (SPEF) (o r thes p a r s e t r an s i en t en e r g y f u n c t i o n ( T E F) m e t h o d ) p a t hd ep en d en t i n t eg r a l s ex i s t d u e t o v o l t ag e d ep en d en t r ea ll o ad s o r co n t r i b u t i o n s f r o m t h e e l ec t ri c a l v a ri ab l e s o f t h em ach i n e 3 . A v a r i a t i o n o f t h e p o t en t i a l en e r g y b o u n d a r ys u r f ace ( PE B S) m e t h o d w h i ch o b v i a t e s th e n eed t o co m -

pu te the pos t - f au l t s tab le equ i l ib r ium p o in t ( s .e .p .) is a l sop r o p o s ed . T h i s m i g h t r ed u ce t h e co m p u t a t i o n a l b u r d enin a qu ick screen ing o f con t ingencies .

I I . M a t h e m a t i c a l m o d e l 4 -7

Wi t h t h e u s u a l n o t a t i o n , t h e m a t h em a t i ca l m o d e l f o ran m m ach i n e s y s t em w i t h co n s t an t v o l t ag e b eh i n dr eac t an ce r ep r e s en t a t i o n an d co n s t an t i m p ed an ce l o adap p r o x i m a t i o n i s g i v en i n t h e C en t r e o f In e r t ia ( C O I )n o t a t i o n a s :

Oi ~--'03i (1 )

M iM g ~ i : P m i - P e g - ~ P C O l

6= .(O ) i = 1 , 2 , . . . , m (2 )

The r igh t -hand s ide in equat ion (2 ) has d i f f er en tparameter va lues ( i .e . G ij a n d B ij v a l u es ) i n co m p u t i n gPeg an d P c o l for th e f aulte d p er io d (0 _< t _< tot) and thep o s t - f au l t p e r i o d ( t > td) . T h e en e r g y f u n c t i o n f o r t h epos t - f au l t sys tem is cons t ruc ted as :

1 m m f O

: " - - ~ " ~ g i ~ - ~ _ ~ I f i ( O ) d O i2 g _ _ ~ /= 1 J O :

+ v ? e ( o ) A: V T O T (3 )

w h e r e 0 i and c?1 a r e t h e v a r i ab le s f r o m t h e f au l t edt r a j ec to r y . I n t h e ab s en ce o f tr an s f e r co n d u c t an c e t e r m sG i j ( i C j ) , the express ion fo r Vpe(O ) can b e ex p r e s s edanaly t ica l ly in a c losed fo rm 4 '5 . O therw ise the G ij t e r m s

6 5

Page 2: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 2/8

6 6 C l a r i f i c a t io n s i n t r a n s i e n t e n e r g y f u n c t i o n m e t ho d ." M . A . P a i e t a l .

c o n t r i b u t e a p a t h d e p e n d e n t t e r m a s f o l lo w s '

m m - 1 ~ .~ IV p E ( O ) = - - Z e i ( O i - - O s ) - - Z C i j ( c o s Oij - - CO S 0 / ~)

i = l i =1 j = i + l

_ [ o , + o , ]J°~+°7 D i j c o s 0 q d ( O i + O j )

= V e o s + V M A 6 + V D (4 )

w h e r e C i j ~-- E i E j B i j , D i j = E i E j D i j a n d P i = P m i -I E i l 2 G i i . I n c o m p u t i n g e q u a t i o n ( 4), 0 i s o b t a in e d f r o m

t h e f a u l t e d t r a j e c t o r y a n d 0 ~ i s t h e p o s t - f a u l t s . e . p . W e

f o c u s o n t h e e v a l u a t i o n o f th e t e r m s o n t h e r i g h t - h a n d

s i d e o f ( 4) . T h e t h i r d t e r m i s o b v i o u s l y p a t h d e p e n d e n t .

I II. D i f f e r e n t m e t h o d s o f e v a l u a t in g t h ep a t h d e p e n d e n t t e r m

D e f i n e

[ 0i+0s

I i j = J07+07 D i j c o s O i j d ( O i + O j ( 5 )

II1.1 A n a l y t i c a l a p p r o x i m a t i o n

I n t h e b u l k o f t h e l i te r a t u r e , b y a s s u m i n g a s t r a i g h t l in e

p a t h o f i n t e g r a ti o n I i j i s a p p r o x i m a t e d a n a l y t i c a l l y a s :

= ( O , - O ) + ( O ; - O ~I i ; ( 0 i 0 s ) - - ( O j ~ . D i j ( s i n Oi j - - sin O S j ) ( 6 )

T h e o r e t i c a l l y t h i s is i n c o r r e c t a n d t h e a c t u a l p a t h n e e d s t o

b e t a k e n i n t o a c c o u n t a s p o i n t e d o u t i n R e f e re n c e 1 . T h e

s t r a i g h t l i n e p a t h i s u s e d o n l y i n c o m p u t i n g V~r w h i l eu s i n g t h e c o n t r o l l i n g u . e . p , m e t h o d . I n c o m p u t i n g t h e

p o t e n t i a l e n e r g y t e r m ( 4) , i t i s s h o w n t h a t i f t h e P E B S

m e t h o d i s u s e d t o c o m p u t e V ~r, h e n i t is p o s s ib l e t o a v o i d

c o m p u t i n g t h e p o s t - f a u l t s . e . p , a l t o g e t h e r b y p r o p e r

i n i t i a l i z a t i o n o f V e e ( O ) . T h e s e t w o i s s u e s a r e n o w

di scussed .

111.2 I n i t i a l i z a t i o n o f V p E ( O a n d i t s u s e in t h e P E B S

m e t h o d

W h i l e i n t e g r a t i n g t h e f a u l t e d t r a j e c t o r y i n e q u a t i o n s ( 1 )

a n d ( 2) , t h e i n i ti a l c o n d i t i o n s o n t h e s t a t e s a r e O i ( O ) = 0 °

an d ~b i(0) = 0 . In t he ene rgy func t ion , t he r e fe rence ang le

an d v e loc i ty va r i ab l e s a re 0/~ an d ~b i(0) = 0 . Thus a t t = 0 ,

w e e v a l u a t e V e E ( O ) i n e q u a t i o n ( 3) a s :

V p E ( O ° ) = - ~ -'~ [ f f f i (O ) d O ii= 1 a im r n 1 ~ _ _ ~

= - Z e , ( ° ° - ° s ) -

i = 1 i = 1 j = i + l

(7 )

F[ c , j ( c o s - c o s o b )

I. .

-- d0/~+~[°+0j° O i j c o s O i j d ( O i + O j )]

= K (a con s t an t ) (8 )

I f th e p o s t - f a u l t n e t w o r k i s th e s a m e a s t h e p r e - f a u l t

n e t w o r k , t h e n K = 0 . O t h e r w i s e t h e v a l u e o f K i n ( 8 )

s h o u l d b e i n c l u d e d i n t h e e n e r g y f u n c t i o n . T h e p a t h

i n t e g r a l t e r m i n ( 8 ) i s e v a l u a t e d u s i n g t h e t r a p e z o i d a l

ru l e a s :

I i j ( o ) = D , j[ c o s( O ? - 0 ; ) + c o s ( 0 s - 0 7 ) 1

x [(0 ° + 0; ) - (0 s + 07) ] (9)

T h i s i s a g o o d a p p r o x i m a t i o n i f 0 s i s c l o s e t o 0 ° . F o u a d

a n d S t a n t o n 8 r e c o g n i z e d t h i s f a c t i n t h e i r w o r k a n d c a l le d

i t t h e V c o r r e c t i o n t e r m .I f o n e u s e s t h e p o t e n t ia l e n e r g y b o u n d a r y s u r fa c e

( P E B S ) m e t h o d 9 , t h e n e v e n i f t h e p o s t - f a u l t n e t w o r k i s

n o t e q u a l t o t h e p r e - f a u l t n e t w o r k , t h i s t e r m c a n b e

s u b t r a c t e d o u t o f th e e n e r g y f u n c t i o n , i .e .

v ( o , m ) = V K E ( ) + V E ( O ) - - V E ( O ° ) ( 1 0 )

H e n c e t h e p o t e n t i a l e n e r g y c a n b e d e f i n e d w i t h 0 ° a s t h e

d a t u m a s:

f E ( o ) - v p e ( o ° ) =

d o i ll O l d O , - , I > l

= - f i ( O ) dO ii = l 0 °

m m - 1 m F

= - ~ - ' ~ P i ( O ~ - O ° ) - z ~ [ C i j ( c o s O i j - c o s O ~ )i = l i = 1 j = i + l [

f 0 , % ]- I D q c o s O i j d ( O i + O j ) (11)

j0?+~o

A t t h e P E B S c r o s s in g 0 " , l J 'e E ( O * ) g i v es a g o o d a p p r o x i -

m a t i o n t o V c r . T o d e t e c t th e P E B S c r o s si n g , w e c a n

m o n i t o r t h e q u a n t i t y f T ( O ) . ( 0 - - 0 s ) wh e re f ( O ) r e fe r s

t o t h e p o s t - f a u l t p a r a m e t e r s a n d 0 s i s t h e p o s t - f a u l t s . e. p .

T h e P E B S c r o s s i n g 0 * i s t h e p o i n t w h e r e t h i s q u a n t i t y1

c h a n g e s f r o m n e g a t i v e t o p o s i t i v e . T h i s r e q u i r e s a

k n o w l e d g e o f 0 s. T h e m e t h o d p r o p o s e d b y K a k i m o t o e t

a l . 9 d e t e c t s t h e P E B S c r o s s i n g a s t h e p o i n t w h e r e t h e

p o t e n t i a l e n e r g y V e e r e a c h e s a m a x i m u m v a l u e . H e n c e

o n e c a n d i r e c t l y m o n i t o r _ Vee a n d t h u s a v o i d h a v i n g t o

m o n i t o r t h e d o t p r o d u c t f r ( 0 ) • ( 0 - 0 s ). T h i s l e ad s to a n

i m p o r t a n t a d v a n t a g e o f n o t h a v i n g t o c o m p u t e 0 s a t a ll .

I n f a s t s c r e e n i n g o f c o n t in g e n c i e s , t h i s c o u l d r e s u l t i n a

s ! g n if ic a n t s a v i n g i n c o m p u t a t i o n . T h e t e c h n i q u e o f u s i n g

V e e ( o ) i n th e P E B S m e t h o d h a s n o t b e e n w i d e l y u s e d s o

f a r i n th e l i t e r a t u r e a n d m e r i t s f u r t h e r i n v e s t i g a t i o n .

11 1.2 .1 T r a p e z o i d a l a p p r o x i m a t i o n

F o r t > 0 , i n s te a d o f c o m p u t i n g I i j , b y e q u a t i o n ( 6 ) , w e

c o m p u t e i t b y t h e t r a p e z o i d a l r u l e a s ( l e t t i n g n - -k A t , k >_ 1) :

I i j ( n ) = I i j ( n - 1) + 1 D i j [ c o s ( O i ( n ) - O j ( n ) )

"}- CO S(0 /Q"/ - - 1) - O j ( n - 1))]

× [ O i ( n ) + O j ( n ) - O i ( n - 1) - O j ( n - 1)],

n _> 1 (12 )

w i t h I i j ( O ) = 0 . T h i s i n i t i a l i z a t io n a s s u m e s t h a t t h e c o n -

s t a n t K i n (8 ) h a s b e e n e v a l u a t e d u s i n g ( 9) a n d a d d e d t o

t h e p o t e n t i a l e n e r g y f u n c t i o n i n ( 11 ). E q u a t i o n ( 1 2 ) is

u s e d i n R e f e r e n c e 1 f o r t h e p a t h d e p e n d e n t i n t eg r a lw i t h o u t a d d i n g e q u a t i o n ( 9) .

T h u s a s O i ( k A t ) , ~ i ( k A t ) , ( k > _ 1 ) a r e e v a l u a t e d f r o m

t h e f a u l t - o n t r a j e c t o r y w e o b t a i n V ( O , C o) as ( l e t t i ng

Page 3: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 3/8

Clarifications in transient energy function method." M. A. Pai e t a l . 67

k A t = n):

m W/

V ( O ( n ) , & ( n ) ) = ~ Z , M i w 2 ( n ) - Z P i (O i (n ) - 0 ° )i = l i = 1m - 1 £ [

- ~ : C q ( c o s O i j ( n ) - cos0~j)i = 1 j = i + l

m - - I m "]

- - I i j ( n + K

j 1

( 1 3 )

w h e r e I i j ( n ) i s g iven by eq ua t ion (12) . 0 ~ i s u sed i n

c o m p u t i n g K a n d i s al s o n e e d e d t o c o m p u t e V ~ d i s c u s se d '

i n t h e n e x t s e c t i o n . E q u a t i o n ( 1 3) i s e q u i v a l e n t t o V ( O , &)i n e q u a t i o n ( 4 ) a n d i s u s e d i n t h e f o l l o w i n g s e c ti o n s .

I V . C o m p u t a t i o n o f V c r

IV.1 C o n t r o l l i n g u . e . p , m e t h o dI f t h e c o n t r o l l i n g u . e . p , m e t h o d I i s u s e d , t h e r e i s a n e e d t o

c o m p u t e 0 s. A n e f fi ci en t w a y o f c o m p u t i n g t h e c o n t r o l -

l i n g u . e . p , i s t h r o u g h t h e b o u n d a r y c o n t r o l l i n g u . e . p .( B C U ) m e t h o d 1 °'1 4. I n t h i s m e t h o d , o n e c o n t i n u e s t o

i n t e g r a t e a f t e r t h e P E B S c r o s s i n g u s i n g t h e f o l l o w i n g

r e d u c e d s e t o f e q u a t i o n s o f t h e p o s t - f a u l t s y s te m .

M i pO i = P m i - P e i - - - - ~ c o 1 ~ = f . ( O ) i = l , . . . , m ( 1 4 )

w i t h t h e i n it i a l c o n d i t i o n 0 ( 0 ) = 0 " , u n t i l I I f ( 0 ) l l i s m i n i -m u m . T h i s is th e m i n i m u m g r a d i e n t p o i n t ( M G P ) O u. T o

g e t t h e e x a c t u . e . p , w e s o l v e f ( O ) = 0 b y th e N e w t o n -R a p h s o n m e t h o d w i t h ~ u a s t h e i n it i a l g u e s s t o g e t 0 u . I n

m os t ca se s 0 u i s su f f i c i en t l y c lose t o 0 u .

H a v i n g o b t a i n e d 0 " , s y m b o l i c a l l y d e n o t e V~, =

V(0 u, &u) = V e e ( O ~ ) , as o3u = 0 . Howeve r , t he c r i t i c a l l y

c l e a r e d t r a j e c t o r y i n v o l v i n g b o t h t h e f a u l t e d a n d p o s t -

f a u l t s y s t e m t o e v a l u a t e V p e ( 0 u ) a r e n o t k n o w n , a s t ~ i s

n o t k n o w n ! H e n c e v a r i o u s m e t h o d s h a v e b e e n p r o p o s e d

t o c o m p u t e V ?E ( O ~ ) . A m o n g t h e m t h e s t r a i g h t l i n e

a p p r o x i m a t i o n f r o m 0 s t o 0 u i s t h e m o s t c o n v e n i e n ton e 1 '2. V eE ( O u) i s g iven b y

?n

V p E (O U ) = - - Z e i ( o u - O s )

i= 1

m - I m

- ~ ~ [ c . ( c o s O ~ - c os O b) ]i = 1 j= i+I

(0 u - Oi~) + (0~ - 0~) D i j (s in 0~ . - sin 0~)+ ( o u o : 1 - ( o ? o :1

(15)

T h e t h i r d t e r m o f e q u a t i o n ( 1 5 ) i s d e r i v e d a s f o ll o w s .A s s u m e a r a y f r o m 0 s t o 0 /u a n d t h e n a n y p o i n t o n t h e r a y

is 0, = 0 s + p ( O u - O S ) , ( 0 < _ p < 1 ) . T h u s d ( 0 g + 0 j ) =dp(0 u - 0s + 0/u - 0 ~ ). T h e p a t h d e p e n d e n t t e r m i n

e q u a t i o n ( 4) i s n o w e v a l u a t e d a t 0 u a s l :

v ~ ( o " ) = [ ( o ? - o h + ( o 7 - o : ) 1 D , . : c o s

× { (0¢ - 0 : ) + p [ ( 0 ? - 0 h - ( 0 y - 0 : ) ] } d p

_ (0 u - O ) +__ 0~ - -Oj_) Dq {s in(O ~ - 0~)( e ~ e l ) ( e ? - e : )

O S ' ~ l l l P = l+ p [ ( O u - e s ) - ( O ? - - j lJ Jl p= O

( e ? - o : ) + ( o 2 - o , ; )= -- 0.s) D ij (sin 0~ - s in 0/~)

( e u o : ) ( o ? :

(16)

V . N u m e r ic a l e x a m p l eT h e w e l l k n o w n t h r e e -m a c h i n e n i n e - b u s s y s t e m n w a s

c h o s e n t o i l l u s t r a t e t h e v a r i o u s o b s e r v a t i o n s i n S e c t i o n s

I I I a n d I V . F i g u r e 1 i s th e s i n g l e l i n e d i a g r a m .

S e v e r a l te s t s w e r e d o n e o n t h i s s y s t e m t o i l l u s t r a t e t h e

t w o m e t h o d s ( P E B S a n d B C U ) a s w el l a s th e a p p r o x i m a -

t i o n t e c h n i q u e s i n v o l v i n g D i j t e r m s .

T h e f i r s t e x a m p l e c a s e i s t h e * 7 - 5 c o n t i n g e n c y , t h i s

c o n s i s t s o f a f a u l t o n b u s 7 , w h i c h i s c le a r e d b y t h eo p e n i n g o f li n e 7- 5. U s i n g t h e s t e p - b y - s t e p i n t e g r a t i o n

m e t h o d , t h i s c o n t i n g e n c y w a s f o u n d t o h a v e a c r it ic a l

c l e a r i n g t i m e o f a p p r o x i m a t e l y 0 . 20 1 s . A l l o f t h e p l o t s

Gcn. 2

©

L o a d A

I . oad C

_ @ m

G e n . I

F i g ur e 1. T h e t h r e e - m a c h i n e , n i n e - b u s s y s t e m

G e n . 3

Q

1. 5

1

v

0 .5

<

0

" 1 0 0 1 2 0 1 4 0 1 6 0 1 8 1 1 1 2 1 1 4 1 1 6 1 1 8T i m e ( s e c )

Figure 2 . Generator angles of t h r e e - m a c h i n e s y s t e m ,

tc r = 0 . 1 9 s

Page 4: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 4/8

6 8 Cla r i fi ca t ions i n t r ans ien t ene rgy func t i on me t hod : M . A . Pa i et am.

t 1 J I I I $

2 0

1 5

g l 0==

P s<

- %

30

25

(1)

0 : 2 0 1 4 0 1 6 ' 0 1 8 1 1 1 2 1 1 4 1 1 6 1 ' . 8Time (sec)

F i g u r e 3. G e n e r a t o r a n g l e s o f t h r e e - m a c h i n e s y s te m ,

t c , = 0 .21 s

w e r e o b t a i n e d u s i n g t h e M A T L A B p r o g r a m 12 w i t h t h e

P o w e r S y s t e m T o o l b o x 13.

F i g u r e 2 is a p l o t o f t h e g e n e r a t o r a n g l e s w i t h a c l e a r i n g

t i m e o f 0 .1 9 s , w h i c h s h o w s t h a t t h e s y s t e m d o e s i n d e e d

r e m a i n s t a b l e . F i g u r e 3 is t h e s a m e c o n t i n g e n c y c l e a r e d a t

0 .2 1 s , w h e r e t h e g e n e r a t o r a n g l e s a r e u n s t a b l e .

N e x t , tc r w a s c a l c u l a te d u s i n g t h e P E B S m e t h o d . T h i s

m e t h o d l o o k s f o r t h e v a lu e o f t h e m a c h i n e a n g l e s a t t h e

p o i n t a t w h i c h t h e d o t p r o d u c t f r ( O ) . ( 0 - 0 s ) d i s c u s s e d

i n S e c t i o n I V . 1 c r o s s e s f r o m n e g a t i v e t o p o s i t i v e . T h i s d o t

p r o d u c t i s p l o t t e d i n F i g u r e 4, a n d s h o w s t h a t t h e P E B S i s

c rosse d a t t = 0 .356 s .O n c e t h e P E B S c r o s s in g i s f o u n d , t h e p o t e n t i a l e n e r g y

i s f o u n d a t t h e s a m e p o i n t , a n d i s d e f i n e d a s t h e c r i t i c a l

e n e r g y o f t h e s y s t e m , V ~r. T h e c a l c u l a t i o n s o f V t , o s a n d

V M nG i n e q u a t i o n ( 4) a t t h i s p o i n t a r e t r iv i a l. F o r t h e

c a l c u l a t i o n o f Vz~ o n e c o u l d u s e e i t h e r t h e t r a p e z o i d a lr u l e ( T R A P ) o f e q u a t i o n ( 12 ) o r t h e s t r a ig h t - l i n e

a p p r o x i m a t i o n ( S L ) o f e q u a t i o n ( 6 ) f o r th e e v a l u a t i o n

o f t h e p a t h - d e p e n d e n t i n t e g ra l . A s t h e p a t h o f i n te g r a -

t i o n i s a v a il a b l e , i t i s m o r e a c c u r a t e t o u s e t h e a c t u a l p a t hi n t h e e v a l u a t i o n u s i n g t h e t r a p e z o i d a l r u l e r a t h e r t h a n t o

a s s u m e a s t r a i g h t - l in e p a t h .

T o e x a m i n e h o w t h is s t r ig h t -l in e a p p r o x i m a t i o n a f fe c ts

t h e P E B S m e t h o d , VD w a s c a l c u l a te d b o t h w a y s . F o r t h e

* 7 - 5 c o n t i n g e n c y , t h e S L m e t h o d r e s u l t s i n a

V e t ( O * ) = V c r = 1 .2 85 3. T h e T R A P m e t h o d g a v e

V p E ( O * ) = V c r ~ - 1 . 3 2 6 9 . F i g u r e 5 s h o w s a n e x a m p l e o f

t h e f a u l t e d e n e r g i e s o n t h e s y s t e m . N o t e t h a t V c c f o r t h e

T R A P m e t h o d is ve r y c lo s e t o t h e m a x i m u m o f V e t in

F i g u r e 5 . T h i s i s v e r y t y p i c a l w h e n u s i n g t h e P E B S

m e t h o d . A q u i c k w a y t o e s t i m a t e tc r f r o m t h e g r a p h i s

t o d r a w a l in e f r o m t h e p e a k o f V e E pa ra l l e l t o t he x -ax i s

un t i l i t i n t e r sec t s V T " o r . The t ime a t t h i s i n t e r se c t i on i s tc r.

U s i n g t h e S L r e s u l t s f o r Vcr, tcr = 0 . 1 9 6 s , w h e r e a s

t c r - - 0 . 1 9 9 s u s i n g t h e T R A P m e t h o d . T h e r e s u l t s f o r

t h is c o n t i n g e n c y w e r e v e r y s im i l a r f o r b o t h m e t h o d s . T h e

l o a d i n g o f t h e s y s t e m w a s i n c r e a s e d t o 1 5 0 % o f th e

n o m i n a l c a s e , w i t h a l l t h e e x c e s s l o a d b e i n g t a k e n b yt h e s la c k b u s , a n d t h e P E B S m e t h o d w a s u s e d a g a in . T h e

l o a d i n g w a s t h e n p u s h e d t o 2 0 0 % o f th e n o m i n a l , a g a i n

w i t h t h e e x t r a l o a d t a k e n b y t h e s l ac k b u s a n d u s i n g th e

P E B S m e t h o d . T h e r e s u l t s a r e s h o w n i n T a b l e 1 . I n a l l

c a s e s t h e t r a p e z o i d a l r u l e i s m o r e a c c u r a t e t h a n t h e

s t r a i g h t - l i n e a p p r o x i m a t i o n . T h e d i f f e r e n c e b e t w e e n t h e

t w o m e t h o d s b e c o m e s m o r e p r o n o u n c e d a s t h e s y s t e m

b e c o m e s m o r e h e a v i ly l o a d e d . A t t h e h i g h e s t lo a d i n g t h e

d i f f e re n c e i n V~r f o r t h e t w o m e t h o d s i s a b o u t 1 0 % . T h e

c r i t i c a l c l e a r i n g t i m e i s a l s o m o r e a c c u r a t e u s i n g t h e

t r a p e z o i d a l m e t h o d , a s e x p e c t e d , a n d t h e d i f f er e n c e i n

tc r b e t w e e n t h e t w o m e t h o d s i s a l so g r e a t e r w i t h h i g h e r

l o a d i n g . T h e i n c r e a s e i n tc r w i t h i n c r e a s e d l o a d i n g i s so l e l yd u e t o t h e f a c t t h a t t h e e x t r a l o a d i s t a k e n u p b y t h e s l a c k

b u s . T h e p u r p o s e h e r e w a s o n l y to s h o w t h e d i ff e r e n c e

b e t w e e n th e T R A P a n d S L m e t h o d s . I f i n c r ea s e d l o a d is

s h a r e d b y t h e n o n - s l a c k b u s e s , t h e d i f f e r e n c e b e t w e e n t h e

T R A P a n d S L m e t h o d s s t i l l e x i s t s a n d a s e x p e c t e d

inc rea sed l oad ing wi l l dec rea se t c~ .

o

3 ? ,

2 .5 . . . . . . . . . . . . .. . . . . .. . . . . .. . . . . . i . . . . . . . . . . . . . . . . . ! . .. . .. . .. . .. . :

2 . . . . . . . . . . . . . . . . . ' : • , . . . . . . . . .

1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~- : . . . . . . . . i . ... .. .. .. ... .

i

1 . . . . . . . . i . . . . . . : . . . . . . ! i

. . . . .

-0.5

-1

: !

i I I

-1"50 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T i m e ( s e , c )

F i g u r e 4 . Z e r o c r o s s i n g o f t h e d o t p r o d u c t i n t h e P E B S m e t h o d

Page 5: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 5/8

Clarifications in transient energy function method." M. A. Pa i e t a l . 69

5 . . . . . . . . . . . . . : . . .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. .. . .. ... . . . . . . . . . . . . . . . . . . . . .: : > . . .

i

4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ ....... ......... . . . . . . . . . . . . . . . . .

i / ' " i

3 . . . . . : ( a ) . . . : ( ~ . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . .e,. /

[.~ i

2 . . . . . . . . . . . . . . . . . . . . . . . .

: / " i

. . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . .

00 0 . 0 5 0 .I 0 . 1 5 0 . 2 0 . 2 5 0 . 3 0 . 3 5 0 . 4

T i m e ( s c c )

F i g u r e 5 . ( a ) VTOT a n d ( b ) VpE u s i n g t h e t r a p e z o i d a l r u l e fo r " 7 - 5

T a b l e 1 . C o m p a r i s o n o f S L a n d T R A P u s i n g t h e P E B S m e t h o d , t o , i n s e c o n d s

S t r a i g h t - l i n e

S y s t e m l o a d i n g a p p r o x i m a t i o n T r a p e z o i d a l r u l e A c t u a l ( s t e p b y s t e p )

1 . 0 V c r = 1 . 2 8 5 3 V c r = 1 . 3 2 6 9 tc r = 0 . 2 0 1 s

t c r - - 0 . 1 9 6 s t c r = 0 . 1 9 9 S

1 . 5 V c r = 1 . 9 7 1 9 V c r = 2 . 1 1 6 5 t c r = 0 . 2 7 9 s

t c r = 0 . 2 7 2 S tc ~ = 0 . 2 8 0 S

2 . 0 V ~r - -- - 2 . 5 9 6 3 V cr = 2 . 9 5 9 2 t c r = 0 . 3 8 7 S

t c r = 0 . 3 6 0 S t c r = 0 . 3 7 7 S

O

Z

1 . 2 ~ ~

1 .15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . .. . .. . .. . .. . .. . .. . .. . . i . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . i . . . . . . . . .

1 .1 . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . .. . .. . .. . .. . , . . . . . . i . . . . . . . . . . : i . . . . . . . . .

1 . 0 5

l

0 . 9 5

0 . 9

0 .8 5 ..................................................................................................................................... i. . . . . . . .

0 . 80 . 5 0 . 6 0 . 7 0 . 8 0 . 9 I . I 1 . 2 1 . 3 1 . 4

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . ! . . . . . . . . . . . .

F ig ur e 6 . P lo t o f th e m in imu m g r a d ie n t p o in t fu n c t io n

T i m e ( s e e )

1 . 5

Page 6: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 6/8

7 0 Clarif ications in transient energy func tion method." M. A. Pai et al .

e~

1 " 6 ' , , :1.4 .......

. . . . . . . . . . . . . . . . . . . .. . . . .. . . . .. . . ~ : ' , ~ . . . . . . . . . . i . . . . . . . . . . . . . . . ~ . . . . . . . . . . . ~ . . . .. . . . .. . . .. .

.. .. .. ........ :: . . . !."'"....'"-.iV°t( .) !: i

• / ,:: ..... : N , , V totC o) "'-'~ . ::

, . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -

0 . 8 ~

0 .6 . . . .. . .. . . . ! . . / . . . . . . .. . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . .. . . . . . . \ . . . . . . . . .

0.42 ~ '.....!... i i ......i'ii / ...........

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6

T i m e ( s e c )Figure 7. Vror an d VpE fo r c r i t i ca l ly c leared sys tem u s ing (a) s t ra ight l ine approx imat ion (b) t rapezo ida l ru le

T h e B C U m e t h o d w a s a l s o t e s t e d f o r d i f f e r e n c e s

b e t w e e n t h e s t ra i g h t- l in e a n d t r a p e z o i d a l e v a l u a t i o n s o f

t h e e n e r g y f u n c t i o n . T h e f i r s t s t e p i n t h e B C U m e t h o d i s

i d e n t ic a l t o t h e f i rs t s t e p in t h e P E B S m e t h o d , i n t h a t t h e0 * is f o u n d . T h e n e x t s t e p i s t o i n t e g r a t e t h e p o s t - f a u l t

g r a d i e n t s y s t e m e q u a t i o n ( 1 4 ) u s i n g 0 * a s t h e i n i t i a l

c o n d i t i o n , u n t i l a m i n i m u m o f l l f ( 0 ) l l i s f o u n d . T h i s i s

t h e m i n i m u m g r a d i en t p o i n t ( M G P ) . F i g u r e 6 s h o w s t he

r e s u lt s o f t h is i n t e g r a t i o n f o r t h e * 7 - 5 c o n t i n g e n c y a t

n o m i n a l l o a d i n g . T h e p o t e n t i a l e n e r g y is t h e n e v a l u a t e d

a t th i s M G P u s i n g th e s tr a ig h t - li n e a p p r o x i m a t i o n

( e q u a t i o n ( 1 5) ). T h e t r a p e z o i d a l r u l e i s n o t a n o p t i o n

h e r e , b e c a u s e t h e e x a c t p a t h f r o m 0 s to 0 u i s n o t k n o w n •

U s i n g F i g u r e 6 , t h e M G P w a s f o u n d a t t = 1 . 38 4 s , a n d

u s i n g e q u a t i o n ( 1 6 ) t h e c r i ti c a l e n e r g y V c r w a s c a l c u l a t e d

t o b e Vp e (Ou) = 1 . 3198 = V~r. A s t h i s i s c l o s e t o t he

v a lu e s o b ta i n e d b y t h e T R A P a n d S L m e t h o d s ( T a b le

1), ter s h o u l d b e b e t w e e n 0 .1 9 6 a n d 0 . 1 9 9 s . T h e B C U

m e t h o d i s t h e s a m e a s th e P E B S m e t h o d u n t il 0 * is

r e a c h e d .

B e f o r e t h e f a u l t i s c le a r e d t h e r e i s n o t m u c h d i f fe r e n c e

i n t h e e n e rg i es c o m p u t e d b y th e S L a n d T R A P m e t h o d s .

H o w e v e r , l a r g e v a r i a t i o n s s h o w u p i n t h e p o s t - f a u l tp e r i o d . I t is o n l y w h e n t h e S L a p p r o x i m a t i o n i s u s e d t o

c a l c u l a t e e n e r g i e s a f t e r tc r t h a t l a r g e d i f f e r e n c e s o c c u r , l c r

i s o f t h e o r d e r o f 0 . 2 s a n d t h e P E B S c r o s s i n g i s c l o s e r to

0 . 4 s . I n F i g u r e 7 , t h e d i f f e r e n c e i n e n e r g i e s o f t h e t w o

m e t h o d s i s q u i t e l a r g e a f t e r t h e f a u l t i s c r i t i c a l l y c l e a r e d •

I n f a c t, th e S L m e t h o d s h o w s t h a t t h e to t a l s y s t e m e n e r g y

i n c r e a s e s a f t e r t h e f a u l t i s c l e a r e d , w h e n i n r e a l i t y t h i s i s

1. 4

1.2

0.8

o .6

0.4

o.21

O '

0 0.05 O. 1 O. 15 0.2 0.25 0.3 0.35 0.4

F igure 8 . P otent ia l energy o f the l ine-c leared sys tem

Time( see)

Page 7: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 7/8

Clari f icat ions in t ransien t energy fun ct ion method." M. A. Pa i et al . 71

2.5

1.5

0.5

0

i . " . . . / "

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 9 . Poten t ia l ene rgy o f the se l f -c lea red system

impossible. VToTmust decrease afte r the faul t is clearedin a system that has damping. The trapezoidal method ofcomputing Iq correctly reflects this. This could be ofsignificance if the energy function is used for voltagedip calculations. The path integral terms initially are asmall percentage of the potential energy but increase toabout 30-40% near the PEBS crossing. However, largevariations show in in the post-fault period.

V .1 T h e e n e r g y f u n c t i o n a t t = 0

In Section IlI.2, the initialization of VpE at t = 0 wasdiscussed. In most energy funct ion plots the value o f VpEat the time when the fault is applied is shown to betypically zero. This is only true under specific circum-stances, namely, when the post- fault system is identical tothe pre-fault system, i.e., when the fault is self-clearing.Figures 8 and 9 show the difference between a fault tha tis switched out, resulting in a different system, and afaul t that is self-cleared, resulting in the same system.

Figure 8 is the *7-5 contingency, and Figure 9 is the *7contingency.

The only other way VpE could start at zero is if 0 ° issubstituted for 0 s in the potential energy equations. Thisprocedure is correct only when the PEBS method asdiscussed in Section III.2 is used.

V . 2 P o s t - f a u l t e n e r g y

Another point of clarification concerns the total systemenergy after the fault has been cleared. In the literature,the post-fault energy of the system is always port rayed asa constant. However, in a system with damping, theenergy must decrease over time. Note that in Figure 10,which portrays the three-machine system criticallycleared from a *7-5 contingency, the energy definitelydecreases over time.

This obvious decrease in system energy is not soapparent in a larger system. Figure 11 is a plot of theenergy function for the ten-machine system with a *30-34

1

0 .8

~ 0 . 6

0.4

0.2

o ;0 2 0 4 0 6 0 8 1 2 1 4 1 6 1 8

Time sec)

F i g u r e 1 0 . T h r e e - m a c h i n e s y s t e m cr i t i ca l l y c lea red tosh o w d e c r e a se i n sys t e m e n e r g y

Vto t

° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . ! . . . . . . . . . . . . . . . . . . .

5

~ 4m 3

2

0 .2 0 .4 0 .6 0 .8T i m e (sac)

F i g u r e 1 1 . T e n - m a c h i n e s y s t e m cr i t i ca l l y c lea red to

s h o w a l m o s t c o n s t a n t s y s te m e n e r g y

Page 8: Some Clarifications in the Transient

8/4/2019 Some Clarifications in the Transient

http://slidepdf.com/reader/full/some-clarifications-in-the-transient 8/8

7 2 Clar i f ica t ions in t rans ient energy fun c t ion method. " M. A . P a i e t a l .

c o n t i n g e n c y . I n t h e l a r g e r s y s t em , t h e p o s t - f a u l t e n e r g y

d o e s r e m a i n r e a s o n a b l y c o n s t a n t , b e c a u s e o f th e d e c r e a s-

i n g i n f l u en c e o f t h e t r a n s f e r c o n d u c t a n c e s a s t h e s y s t e m

i n c r e a s e s i n s iz e . N o t e a l s o t h a t t h e w h i l e t h e f a u l t i s n o t

s e l f -c l e a r i n g , t h e p o t e n t i a l e n e r g y a l s o s t a r t s v e r y c lo s e t o

z e r o .

A s t h e s y s t e m i n c r e a s e s i n s i z e, t h e r e m o v a l o f o n e l i n e

m a k e s l e ss d i f fe r e n c e t o t h e s y s t e m e n e r g y . T h i s p o i n t i s ,

h o w e v e r , i m p o r t a n t i f a n e n e r g y f u n c t i o n i s t o b e u s e d

a f t e r d y n a m i c a l e q u i v a l e n c i n g w h i c h r e s u l t s i n f e w e r

e q u i v a l e n t m a c h i n e s .

V I . C o n c l u s i o n

I n t h i s p a p e r s e v e r a l p o i n t s o f t h e t r a n s i e n t e n e r g y f u n c -

t i o n m e t h o d h a v e b e e n c l a r i f i e d . T h e f i r s t i s a d i s c u s s i o n

o n t h e v a l i d i t y o f t h e s t r a ig h t - li n e a p p r o x i m a t i o n f o r

c o m p u t i n g t h e p a t h d e p e n d e n t i n te g ra l . I t w a s s h o w n

t h a t i t i s m o r e a c c u r a t e t o u s e t h e t r a p e z o i d a l r u l e

w h e n e v e r p o ss i b le . A t h i g h e r l o a d i n g s t h e T R A Pm e t h o d i s m o r e a c c u r a t e t h a n t h e S L m e t h o d . T h e

t r a p e z o i d a l m e t h o d a l s o e x h i b i t s m u c h b e t t e r r e s u l t s

w h e n c a l c u l a t i n g t h e p o s t - f a u l t p o t e n t i a l e n e r g y . T h i s

c o u l d b e v e r y i m p o r t a n t i n v o l t a g e d i p c a l cu l a t i o n s . I n

t h e B C U m e t h o d a f t e r th e c o n t ro l l i n g U E P is c o m p u t e d ,

a s t r a ig h t - l in e a p p r o x i m a t i o n i s n e c e s s a r y to c o m p u t e Vcr.

A n o t h e r c l a r i f i c a t i o n c o n c e r n s t h e p o t e n t i a l e n e r g y

t = 0 . T h e p o i n t w a s m a d e t h a t t h e o n l y w a y t h e p o t e n t i a l

e n e r g y c o u l d b e z e r o a t t h e s t a r t o f th e f a u l t i s i f t h e p r e -

a n d p o s t - f a u l t s y s t e m s a r e i d e n t ic a l . T h i s i s n o t t h e c a s e i f

a n y l i n e s w i t c h i n g o c c u r s ; h e n c e , t h i s s h o u l d b e r e f l e c t e d

i n t h e c o m p u t a t i o n o f t h e e ne r gi e s. I f th e m a x i m u m o f th e

p o t e n t i a l e n e r g y r e f e r e n c e d t o 0 ° i s u s e d t o c o m p u t e g c r ,

t h e n t h e r e i s n o n e e d t o c o m p u t e 0 s i n t h e P E B S m e t h o d .

T h e t h i r d c l a r i f i c a t i o n i s r e g a r d i n g t h e p o s t - f a u l t

s y s t e m e n e r g y . A l t h o u g h o f t e n i t i s s h o w n a s c o n s t a n t ,

t h a t i s n o t n e c e s s a r i l y t h e c a s e . I n a s m a l l s y s t e m w i t h

d a m p i n g , i t is e a s y t o s e e t h a t t h e e n e r g y d e c r e a s e s w i t h

t i m e . W i t h l a r g e r s y s te m s , b e c a u s e o f t h e d e c r e a s e d e f fe c t

o f t h e t ra n s f e r c o n d u c t a n c e s , n o t o n l y d o t h e e n e r g i e s

a p p e a r t o s t a r t f r o m z e r o , t h e y a r e a l m o s t c o n s t a n t o r

s l i g h t l y d e c r e a s i n g a f t e r t h e f a u l t i s c l e a r e d .

V II . A c k n o w l e d g e m e n t s

T h e a u t h o r s w o u l d l i k e t o t h a n k t h e N a t i o n a l S c i e nc e

F o u n d a t i o n f o r i ts s u p p o r t t h r o u g h i t s g r a n t N S F E C S

9 1 - 19 4 2 8 . T h e y a l s o w is h t o t h a n k P r o f e s s o r K . R .

P a d i y a r o f I. I. S c ., B a n g a l o r e , I n d i a f o r h i s u se f u l

c o m m e n t s . T h e y a l s o w i s h t o t h a n k t h e r e v i e w e r s f o r

t h e i r u s e f u l s u g g e s t i o n s .

V I I I. R e f e r e n c e s

1 Athay, T, Podmore, R and Virmani, S 'A pr ac t ica l me thod

for direct analys is of t ransient s tabil i ty ' I E E E T r an s . P o w e rA p p a r . S y s t . Vol PAS-98 N o 2 (1979) 573-5 84

2 Uemu ra, K, Ma tsuki , J , Yamada, I and Tsuji , T 'App rox-imation of an e nergy function in transien t s tabili ty analys isof pow er sys tems' E l e c t r . W n g . J p n Vo192 No 6 (1972) 96 -100

3 Padiy ar , K R and Ghosh, K K 'Direct s tabil ity evaluat ion o fpow er systems with detai led gene rator models us ing s truc-ture preserving energy functions ' I n t . J . E l e c t r . P o w e r

E n e r g y S y s t . Vol 11 No 1 (1989) 47 -56

4 Pai , M A P o w e r s y s t e m s t a b il i ty N . H ol land , A ms te r dam(1981)

5 Pa i , M A E n e r g y f u n c t i o n a n a l y s i s f o r p o w e r s y s t e m s t a b i l it y

Kluw er Academ ic Publishers , Boston , M A (1989)

6 Fouad, A A and Vit tal , V P o w e r s y s t e m t r a n s i e n t s t a b i l i t y

u s i n g t h e t ra n s i e n t e n e r g y f u n c t i o n m e t h o d Prentice Hall ,N ew Y o r k ( 1992)

7 Pavella , M and Murthy , P G T r a n s i e n t s t a b i l i t y t h e o r y o f

p o w e r s y s t e m s : f r o m t h e o r y t o p r a c t i c e John Wiley, NewYork (1993)

8 Fouad, A A and Stanton, S E 'Transien t stabil i ty analys is o fa mult i-machine pow er system Par ts I and I I ' I E E E T r a n s .

P o w e r A p p a r . S y s t . Vol PAS-100 N o 8 (1981) 3408-3424

9 Kakim oto, N, Ohsawa, Y and Hayashi , M ' T r ans ien tstability analysis o f electric pow er systems via Lu re type

Lyap unov f unc t ions Par t s I and I I ' T r a n s . l E E J p n Vol 98No 5/6 (1978)

10 Chiang, H D 'Analyt ical results on direct meth ods for powe rsystem transient stability analysis ' C o n t r o l D y n . S y s t . (ed.C T Leond es) Vol. 43 Par t 3 Academ ic Press (1991) pp 185-27 4

11 Anderson, P M and Fou ad, A A P o w e r s y s t e m c o n t r o l a n d

s t a b i l i t y Iowa State Unive rs i ty Press (1977)

12 Little, J N M A T L A B : U s er 's G u id e The Mathw or ks I nc .(1991)

13 Chow , J H and Cheung,K W ' A too l bo x f or pow er systemdynam ics and contro l engineering ed ucation and research'I E E E T r a n s. P o w e r S y s t . Vol 7 No 4 (1992) 1559-1564

14 Chiang, H D, W a, F F an d V ar a iya , P P ' A B CU me thod f ordirect analys is of pow er sys tem transient s tabil i ty ' I E E E

T r a n s . P o w e r S y s t . Vol 9 No 3 (1994) 1194-1208